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Dynamical robustness of the conductivity of ultracold bosons confined in layered structures
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We study dynamical conductivity of strongly correlated bosons loaded in an optical lattice with restricted
geometry in which gauge fields are present. We show that dynamics influenced by the uniform synthetic magnetic
field combined with layered lattice structures changes into rich insulator-metallic behavior in the strongly
correlated regime. Especially, the amplitude of optical conductivity for a given frequency is a nonmonotonous
function of the number of layers L. In particular, conductivity for frequency corresponding to on-site interaction
energy can abruptly vanish for a special number of applied layers. Moreover, such an insulating behavior is
stable in the whole range of parameters in the Mott phase. This robustness arises from the complex gaplike
behavior or from Dirac-like physics reflected in the quasiparticle energy spectra. Furthermore we show that a
large interlayer tunneling anisotropy destabilizes the absence of conducting state. We also investigate the critical
conductivity on the Mott-insulator–superfluid phase boundary and show the correspondence between the number
of Hofstadter subbands and the number of layers. The obtained results also reveal that the value of critical
conductivity gradually goes to zero when a three-dimensional system is approached. The experimental setup for
generation of layered optical lattices is also proposed.
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I. INTRODUCTION

The properties of matter depend on many different degrees
of freedom. A set of such degrees of freedom that we shall be
concerned with in this study is determined by the geometry
of the system. Especially, lattice patterns or dimensionality
have been widely studied theoretically and experimentally
in the ultracold atomic systems [1–10]. But most of the
studies have not dealt with the cases when discrete effects
are important [11,12] (several layers were created, e.g., in
Ref. [13]). Furthermore, no effective method for generation
and control of such a restricted geometry with layered patterns
has been proposed.

We show that optical lattices should be the perfect simula-
tors of systems in which discrete and continuous transition
from two dimensions (2D) to three dimensions (3D) can
interplay. The experimental scheme proposed in this paper
is not related to the internal structure of the atom [12,14]
and should be treated as an extension of the experimental
setups proposed so far (see, e.g., [15,16]). This motivated us
to investigate the dynamics of ultracold atoms to show the
richness of their behavior in such systems. Moreover, a variety
of the types of dynamical behavior emerges especially when
synthetic magnetic field effects, which are currently available
in the experiments, are taken into account [17–19]. To do so,
we apply the analytical methods for optical conductivity with
the intra-Hofstadter-band transitions, developed in Ref. [20]
for investigation of layered systems with tunneling anisotropy
in the z direction, where the Hofstadter spectrum is split by
the boson interaction energy. Conductivity in an optical lattice
could be directly available as shown in recent experimental
proposals [21,22].

Throughout this paper, we focus especially on strongly
interacting bosons on the optical lattice described by the
Bose-Hubbard model (BHM) [23]. Experiments and theory
have shown that in the deep lattice regime ultracold atoms
undergo a Mott-insulator–superfluid (MI-SF) transition and
the quasiparticle spectrum acquires an energy gap [15,24–26].

The deep lattice regime in the zero temperature limit is a
subject of our interest.

Moreover, we also study the critical phenomena related
to the finite conductivity at the quantum phase transition
in the 2D to 3D crossover region. From previous studies it
is known that it acquires finite value only for two dimen-
sions [27], while for three dimensions it disappears [28].
Such a behavior is a direct consequence of the vanishing
engineering dimension of the conductivity [28], which makes
the investigation of the crossover region more interesting.
Besides, the critical conductivity analysis is also important
because of its universal value, i.e., it is not dependent on
BHM Hamiltonian parameters [27]. With these motivations,
we show that the two- and three-dimensional limiting cases of
the critical conductivity are recovered (Ref. [20] and references
therein). In the intermediate region, we study its dependence
on the number of layers.

The rest of the paper is organized as follows. In Sec. II
we briefly describe the method applied. In Sec. III we study
the impact of additional layers on the optical and the critical
conductivity. In Sec. IV we propose an experimental setup.
Finally, we give a summary of our work.

II. MODEL

In the following, we use the BHM to describe strongly
correlated bosons on the lattice subjected to Abelian gauge
fields, introduced by the Peierls factor exp(i e∗

�c

∫ i

j
A0 · dl).

