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Chandrasekhar-Clogston limit and critical polarization in a Fermi-Bose superfluid mixture
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2Laboratoire Kastler-Brossel, École Normale Supérieure, CNRS and UPMC, 24 rue Lhomond, 75005 Paris, France
(Received 28 May 2014; published 8 October 2014)

We study mixtures of a population-imbalanced, strongly interacting Fermi gas and of a Bose-Einstein condensed
gas at zero temperature. In the homogeneous case, we find that the Chandrasekhar-Clogston critical polarization
for the onset of instability of Fermi superfluidity is enhanced due to the interaction with the bosons. Predictions for
the critical polarization are also given in the trapped case, with a special focus on the situation of equal Fermi-Bose
and Bose-Bose coupling constants, where the density of fermions becomes flat in the center of the trap. This
regime can be realized experimentally using Feshbach resonances and is well suited to investigate the emergence
of exotic configurations, such as the occurrence of spin domains or the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO)
phase.
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I. INTRODUCTION

The property of fermions interacting with a Bose fluid has
been a longstanding subject of research in condensed matter
physics, dating back to the study of 3He −4He mixtures [1].
With the recent development of research activity in ultracold
gases, it is now possible to experimentally create mixtures of
degenerate bosonic and fermionic atomic gases [2–11]. Very
recently, the first experimental realization of a superfluid Bose-
Fermi mixture was reported [12], the Fermi gas being at the
unitarity limit.

There are several theoretical works on mixtures of super-
fluid Bose gases interacting with spin-1/2 Fermi gases
[13–17], but the behavior of coexisting superfluid Fermi and
Bose gases in the case of strong Fermi-Fermi interaction has
not yet been considered in the literature. Furthermore, since
spin-imbalanced fermions are predicted to give rise to exotic
phases such as the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO)
phase [18–20], it is of great interest to investigate how their
behavior is modified by the interaction with bosons.

In this paper, we show that in a homogeneous configura-
tion the Chandrasekhar-Clogston critical polarization for the
breakdown of superfluidity is larger than in the absence of
the bosonic component [21]. We then consider the case of a
harmonically trapped configuration: when the Bose-Bose and
Bose-Fermi interactions are equal, the fermionic density in the
region of coexistence with bosons becomes flat, because the
interaction with bosons exactly compensates the external
trapping potential [22]. We investigate the phase diagram of
the trapped gas when the fermion imbalance is varied and
show that, for a finite range of polarization, the fermionic
density in the Bose-Fermi coexistence region can become
inhomogeneous.

II. HOMOGENEOUS SYSTEM

The balanced unitary Fermi gas is known to be fully
superfluid at zero temperature. As one increases the polar-
ization, it has been observed that the system phase separates
into a balanced superfluid phase and an imbalanced normal
phase [23]. The two phases have different densities, and the
equilibrium conditions between the two phases fix the ratio x

between the density of the minority species over the density
of the majority species in the normal phase, which determines
the Chandrasekhar-Clogston limit. At zero temperature, this
critical ratio turns out to be, at unitarity, x ≈ 0.4 [21,24,25].
As we show, this value is modified by the interaction with
bosons. We assume that the Fermi gas is phase separated into
a superfluid phase with density ns for both species and a normal
phase with density n↑ and n↓ for the spin-up (majority) and
spin-down (minority) fermions, respectively. The density of
the coexisting bosons in the Fermi superfluid phase is nbs and
that in the normal phase is nbn. Later we discuss the stability
conditions for such configurations. We assume that both the
bosonic and fermionic species can be described within the local
density approximation and both the Bose-Bose and the
Bose-Fermi interactions are weak enough to be treated within
the mean-field approximation. Then the energy density in the
superfluid phase (Es) and in the normal phase (En) takes the
form

Es = gbb

2
n2

bs + 2gbf nbsns + es[ns],
(1)

En = gbb

2
n2

bn + gbf nbn(n↑ + n↓) + en[n↑,n↓],

where gbb ≡ 4π�
2abb/mb, assumed to be positive, and gbf ≡

2π�
2abf /mr are, respectively, the Bose-Bose and spin-

independent Bose-Fermi interaction coupling constants. The
Bose-Bose and Bose-Fermi scattering lengths are abb and abf ,
respectively, and mr ≡ mbmf /(mb + mf ), where mb and mf

are the boson and fermion masses, respectively. The Fermi
energy density in the superfluid phase is given by the universal
form

es[ns] ≡ ξ
6

5

�
2

2mf

(6π2ns)
2/3ns, (2)

where ξ = 0.370 [25–27] is the Bertsch parameter. For the
normal phase we use the expansion in the parameter x ≡
n↓/n↑ introduced in [21]:

en[n↑,n↓] ≡ 3

5
εF↑n↑

(
1 − 5

3
Ax + mf

m∗ x5/3 + Fx2

)

