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The control of multilevel quantum systems is sensitive to implementation errors in the control field and
uncertainties associated with system Hamiltonian parameters. A small variation in the control field spectrum
or the system Hamiltonian can cause an otherwise optimal field to deviate from controlling desired quantum
state transitions and reaching a particular objective. An accurate analysis of robustness is thus essential in
understanding and achieving model-based quantum control, such as in the control of chemical reactions based
on ab initio or experimental estimates of the molecular Hamiltonian. In this paper, theoretical foundations for
quantum control robustness analysis are presented from both a distributional perspective—in terms of moments
of the transition amplitude, interferences, and transition probability—and a worst-case perspective. Based on
this theory, analytical expressions and a computationally efficient method for determining the robustness of
coherently controlled quantum dynamics are derived. The robustness analysis reveals that there generally exists
a set of control pathways that are more resistant to destructive interferences in the presence of control field
and system parameter uncertainty. These robust pathways interfere and combine to yield a relatively accurate
transition amplitude and high transition probability when uncertainty is present.
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I. INTRODUCTION

The study of quantum dynamics controlled by an external
field has rapidly developed over the past 30 years [1–6]. Here,
the quantum control objective is typically to design an external
electromagnetic field which coherently manipulates a quantum
system from an initial state to a desired final state. The appro-
priate engineering of a control field has been implemented
in various quantum settings leading to several important
technological applications, such as selective bond dissociation
of compounds [7], discrimination of similar biomolecules [8],
real-time microscopy of biological systems [9], and quantum
computing [10].

Many of the aforementioned examples of successful control
of quantum systems have been achieved using model-free
experimental learning control techniques [6]. While model-
based control of low-dimensional systems, such as nuclear
spin states, has been performed successfully, limitations
in field generation and shaping technology and imperfect
knowledge of the system render model-based control of higher-
dimensional systems (e.g., molecular rovibrational states)
more challenging [11]. Model-based control of quantum dy-
namics has been studied in the presence of various types of un-
certainty in both the system Hamiltonian and the manipulated
control field [12–18]. In particular, it is infeasible to perfectly
model the Hamiltonian of a large quantum system since
ab initio methods become computationally intractable without
some approximation and because laboratory measurements are
not readily accessible. An example is the case of determining
the vibrational energies of a polyatomic molecule, whereby
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a particular bond is analyzed in isolation and the rest of the
molecule is treated as a disturbance with bounded energy [19].
Similarly, a time-varying control field can either be subject
to uncertainty due to stochastic fluctuations in either time or
frequency domain field variables or due to inaccuracies in the
values of manipulated field parameters. In the context of laser
control, for example, these can originate due to perturbations
of laser sources in the laboratory and the limited precision of
laser pulse-shaping technology [20,21]. When designing the
profile of a control field for optimizing a quantum performance
criterion, such factors must be taken into account in order to
ensure quantum control robustness. The control of quantum
dynamics that maintains high fidelity in the presence of
these types of uncertainty is referred to as robust quantum
control [15,16,22–24].

Various approaches to quantification of robustness have
been proposed in the engineering literature [25–28], with the
majority being based on leading-order Taylor expansions of
the control performance measure. Robustness of control is
generally expressed in terms of moments of the distribution
of the performance measure J [26] or the distance between
the nominal performance measure and its worst-case value
(Jwc) [25]. There are several methods for approximating the
latter in the presence of uncertainty [25,27,28]. These are
often based on solving constrained optimization problems
using computationally efficient algorithms [29]. Early studies
on quantum control robustness described the robustness of
controlled dynamics qualitatively in terms of the effect of
control and system uncertainty distributions on the dynamical
trajectory [30,31]. For example, one study described how
phase noise reduces the control pulse area and, in turn, the
population transfer as shifts in the spectral frequency lead
to inefficient resonance and lack of constructive pathway
interferences [30]. Another study [31] examined the inherent
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degree of robustness in an optimal control field due to the
bilinearity of quantum observable expectation values in the
evolution operator and its adjoint. More recent studies on
quantum robust control have introduced several types of
numerical approximations, such as leading-order expansions
in order to quantify robustness [15–18,32].

In engineering control, leading-order Taylor expansions
are commonly applied in conjunction with real-time feedback
control that corrects for deviations between the desired and
actual trajectories. In the absence of real-time feedback (which
is currently impossible for many important quantum systems),
leading-order Taylor expansions can be inaccurate in the
prediction of the moments of state variables. Moreover, such
leading-order approximations do not provide a mechanistic
understanding of how robustness can be achieved in terms of
the underlying dynamical pathways responsible for control
fidelity.