Although the charge of the bosons e∗ in optical lattices
is neutral, it could be effectively generated by engineering
a vector potential A0 [29]. Moreover, the ground state of
the BHM is controlled by three parameters: the hopping
term Jij , the on-site interaction energy U , and the chemical
potential μ. These parameters within the BHM Hamiltonian
are incorporated among the creation b

†
i and annihilation bi

boson operators (i denotes site index) and consequently BHM
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Hamiltonian reads

H = −
∑
〈ij〉

(
Jij e

i e∗
�c

∫ i

j
A0·dl

b̂
†
i b̂j + H.c.

)

−μ
∑

i

n̂i + U

2

∑
i

n̂i(n̂i − 1). (1)

In this work, the hopping term Jij = J is nonzero only for
nearest-neighbor lattice sites as stressed in Eq. (1) using
parentheses 〈. . .〉. The remaining notation used in Eq. (1) are
the density operator n̂i = b

†
i bi , the reduced Planck constant �,

and speed of light c.
In order to study dynamical properties of the Mott-insulator

(MI) state in the slab geometry, we use the coherent state path
integral method. In this study we also include commensura-
bility effects of magnetic fluxes. The method used here was
developed in Refs. [20] and [11] (and references therein) so in
the following we omit technical details.

If we are interested in strong orbital magnetic field effects
it is useful to introduce the ratio p/q = f , where p and q are
coprime integers. This ratio gives the information about the
phase gained by bosons when they hop around the lattice cell.
The quantity f is related to the previous parameters by f =
Ba2e∗/hc where B is the amplitude of the uniform magnetic
field obtained from the Landau gauge A0 = B(0,x,0) with a

being a lattice constant. To simplify the equations we set a, �,
and c to unity.

We focus now on the dynamics of BHM. This can be
probed, e.g., by the time-dependent external electric field
attached to the system. Then the induced charge current
can be investigated through measurements of the frequency-
dependent conductivity (e.g., using the energy absorption
rate [21]). If the response is conducted in the linear regime
we can use the magnetic Kubo formula proposed in Ref. [20]
to express the real and regular part of optical conductivity (OC)
in the Mott phase in the form

Reσ A0
xx (ω) = 2π2σQ

∑
α

∑
s={+,−}

�α
q [us(ω); p], (2)

�α
q [v; p] = ρα

q (v; p)
J
[
zα
q (v; p) − 1

]
zα
q (v; p)

U
√

4n0(n0 + 1) + (ω/U )2
, (3)

u±(ω) = U

J
(2n0 + 1)

(
1 ∓

√
1 − 1 − (ω/U )2

(2n0 + 1)2

)
, (4)

where the weighted density of states for conductivity (DOSc)
is given by the formula

ρα
q (v; p) = 1

N

∑
k

[
∂kx

εα
q (k; p)

]2
δ
(
v − εα

q (k; p)/J
)
, (5)

in which δ(x) is the Dirac δ function and σQ = (e∗)2/h is
a quantum conductance. To be more specific, the form of
Reσ A0

xx (ω) in Eq. (2) could be simply understood using spectral
representation of current-current correlation function [20].
Namely, �α

q [v; p] is the spectral weight of OC with the energy
range decoded in DOSc and u±(ω) gives the normalized single-
particle band energy for which this spectral weight appears
(superscript ± denote lower and higher energy channel).

Moreover, in Eq. (2), we take into account strong uniform
magnetic field effects tuned by p/q ratio. The summation
goes over the wave vector k = (kx, ky) (|kx | ≤ π/q, |kx | ≤ π ).
Furthermore, N is the number of sites in the lattice and n0 is
an integer number, which is equal to the average boson density
per site in the Mott-insulator phase. In Eq. (5), for a given f ,
the single-particle energy dispersions are denoted by εα

q (k; p)
and each subband is numbered by α = 0, 1, 2, . . . ,q − 1. The
weight zα

q (v; p) is defined in details in Appendix A. It is
worth to add here that α subbands can be obtained using
the Harper equation [20,30]. In general, they follow from the
standard considerations about tight binding dispersion but with
additional difficulty, i.e., there is a phase acquired by bosons
when they hop from site to site. As a consequence for square
lattice, this phase introduces q different types of sites, which
also causes q branches of excitation emerging here as εα

q (k; p)
subbands.

To investigate the effects resulting from the layered-like
structure it is sufficient, by using the tight binding approxima-
tion [11] for three-dimensional lattice

εα
q,3D(k; p) = εα

q (k; p) − 2Jz cos kz, (6)

to modify the DOSc presented in Eq. (5), namely

ρα
q,3D(v; p) = 1

L

∑
kz

ρα
q (v + 2η cos kz; p), (7)

where L denotes the number of layers parallel to the xy plane
(for derivation details see Appendix B) and kz = 2πm/L with
m ∈ {0, 1, . . . , L − 1}. Parameter η controls the anisotropy in
z direction, i.e., η = Jz/J .