≡ 3

5
εF↑n↑ε(x), (3)
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FIG. 1. (Color online) Critical ratios x ≡ n↓/n↑ (solid blue line
with left axis) and y ≡ ns/n↑ (dotted green line with right axis) as a
function of G ≡ n↑g2

bf /εF↑gbb.

where εF↑ ≡ (�2/2mf )(6π2n↑)2/3 is the noninteracting Fermi
energy of the majority species, and for the parameters in
ε(x) we use A = 0.615, m∗/mf = 1.20, and F = (5/9)A2,
determined by diagramatic methods and Monte-Carlo cal-
culations [28–30]. Using different sets of parameters would
not change our results significantly. The equilibrium between
the two phases is determined by matching the pressure and
the chemical potentials for both bosons and fermions at the
interface, which leads to the following conditions for x and
y ≡ ns/n↑:

ξy2/3 − 2Gy − 1

2
ε(x) − 3

10
ε′(x)(1 − x) + G(1 + x) = 0,

2Gy2 − 4

5
ξy5/3 − G

(1 + x)2

2
+ 2

5
ε(x) = 0,

(4)

where ε′(x) ≡ dε(x)/dx and G ≡ n↑g2
bf /(εF↑gbb) is a dimen-

sionless parameter independent of the bosonic density. As a
consequence, also the critical ratios x and y are independent
of the boson density, provided there are background bosons
with nonzero densities in both phases. The parameter G

has an important physical meaning, corresponding to the
ratio between the change in the energy of fermions caused
by the induced interaction −g2

bf /gbb in the static limit and
the noninteracting Fermi energy. The existence of two real
solutions for x and y for (4) is ensured for 0 � G � Gmax ≈
0.089, and in Fig. 1 we plot the resulting values of x and y

as a function of G. When G = 0, the critical ratio x ≈ 0.40
coincides with the value obtained in the absence of Bose-Fermi
interaction (gbf = 0). As G becomes larger, the value of x

decreases, reaching the minimum value of x ≈ 0.30, which
means that the superfluid phase of fermions is stabilized by
the interaction with bosons. The ratio y, on the other hand,
increases with G, reaching the maximum value of y ≈ 2.68,
which implies that the density jump at the interface of the
two phases becomes larger; the maximum value of the jump,
corresponding to G = Gmax, is 2ns/(n↑ + n↓) ≈ 4.1, to be
compared with the value ≈1.5 when G = 0.

The nonexistence of real solutions when G > Gmax is
related to the occurrence of dynamical instability in the
fermionic superfluid phase caused by the interaction with
bosons. The dynamical stability of the superfluid phase

requires that the following inequality be obeyed [31]:

δ2es[ns]

δn2
s

− 4
g2

bf

gbb

> 0, (5)

which is equivalent to imposing ξ/3y1/3 > G. We have
checked that the condition for having real solutions for x and
y coincides with the one ensuring dynamical stability. If G

becomes larger than Gmax, the superfluid Fermi gas and the
Bose gas are expected to phase separate.

III. TRAPPED SYSTEM

Let us now consider the case of a trapped quantum mixture.
In the absence of bosons, it is known that as one introduces a
small imbalance between the two species, the central part of
the trap remains superfluid and the outer shell is turned into a
normal state [21,23]. When the imbalance is large enough, the
whole Fermi gas is in the normal state.

In the presence of bosons, the situation can change
significantly. The energy of a highly polarized Fermi gas
interacting with a BEC gas is given, within the local density
approximation (LDA), by

E =
∫

r<Rb

d3r

{
gbb

2
n2

b(r) + [Vb(r) − μb]nb(r)

+ gbf nb(r)[n↑(r) + n↓(r)] + en[n↑(r),n↓(r)]

+ [Vf (r) − μ↑]n↑(r) + [Vf (r) − μ↓]n↓(r)

}

+
∫

Rb<r

d3r{en[n↑(r),n↓(r)] + [Vf (r) − μ↑]n↑(r)

+ [Vf (r) − μ↓]n↓(r)}, (6)

where Rb is the radius at which the boson density vanishes,
and Vb(r) and Vf (r) are the harmonic traps for bosons and
fermions, respectively [32]. The densities of boson, spin-up
fermion, and spin-down fermion are nb(r), n↑(r), and n↓(r),
respectively, and the corresponding chemical potentials are
labeled, respectively, with μb, μ↑, and μ↓.