In this work, we present an asymptotic approach to
quantification of quantum control robustness that is accurate
with respect to calculation of the first and second moments
(and higher moments if desired) of the performance measure.
We provide a general asymptotic theory for computation
and control of moments of bilinear quantum systems in
the presence of Hamiltonian and control field uncertainty,
without relying on linearization or related leading-order Taylor
expansions. The robustness of the quantum dynamics is
analyzed in terms of implementation errors in the classical
input variables (in a semiclassical picture of controlled
quantum dynamics) and parameter uncertainty in the quantum
Hamiltonian. The method calculates the effect of uncertainty
in the control field and in the system’s dipole moment on the
fidelity of control. In addition, different quantum pathways
involved in the controlled dynamics are delineated such that
qualitative and quantitative analysis of robustness may be more
precisely discussed in terms of the moments of interferences
between different order pathways and their contributions to
the transition amplitude and probability.

The paper is organized as follows: Sec. II describes the
theory of quantum control via combination and interference of
quantum pathways. In Sec. III, methods for characterization
of uncertainty in the system Hamiltonian and control
field are briefly presented as a starting point in quantum
control robustness analysis. The procedure for calculating
the robustness criteria is then presented in Sec. IV. Here,
an example of how the robustness analysis is carried out
assuming Gaussian uncertainty distributions is described.
In Sec. V, the numerical implementation of the robustness
analysis method is described and its application on control
of a four-level Hamiltonian is demonstrated in Sec. VI.
Here, the potential use of the robustness analysis theory in
the development of robust control algorithms and in aiding
laboratory learning control are also discussed. We finally
conclude with a summary and future work in Sec. VII.

II. QUANTUM CONTROL VIA MULTIPLE
PATHWAY INTERFERENCE

In a semiclassical picture of a controlled quantum system
coupled with a time-varying external field, the dynamics can

be described by the Schrödinger equation,
dU (t)

dt
= − i

�
[H0 − με(t)] U (t), U (0) = I, (1)

where H0 is the time-independent Hamiltonian of the system,
μ is the dipole moment, ε(t) is the time-dependent field, and
U (t) denotes the unitary propagator. In order to allow for a
simplified notation in the ensuing analysis, the notation for
the interaction Hamiltonian HI (t) = e

i
�

H0t {−με(t)}e− i
�

H0t is
used, giving

dUI (t)

dt
= − i

�
HI (t)UI (t), UI (t) = e

i
�

H0tU (t). (2)

In general, the quantum control objectives can be catego-
rized into two types: (i) population transfer control (i.e.,
|Uji(T )|2 → 1) such as in chemical reaction control, or
(ii) dynamical propagator control (i.e., U (T ) → Utarget) for use
in quantum computation. The work described herein applies to
robustness analysis of both control categories. It is important
to note that since |Uji(T )|2 = |UI,ji(T )|2, and that UI (t) can
be readily inverse transformed to U (t) according to (2), the
subscript I is dropped from the description of the unitary
propagator in the interaction picture for convenience.

The transition amplitude Uji(T ) can be calculated as a sum
of an infinite Dyson series [33],

Uji(T ) = 〈j |
[ ∞∑

m=1

(
− ı

�

)∫ T

0
HI (t1)dt1

+
(

− ı

�

)2 ∫ T

0

∫ t2

0
HI (t1)HI (t2)dt1dt2 + · · ·

+
(

− ı

�

)m ∫ T

0

∫ t2

0
· · ·
∫ tm−1

0
HI (t1)HI (t2) × · · ·

× HI (tm)dt1dt2 · · · dtm

]
|i〉. (3)

We use the notation Um
ji (T ) to denote the mth-order term in the

series above. Quantum interferences occur due to coherence
terms (Um

jiU
m′∗
ji ) in the expression for the transition probability

Pji = |Uji(T )|2. Constructive interference corresponds to
Re{[Um

ji (T )][Um′
ji (T )]∗} and is larger than 0, and destructive

interference corresponds to values less than 0.
A fundamental concept in the theory of quantum control

robustness analysis that we will develop and apply in this
work is a quantum pathway. Prior work has considered
the characterization of quantum pathways in the context of
quantum control mechanism analysis [34,35]. In the context
of robustness analysis, a quantum pathway is a term in the
Dyson series expansion written in terms of the products of
the form

∏K
k=1 x

αk

k , where x (or its log) denotes either a
control variable or a time-independent Hamiltonian parameter.
This includes the conventional multiphoton pathways (or
combinations thereof) as well as other types of pathways,
as will be described below. Like multiphoton pathways, the
other types of quantum pathways can interfere to produce the
observed dynamics.