III. RESULTS

A. Dynamical conductivity in layered structure

In Ref. [20] it has been shown that for two-dimensional
systems, OC abruptly changes, showing the Hofstadter-like
structure [31]. In other words, the subbands presented in the
Hofstadter spectrum are reflected by the pronounced peaks in
the frequency-dependent optical conductivity. Moreover the
center of a single-particle spectrum corresponds to the linear
response of OC at ω = U , which can constitute a convenient
point for experimental realization [20].

If we consider OC in layered systems by using Eq. (7),
the situation is more involved. Below we present the behavior
of OC for three values of commensurability fields, i.e., f =
1/2, 1/3, 1/4 with different numbers of layers in the system
and isotropic hopping η = 1. For f = 1/2, 1/4, the analytical
formula for DOSc was derived in Ref. [20]. In Appendix D
we give the solution for f = 1/3 in terms of complete elliptic
integrals.

Figures 1–3 illustrate the great impact of restricted ge-
ometry on OC in the BHM when a strong magnetic field is
present. In the crossover region for up to approximately ten
layers we notice that such a slab geometry generates a rich,
frequency-dependent behavior of the conductivity peaks. In
the limit of several tens of layers three-dimensional behavior
of the optical lattice subjected to the external uniform magnetic
field in the z direction is recovered.
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FIG. 1. (Color online) Frequency dependence of the optical con-
ductivity in the Mott phase with f = 1/2 for the different number
of layers (the case with L = 1 was calculated in Ref. [20]). The
hopping parameter was chosen with the values J/U = 0.03 and
η = 1 (isotropic case) and the conductivity is plotted in σQ unit (σQ

is a quantum conductance). Figures are plotted for n0 = 1 (the first
lobe of the Mott-insulator phase).

B. Nonmonotonous behavior of optical conductivity

From Figs. 1–3 we can conclude that the amplitude of
OC for a given frequency is a nonmonotonous function of the
number of layers (a similar situation occurs as the amplitude of
strong magnetic field is changed). To illustrate this dependence

FIG. 2. (Color online) Analogous parameters as in Fig. 1 but with
f = 1/3.

FIG. 3. (Color online) Analogous parameters as in Fig. 1 but with
f = 1/4.

we plot it in Fig. 4 for a special point ω = U . Interestingly,
if the number of layers for f = 1/2 is more than one, we
observe finite conductivity instead of its zero value in the
pure two-dimensional system [see Figs. 1 and 4(a)]. This is
in contrast to the cases of f = 1/3 and 1/4. For f = 1/3
we observe insulating behavior for two, three, and six layers
[Fig. 4(b)] however for a field f = 1/4 the conductivity
vanishes for one, two, four, and eight layers [Fig. 4(c)]. All
these nonmonotonous effects assigned to discrete structure
disappear if the system is built of more than 10–13 layers and
then we can treat it as a quasi-three-dimensional system (a
similar observation in the context of phase boundary in BHM
has been predicted in Ref. [11]).

Before we clarify why OC vanishes for a certain number
of layers at ω = U , we should pay attention to the physical
information carried by the spectral functions included in OC.
At the first step, it is very useful to make consideration in
terms of weighted density of states (DOSc), Eq. (7), because
DOSc provides information about the vanishing of OC, see
also Eqs. (2)–(4). Moreover, to make the discussion more
transparent, we focus separately on each component ρα

q (v +
2η cos kz,p) of the sum in Eq. (7), which is a two-dimensional
DOSc defined in Eq. (5). The behavior of ρα

q (v + 2η cos kz,p)
is very similar to that of the well-known single-particle density
of states (DOS) [30], as we show for f = 1/2, 1/3, 1/4
in Fig. 5 and in Appendix C. Next, we use the fact that
magnetic field is manifested in ρα

q (v + 2η cos kz,p) through
the following: (i) appearance of additional gaps (its quantity
depends on f ); (ii) disappearance of density of states at one
point if Dirac cones exist in the quasiparticle spectrum. Both
effects are also clearly visible in the quasiparticle energy
spectra [20] or in quasiparticle density of states (DOSq) in
Figs. 5(c), 5(f), 5(i), 5(l). Moreover, for OC it means that
spectra show characteristic peaks at the order of U. It is
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FIG. 4. (Color online) The optical conductivity dependent on the
number of layers for the special point ω = U and different values
of J/U . We assume the isotropic case of the hopping parameter,
i.e., (a)–(c) η = 1 are plotted for f = 1/2, f = 1/3, and f = 1/4,
respectively. We observe the insulator behavior for L = 2, 3, 6 and
for L = 1, 2, 4, 8 numbers of layers for f = 1/3 and f = 1/4,
respectively. In the case of the single-layer system see Ref. [20].
Conductivity is plotted in σQ unit and for n0 = 1.