Taking the variation of the energy with respect to nb(r),
n↑(r), and n↓(r) in the Bose-Fermi coexistence region r < Rb,
which is hereafter referred to as the “core” region, one obtains
the following equations:

nb(r) = {μb − Vb(r) − gbf [n↑(r) + n↓(r)]}/gbb,

δen

δnσ

+ Vf (r) − gbf

gbb

Vb(r) + gbf

gbb

μb − μσ

−(
g2

bf /gbb

)
[n↑(r) + n↓(r)] = 0, (7)

where σ = ↑,↓. The second equation explicitly reveals that,
if gbf Vb(r) = gbbVf (r), the fermion densities are not affected
by the presence of the trap and take a constant value inside
the core [22]. This follows from the fact that the effect of
the trap on the fermions is exactly canceled by the mean-field
interaction with bosons [33]. Conversely, the bosonic density
is not affected by the presence of fermions and, choosing
an external potential of harmonic form, the bosonic density,
for r < Rb, takes an inverted parabola profile, whose shape
is solely determined by the total number of bosons and the
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Bose-Bose coupling constant gbb. If instead gbf Vb > gbbVf ,
the fermions feel an antitrapping potential in the core region
and their density will increases when one moves away from
the center.

When the imbalance is small, most of the fermions are
in the superfluid phase and one can write down a similar
energy functional as (6), but the region r < Rb is filled with
the superfluid phase, while the region r > Rb is divided into an
inner superfluid phase and an outer normal phase. One obtains
the following conditions analogous to Eq. (7):

nb(r) = [μb − Vb(r) − 2gbf ns(r)]/gbb,

δes

δns

+ 2

(
Vf (r) − gbf

gbb

Vb(r)

)
+ 2

gbf

gbb

μb − (μ↑ + μ↓)

− 4(g2
bf /gbb)ns(r) = 0, (8)

in the core. As in the highly polarized case, one can see that in
this region the fermions exhibit a flat density distribution when
gbf Vb(r) = gbbVf (r). The equilibrium between the superfluid
phase and the normal phase in the tail is determined by match-
ing the pressure and the chemical potentials at the interface,
and the critical ratio x = n↓/n↑ is equal to 0.40, which is the
value predicted in the absence of bosons [21,24,25].

For concreteness we provide predictions for the mixture
of 7Li bosons and 6Li fermions reported in [12] where
V (r) ≡ Vb(r) = Vf (r), and we focus on the special case gbf =
gbb. This condition gbb = gbf [corresponding to abb/abf =
(mb + mf )/2mf ], together with that of unitarity for the Fermi
component, are achievable for a magnetic field of B = 817 G,
leading to a fermion-fermion scattering length of 25800aB and
to a boson-boson scattering length abb = 44.2aB , the average
Fermi momentum being kF = 106 ∼ 107m−1.

The density profile of the fermions (both inside and outside
the core) can be obtained by solving (7) or (8) and similar
equations for the region r > Rb. In Fig. 2, we plot two
density distributions for fixed values of Nb = 105 and N↑ =
1.5 × 105 but with two different values of N↓. We choose
abb = 10−3lhomb/mf , where lho ≡ √

�/mf ωf is the harmonic
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FIG. 2. (Color online) Local 3D density profile of the two op-
posite limits where the inhomogeneous phase in the core is about
to appear. We fix Nb = 105 and N↑ = 1.5 × 105. The solid (blue)
lines are spin-up fermions, the dotted (green) lines are spin-down
fermions, and the dash-dotted (red) lines are bosons. The left axis is
for the fermion densities and the right axis is for the boson density.
The number of spin-down fermions is (a) N↓ = 0.22 × 105 and (b)
N↓ = 0.33 × 105. The length is in units of lho, and the density of
particles is in units of 1/l3

ho.
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FIG. 3. (Color online) Critical polarizations for entering the in-
homogeneous core as a function of Nf /Nb for Nb = 105 (solid blue
lines) and Nb = 104 (dashed red lines). The cross corresponds to the
situation of Fig. 4.

oscillator length corresponding to a fermionic trap frequency
ωf = 2π × 420 Hz. Figure 2(a) corresponds to the smallest
value of total polarization of the gas [P ≡ (N↑ − N↓)/(N↑ +
N↓) = 0.74] compatible with the absence of superfluidity,
where the ratio n↓/n↑ in the core is equal to the critical value
determined by Eq. (4) for the value of G in the core region.
A smaller value of P would correspond to the onset of a
superfluid region in the core. Figure 2(b) instead corresponds
to the largest value of total polarization (P = 0.63) compatible
with the presence of a superfluid phase occupying the whole
core region. A larger value of P would correspond to the onset
of a normal region in the core (see also Fig. 3).