so, because the response of the system is directly related to
the energy difference between quasiparticle and quasihole
spectra [20]. Consequently, the observed peaks for different
strengths of magnetic field f and different numbers of layers
L could show very complex structure (as we present in
Sec. III A). It should also be observed that in a two-dimensional
system the energy difference between the points at which
DOSq vanishes (because of Dirac cones), is equal to U, see
Figs. 5(f) and 5(l), and exactly this property is responsible for
the vanishing of OC at ω = U for f = 1/2 and f = 1/4 [20].

Finally, with the reference to the considerations from the
above paragraph, we can explain why OC takes zero value
for a certain number of layers and for arbitrary ω (further we
focus on ω = U ). Namely, OC vanishes, when each argument
v + 2η cos kz of the function ρα

q (v + 2η cos kz,p) following
from the sum Eq. (7) is equal to the energy E/J for which
DOSc also vanishes because of the two effects given above.
In other words, the multilayered structure introduces to DOSc
an additional shift of energy scale, which for a given number
of layers and a given ω could not give the electric response of
the system, which is a direct consequence of subband structure
of DOSc. In particular if we choose ω = U , OC vanishes for
f = 1/2, 1/3, 1/4 with a given number of layers listed in the
first paragraph of this section. To see this more clearly let us
consider the argument of DOSc, i.e., v + 2η cos kz. For ω = U ,
we can precisely say that v = 0 or v � 1 in v + 2η cos kz

because of v = u±(ω) in OC, which effectively gives 2η cos kz

instead of v + 2η cos kz (see more detailed discussion in the
next paragraphs). Consequently, to illustrate why OC vanishes
for a certain number of layers at ω = U , we plot in Fig. 6
the distribution of 2η cos kz for different values of L in the
background of the density plot of ρα

q (ω/J,p), which explicitly
shows the vanishing of components in the sum from Eq. (7)
within a given number of layers L (red circles in Fig. 6).

Because of the fractal structure of DOS [32] and conse-
quently of DOSc (see Fig. 5) it is difficult to give a simple
explanation why OC vanishes for a given set of L. Moreover, it
is the case not only for ω = U but for an arbitrary ω. What we
can conclude is that the explanation of vanishing conductivity
for L > 1 and ω = U in contrast to the one layered case
needs also the gapped behavior of DOSc (in a two-dimensional
system the responsibility for this takes only Dirac-like physics,
see the second paragraph of this section and Ref. [20]). We
also conclude that approximately for more than ten layers, the
distribution of v + 2η cos kz for a given set of kz is too dense
within the band so that OC could vanish (see Fig. 6).

C. Robustness of dynamical conductivity at
the special point ω = U

There is one important thing that we should point out here,
namely OC for ω = U shows stable insulator behavior in
the whole Mott area of the phase diagram. This happens for
a given number of layers and p/q ratio as is presented in
Fig. 4 using different parameters of J/U . To justify the stable
insulator behavior of OC at ω = U , we should again consider
the argument of DOSc, i.e., v + 2η cos kz, see Eqs. (2)–(4)
and (7), where v = u±(ω) and here we analyze the isotropic
case η = 1. Namely, when OC vanishes at ω = U , the relevant
dependence of OC on J/U is presented in u±(ω), so then
we consider the behavior of u±(ω). First, we can notice that
u+(ω = U ) is 0 [see Eq. (4)]. Consequently, the argument
of DOSc is J/U independent and if conductivity vanishes we
obtain stable insulatorlike behavior at ω = U . For the opposite
case, i.e., ω 	= U , we have J/U dependence of DOSc [see
Eq. (4)] and robustness of optical conductivity for this points is
violated. Second, the value of u−(ω) at any arbitrary ω is higher
than the band width in DOSc and it does not contribute to OC.
Finally, as follows from the above, the relevant argument of
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FIG. 5. (Color online) Frequency dependence ω of: (a), (d), (g), (j) the single-particle density of states (DOS); (b), (e), (h), (k) the
weighted single particle density of states for conductivity (DOSc); and (c), (f), (i), (l) the quasiparticle density of states (DOSq). Plots
are made for (a)–(c) f = 0; (d)–(f) f = 1/2; (g)–(i) f = 1/3; and (j)–(l) f = 1/4. For DOSq with n0 = 1 in (c), (f), (i), (l) we use
J/U = 0.042, 0.057, 0.057, 0.055, respectively.

FIG. 6. (Color online) Distribution of 2η cos kz argument of the sum in Eq. (7) for ω = U , η = 1 (red circles and green squares) and
for different values of L within density plot of DOSc, i.e., ρα

q (ω/J,p). Red circle appears if ρα
q (2η cos kz, p) = 0, green square appears if

ρα
q (2η cos kz, p) 	= 0. (a) corresponds to f = 1/2, (b) f = 1/3, and (c) f = 1/4. (b) and (c) explicitly show the vanishing components of the

sum in Eq. (7) for the number of layers L = 2, 3, 6 with f = 1/3 and for L = 2, 4, 8 with f = 1/4 (dashed white lines).
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DOSc at ω = U is J/U independent and consequently OC is
robust as well, which we wanted to prove.

Moreover for the analyzed cases in which f < 1/2 the
range of numbers of layers for which OC could disappear can
be estimated from

Re σ A0
xx (U ) = 0 for

1

f
≥ L

2
≥ 1, (8)

where the number of layers for which the insulating state
emerges can be calculated from the simple general formula
(L > 2):

L|Re σ
A0
xx (U)=0 = n

f
(9)

and depends only on the inverse of flux density f −1 (see Fig. 4)
with n = 1,2, . . . being integer. Although, the validation of
Eqs. (8) and (9) for the other values than f = 1/3, 1/4 is
an open question, we should point out here that in general
many other properties in the strongly correlated systems carry
f dependence [33] so it seems valuable to give here such a
simple estimation.

D. Anisotropy effects

The robust insulator behavior of OC for ω = U (see Fig. 4)
in the Mott phase is stable for the isotropic lattice. This is in
contrast to the case when we include anisotropic effects easily
controlled in optical lattices. Namely, for reduced hopping
amplitude in the z direction, the finite conductivity emerges
for a special value of the anisotropy parameter η = ηc. The
critical ηc depends on the number of layers in the system, but
does not depend on the ratio J/U , i.e., this value is also robust
in the whole Mott phase. We present this behavior in Fig. 7.

This robustness of OC down to ηc, again could be explained
using u±(ω) + 2η cos kz, i.e., the argument of DOSc and its
connection to the single-particle DOS (see Sec. III B). Namely,
u±(ω) for ω = U is unimportant because of its zero value for
the + index and a too high value for the − index. Then we
obtain that the relevant component of the sum in Eq. (7) has
the form ρα

q (2η cos kz,p) whose argument does not depend on
J/U but only on kz and η. The summation over kz causes
different distribution of 2η cos kz with given kz, which was
discussed in Sec. III C. Here, we consider the influence of η.
It is important to note that the values of 2η cos kz for η � 1
and different kz concentrate around 0, which implies nonzero
DOSc for energy values in range of 2η cos kz. In other words,
this happens because the nonzero subbands structure exists
around this point in DOSc (see Fig. 5 and Appendix C) and
as a consequence, for a given f there exists a critical value
ηc for which the distribution of 2η cos kz coincides with the
energy range where DOSc does not disappear and OC shows
metallic-like behavior. Finally, from the above considerations,
we see that η from ηc to 1 gives the robust behavior of vanishing
OC in terms of J/U .

Surprisingly, we also observe in Fig. 7(b) that for L = 2, 4,
and 8, when a layered system is subjected to a magnetic field
f = 1/4, there exists a maximal value of OC at ω = U for
given J/U . This does not happen for the f = 1/3 case in
which the η dependence of OC is monotonous [see Fig. 7(a)].
This fact can be simply explained knowing that for f = 1/4, in

(a)

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.04

0.08

0.12

Η

R
eΣ

xx

f 1 3, U
L 2
L 3, 6

(b)

0.0 0.2 0.4 0.6 0.8 1.0
0.00
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R
eΣ

xx

f 1 4, U
L 2
L 4
L 8

FIG. 7. (Color online) The anisotropy dependence of the optical
conductivity for the point ω = U and the special number of layers
for which OC is robust with respect to the insulator state (see Fig. 4).
Here we take J/U = 0.05. Conductivity is plotted in σQ unit and for
n0 = 1.

the η → 0 limit OC does not have any weight at ω = U [20].
This is in contrast to f = 1/3 case for which the weight of OC
at ω = U is finite.