For intermediate values of the population imbalance,
coexistence of the superfluid and the normal phase takes
place in the core region, giving rise to inhomogeneity and
new interesting physics. Inhomogeneity in the core can be
reached either by starting with a balanced superfluid gas
and gradually decreasing the number of minority fermions
until the normal part enters the core, or by starting with a
completely polarized gas and gradually increasing the number
of minority fermions until a superfluid phase region in the
core is favorable. In Fig. 3, the two critical polarizations
for entering the inhomogeneous core phase are plotted as a
function of Nf /Nb, where Nf ≡ N↑ + N↓, for two different
values of Nb. The upper region corresponds to the phase with
the whole system being normal [Fig. 2(a)], and the lower region
corresponds to the whole core being superfluid [Fig. 2(b)].
The region between the lines represents the inhomogeneous
core phase. We observe that the critical polarization as a
function of Nf /Nb is not very sensitive to the number of
bosons. The two critical polarization lines approach the value
0.8 as Nf /Nb → ∞. This asymptotic value corresponds to
the critical polarization for the onset of superfluidity in the
absence of bosons [24].

We now discuss the possible scenarios characterizing the
inhomogeneous phase for intermediate values of population
imbalance (see Fig. 3). The simplest possibility, hereafter
called the superfluid-normal (S-N) scenario, is that the core is
phase separated into a central superfluid and an outer normal
phase. The equilibrium condition between the superfluid phase
and the normal phase turns out to be determined by the same
conditions (4) holding for the homogeneous mixture. Another
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FIG. 4. (Color online) Local 3D density and doubly integrated
density profiles for two different configurations for the core, corre-
sponding to the S-N and N-S-N scenarios in the text. We have chosen
Nb = 105 and N↑ = 1.5 × 105 as in Fig. 2. The value of N↓ is instead
0.28 × 105, corresponding to P = 0.69 and Nf /Nb = 1.78, i.e., to
the inhomogeneous core region of Fig. 3. The solid (blue) lines are
for spin-up fermions and the dotted (green) lines are for spin-down
fermions. The dash-dotted (red) lines are for bosons for the local
density, and the dash-dotted (black) lines are the difference n̄↑ − n̄↓
for the doubly integrated density. For the local density, the left axis
is for fermions and the right axis is for bosons. Lengths are in units
of lho.

possibility, hereafter called the normal-superfluid-normal (N-
S-N) scenario, is that the core is phase separated into a central
normal phase and an outer superfluid phase, while the tail is
normal. The two scenarios have very similar energies and can
be easily distinguished in experiments [34] by measuring the
doubly integrated column density n̄σ (z) ≡ ∫

dxdy nσ (x,y,z),
because the superfluid region appears as a flat profile in the
difference n̄↑(z) − n̄↓(z) [35]. This flat, doubly integrated
density profile is due to pairing and should not be confused with
the three-dimensional (3D) flat density profile that is caused by
the Fermi-Bose interaction. Typical density distributions and
corresponding doubly integrated column densities are plotted
in Fig. 4. Another interesting feature of this inhomogeneous
core phase is that the boson density is not a simple inverse
parabola but has a small jump (not visible in the figure) at the
phase boundary between the superfluid and normal fermion.
The two scenarios of Fig. 4 can be energetically separated
by changing the value of gbb as compared to gbf . If, e.g.,
gbb � gbf , the fermions are affected by a small antitrapping
potential in the core and the second scenario, Fig. 4(b),
will take place. The difference should be clearly visible
experimentally, as shown in the doubly integrated densities
in Fig. 4.

The emergence of the inhomogeneous phase is also
compatible with other more exotic possibilities, such as the
emergence of the FFLO phase [18–20]. Indeed, the local
chemical potential for fermions is constant over the flat region;
therefore phases which can exist only within a narrow range
in the chemical potential could be observed in the core.
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