E. Critical correspondence between the number of layers and
single-particle subbands

As follows from the previous study [20,28], the zero-
temperature three-dimensional system does not show the
critical conductivity σc at the Mott-insulator–superfluid phase
boundary, which should be contrasted to the two-dimensional
case. Here we show that σc in the 2D to 3D discrete crossover
region does not abruptly vanish but is rather gradually
suppressed by the introduction of additional layers to the
system. In order to enhance the σc behavior, we include a strong
magnetic field (e.g., f = 1/3 gives approximately three times
larger value of σc [20,34], which can be useful for experimental
realization).

To describe the impact of layered structure under a strong
magnetic field on the critical conductivity, it is convenient
to denote this critical quantity by σc,f (L). Next, we assume
that the MI-SF transition is of second order and we apply
the Ginzburg-Landau theory for the lowest subband of our
system [20]. This lowest subband contains q lowest-energy
modes in the first magnetic Brillouin zone with minima at k =
Q. It is important to note that making an expansion around Q
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we choose from the discrete set of kz the value kz = 0 (because
of the lowest value of quasiparticle energy at this point). Then
at the MI-SF phase boundary, we get the following expression

σc,f (L) = q

L
σ ∗, (10)

where σ ∗ = πσQ/8 and q is a number of Hofstadter subbands
for the single-particle spectrum. This implies σc,f (L) ∼ 1/L.
Therefore we simply see that σc,f (L) in the layered system
goes to zero when L → ∞, which is consistent with vanishing
of this quantity in the limit of a three-dimensional sys-
tem [20,28]. Within the above approximation, it is interesting
to point out that critical conductivity in a layered system with
magnetic field strength f is the same as in the two-dimensional
case without a magnetic field when the experiment is per-
formed for L = q, i.e., then σc,f (L = q) = σ ∗. In other words,
the critical conductivity does not change, if the following cor-
respondence appears: the number of layers L and the number
of Hofstadter subbands q are the same. This correspondence
between L and q [and as well as Eq. (10)] should be at least
valid for p ≈ 1 [20] and for the discrete set of kz in the first
Brillouin zone for which the continuous approximation for
variable kz is not appropriate. The latter condition is needed
because for continuous approximation of variable kz we have
L → ∞, i.e., it recovers the three-dimensional system and then
critical conductivity simply vanishes, which is the well-known
behavior [20,28]. As far as the first condition is concerned,
i.e., p ≈ 1 it seems that Eq. (10) is valid at least for small
value of p close to 1. We based this assumption on the
previous calculations for p = 1 and L = 1 [20], which are
in good agreement with analytical [35,36], numerical [34,37],
and experimental data [38,39]. For other values of p the
validation of Eq. (10) is still an open question, e.g., for L = 1,
σc,f (L) could be inversely proportional to p, like a critical
conductivity in a two-dimensional Josephson junction [39],
but this is difficult to assess because of a large error margin in
experimental data where additional effects such as disorder of
the system or temperature play an important role.

IV. EXPERIMENTAL SETUPS OF THE LAYERED
OPTICAL LATTICE

Recently, the authors of Ref. [21] have proposed a method
that allows a direct investigation of OC on an optical lattice
by using phase modulation of the lattice potential. Namely,
they have shown that the current-current correlation function
is proportional to the energy absorption rate RPM(ω) and the
results presented in Secs. III A–D could be simply translated
to this quantity, i.e., by multiplying Reσxx with the power-
dependent ω, which only changes the weight of OC, leaving the
quality of its behavior intact. Moreover, very recently, another
experimental setup to measure OC has been proposed by the
authors of Ref. [22]. The key idea presented in Ref. [22] relies
on making use of the oscillatory motion of harmonic trap.

In order to study two-layered systems in a highly con-
trollable way we propose to make use of a superlattice
potential along the z direction, which is created by su-
perimposing two standing waves with wave vector kz and
klz, with kz = 2klz. The resulting lattice potential is de-
scribed by V (z) = Vlz sin 2(klzz + ϕ) + Vz sin 2(kzz) and the

corresponding lattice depths Vlz, Vz as well as the relative
phase ϕ can be controlled fully independently in experiments.
For ϕ = π/4 and Vlz ≥ Vz a symmetric double-well potential
can be realized where tunneling between neighboring double
wells is suppressed and atoms can only tunnel within a double
well [40,41]. Together with the usual two-dimensional lattice
in the xy plane a stack of layers is generated where only two
layers at a time are coupled, which allows us to simulate the
physics of bilayered systems. Moreover, the repeated structure
of two layers should lead to an amplification of the expected
physical effects. This method could allow investigation of
many interesting phenomena, not available so far in optical
lattices [42–47].

To realize n-layer potentials, a single wavelength lattice
in the z direction can be used. The number of layers can
then be reduced to the desired amount by using a box-type
potential [48] in the vertical direction.

Moreover, we notice that in current setups a major
limitation to observe features described in this manuscript
is the inhomogeneity of systems. Both in radial (planar)
and vertical directions, an underlying confining potential is
typically present to trap the atoms or due to the finite size
of the lattice beams. This problem could again be used by
compensating the harmonic confining potentials and provide
box-type hard walls [48] also in radial direction.

However, if harmonic nonuniformity of underlying trapping
potential in planar and vertical direction is present [i.e.,
Vtrap(r) = mω2

r r
2/2 and Vtrap(z) = mω2

zz
2/2, respectively],

the effects of one type should be visible in Figs. 1–3 (we
neglect here nonuniformity of tunneling amplitude). Namely,
the harmonic trap introduces a superfluid phase to the system,
which surrounds the atoms in the Mott-insulator state, or super-
fluidity could appear in the middle of the atomic cloud [49,50].
Consequently, in the gapped region of Figs. 1–3 for frequencies
ω � U , low-energy excitations emerge [22]. But the peaks
structure in the frequency region ω ∼ U should be robust
against the harmonic trap (so vanishing of OC at ω = U as
well, see Sec. III B). This happens because OC in the Mott-
insulator phase, Eqs. (2)–(7), does not depend on chemical
potential and if local density approximation (LDA) to chemical
potential is used, i.e., μ(r,z) = μ − Vtrap(r) − Vtrap(z), then
the response of the system unaffected by trapping potential
is generated (similar robustness of response to the trapping
in the Mott-insulator phase was obtained by the authors of
Ref. [51]). Moreover, we should mention here again that the
effects of trapping in the z direction will be prominent only if
we apply to the system, for instance, a double-well potential
because of its repeated structure. It does not happen for the box
potential, but then it gives a weaker response signal originating
only from one realization of bilayer system at the same time.

V. SUMMARY

Using the analytical approach we show the behavior of the
optical and the critical conductivity in the Mott phase for the
zero-temperature limit, when the additional layers are attached
to the system. For the reason of complex dynamics behavior
in BHM in strong uniform magnetic field we consider f =
1/2, 1/3, and 1/4 magnetic flux ratio. Frequency-dependent
conductivity reveals rich insulator-conductor behavior, which
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could be of interest for future possible applications. Especially,
we show that for f = 1/3 (f = 1/4) optical conductivity
abruptly changes from metallic to insulating for the frequency
corresponding to the on-site boson interaction energy with two,
three, six (one, two, four, eight) layers. In the case of f = 1/2,
metallic behavior emerges when the number of layers is higher
than one. Interestingly, such an insulating behavior is robust
in the whole range of parameters in the Mott phase and we
estimate exactly how many of slabs we must add to achieve
zero value of the optical conductivity. The three-dimensional
limit is reached for number of layers more than 10–13 and
depends on the flux density.

Additionally, we investigate the anisotropic kinetic energy
in perpendicular to the layers direction. We show that the
critical value of anisotropy for which finite conductivity
appears is also robust in the Mott phase (this happens for
frequency corresponding to the on-site boson interaction).
Moreover, for f = 1/3 there exists a maximum value of
conductivity for a given anisotropy amplitude.

We consider also the critical behavior of the conductivity
on the phase boundary. This shows that it gradually vanishes
starting from 2D and approaching the 3D system. Moreover
including commensurate magnetic field effects we show the
critical correspondence between the number of Hofstadter
subbands and the number of layers.

To confirm our predictions we propose the experimental
setup for creation of highly controllable simulators of the
layered systems in optical lattices. This also could give the
opportunity to simulate the standard condensed matter devices,
including, e.g., bilayer systems, where such a restricted
geometry plays important role.
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APPENDIX A: USEFUL EXPRESSION IN THE OPTICAL
CONDUCTIVITY EQUATION

The weight presented in Eq. (3) is defined as follows

zα
q (k; p) = Eα+

q (k; p) + μ + U

Eα+
q (k; p) − Eα−

q (k; p)
, (A1)

where

Eα±
q (k; p) = εα

q (k; p)

2
− μ + U

(
n0 − 1

2

)
± 1

2
α

q (k; p),

(A2)

α
q (k; p) =

√[
εα
q (k; p)

]2 + 4εα
q (k; p)U

(
n0 + 1

2

)
+ U 2.

(A3)

APPENDIX B: DENSITY OF STATES FOR THE
CONDUCTIVITY IN THE LAYERED SYSTEMS

For additional layers in the z direction the single-particle
dispersion relation has a form εα

q (k; p) − 2Jz cos kz and this
dispersion implies that DOSc has a form

ρα
q,3D(v; p) = 1

NL

∑
kkz

[
∂kx

(
εα
q (k; p) − 2Jz cos kz

)]2

×δ
(
v − εα

q (k; p)/J + 2η cos kz

)
= 1

L

∑
kz

∫ ∞

−∞
dxρα

q (x; p)δ(v − x + 2η cos kz)

= 1

L

∑
kz

ρα
q (v + 2η cos kz; p).

APPENDIX C: DENSITY OF STATES: GENERAL
FORMULAS

For the analysis presented in this paper, it is useful to
consider three types of density of states, namely:

(i) Single-particle density of states (DOS)

Dα
q (ω; p) = 1

N

∑
k

δ
(
ω/J − εα

q (k; p)/J
)
, (C1)

which for two dimensions is plotted in
Figs. 5(a), 5(d), 5(g), 5(j) for different strengths of magnetic
field f (see also Ref. [30]),

(ii) Weighted single-particle density of states for conductiv-
ity (DOSc), see Eq. (5) (two-dimensional lattice) and Eq. (7)
(multilayered lattice). DOSc for two dimensions is plotted in
Figs. 5(b), 5(e), 5(h), 5(k) with different f (see also Ref. [52]
with f = 0 case),

(iii) Quasiparticle density of states (DOSq) (for two
dimensions)

ρα
q,MI (ω; p) = − 1

π

1

N

∑
k

ImGd
αα(k,ω + i0+), (C2)

where

Gd
αα(k,iωn) = G0(iωn)

1 − εα
q (k; p)G0(iωn)

= zα
q (k; p)

iωn − Eα+
q (k; p)

+ 1 − zα
q (k; p)

iωn − Eα−
q (k; p)

, (C3)

and where Gd
αα(k,iωn) is a Mott-insulator Green’s function.

For the multilayered case, the following substitution should be
done εα

q (k; p) → εα
q (k; p) − 2Jz cos kz. DOSq for one layer is

plotted in Figs. 5(c), 5(f), 5(i), 5(l) with different f .

APPENDIX D: TWO-DIMENSIONAL DENSITY OF
STATES FOR THE CONDUCTIVITY IN A STRONG

MAGNETIC FIELD

The single-particle spectrum for f = 1/3 consists of three
subbands, namely ±2

√
2cos[π/6 ± arctan[g(kx,ky)]/3] and
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2
√

2sin[ 1
3 arctan[g(kx,ky)]] where

g(kx,ky) = cos(kx) + cos(kx)√
8 − [cos(kx) + cos(kx)]2

. (D1)

The density of states calculated from Eq. (5) has a form

ρα
3 (E; 1) = 8

√
2

π2

∑
m∈{0,1}

�α,m�[xm(E)]

×
∣∣ sin

(
π
6 ± 1

3 arctan xm(E)√
32−(xm(E))2

)∣∣
√

32 − [xm(E)]2
, (D2)

ρα
3 (E; 1) = 8

√
2

π2

∑
m∈{0,1}

�α,m�[ym(E)]

×
∣∣ cos

(
1
3 arctan ym(E)√

32−(ym(E))2

)∣∣
√

32 − [ym(E)]2
, (D3)

where sign ± depends on α and �α,m is a step function
with respect to a given subband α and index m. Moreover
in Eqs. (D2) and (D3) we introduce the following functions

�(x) = E
(√

1 −
(

x

4

)2)
−

(
x

4

)2

K
(√

1 −
(

x

4

)2)
,

(D4)

xm(E) = (−1)m4

√√√√ 2 tan2
[
3 arccos

(
E

2
√

2

) − π
2

]
1 + tan2

[
3 arccos

(
E

2
√

2

) − π
2

] , (D5)

ym(E) = (−1)m4

√√√√ 2 tan2
(
3 arcsin E

2
√

2

)
1 + tan2

(
3 arcsin E

2
√

2

) , (D6)

where K(x) and E(x) are complete elliptic integrals of the first
and second kinds, respectively.
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