Using a cosine representation of a control field with
K spectral modes, ε(t) =∑K

k A(ωk) [cos(ωkt) + φ(ωk)] for
an N-dimensional quantum system, the transition amplitude
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Uji(T ) can be expressed as a function of the field’s spectral parameters and the system’s dipole operator elements,

Uji(T ) =
∑
m

(
ı

�

)m K∑
km=1

Akm

N∑
lm−1=1

μjlm−1

∫ T

0
eı(ωjlm−1 tm) cos

[
ωkm

tm + φ
(
ωkm

)]× · · ·

×
K∑

k1=1

Ak1

N∑
l1=1

μl1i

∫ t2

0
eı(ωl1 i t1) cos

[
ωk1 t1 + φ

(
ωk1

)]
dt1 · · · dtm. (4)

In the above, the shorthand notations A(ωk) = Ak and ωji = (Ej −Ei )
�

have been used. The control and system parameters in (4)
may be sorted in a way that the transition amplitude can be interpreted as a sum of quantum pathways. For example, the transition
amplitude may be rewritten as

Uji(T ) =
∑
m

(
ı

�

)m ∑
�α∈M

K∏
k=1

A
αk

k

∑
(k1,...,km)

N∑
lm−1

μjlm−1

∫ T

0
eiωjlm−1 tm cos

[
ωkm

tm + φ
(
ωkm

)]× · · ·

×
N∑
l1

μl11

∫ t2

0
eiωl1 i t1 cos

[
ωk1 t1 + φ

(
ωk1

)]
dt1 · · · dtm, (5)

where the sum
∑

(k1,...,km) is over all 1 � ki � K, i = 1, . . . ,m, such that mode k appears in the multiple integral αk times. In

Eq. (5), the mth-order Dyson term is expressed as a sum of terms with powers of amplitude [α1, . . . ,αK ] such that
∑K

k=1 αk = m.
The notation �α ∈ M is used to denote all such pathways belonging to a particular order m, i.e., the integer polytope M ≡ {�α ∈
ZK |∑K

k=1 αk = m,�α > 0}. In this way, the transition amplitude can be described as a sum of amplitude pathways, in which each
pathway is denoted by a unique combination of �α = [α1, . . . ,αK ],

Uji(T ) =
∑
m

Um
ji (T ) =

∑
m

∑
�α∈M

Uji (T ,�α) . (6)

For example, given two modes (i.e., K = 2), the two first-order amplitude pathways can be identified as U 1
ji(T ,�α = [0,1]) and

U 1
ji(T ,�α = [1,0]). Analogously, the mth-order transition amplitude may be described as a sum of dipole pathways, which are

more commonly known as multiphoton transition pathways. The dipole pathways are given as follows:

Uji(T ,�α) =
(

ı

�

)m ∏
p<q

μ
αpq

pq

∑
(l1,...,lm−1)

K∑
km

Akm

∫ T

0
eiωjlm−1 tm cos

[
ωkm

tm + φ
(
ωkm

)]× · · ·

×
K∑
k1

Ak1

∫ t2

0
eiωl1 i t1 cos

[
ωk1 t1 + φ

(
ωk1

)]
dt1 · · · dtm, (7)

where �α ∈ M, and the sum
∑

(l1,...,lm−1) is over all 1 � li � N,

i = 1, . . . ,m − 1, such that frequency ±ωpq corresponding
to dipole parameters μpq,μqp appears in the multiple in-
tegral αpq times. Phase pathways will be considered in a
separate work.

Given the definition of quantum pathways as associated
with the control and system parameters, the quantum control
robustness can be precisely described. Indeed, the robustness
may be defined in terms of how the distribution and magnitude
of variations in the field’s amplitude and phase parameters
and the system’s dipole moments change the trajectory of
the quantum pathways and, hence, the transition amplitude
and probability. Extending from the concepts of [25–29],
we can express as robustness criteria the moments of the
(quantum pathway) interferences and transition amplitude and
probability. This will be described in Sec. IV. In Sec. III
below, the statistical description of the uncertainties associated
with the system’s Hamiltonian parameters and control field are
presented.

III. CHARACTERIZATION OF SYSTEM PARAMETER
AND CONTROL FIELD UNCERTAINTY

The robustness criteria introduced in Sec. II above can be
computed once system parameter and control input uncertain-
ties have been characterized. In robust control engineering,
one is concerned with the effects of uncertainty in the time-
independent parameters characterizing the equations of motion
of the system, as well as disturbances or implementation errors
in input variables [26,29]. The former parameters are not
directly observable, whereas the latter variables are generally
observable.

Hamiltonian parameter estimation is achieved through
system identification based on measurements of the observed
dynamics. Hamiltonian parameter estimates can be obtained
by either frequentist (e.g., maximum likelihood, ML) or
Bayesian estimation techniques. For illustration, we consider
uncertainty in a dipole operator μ that is real and has diagonal
elements equal to zero; this operator can be parameterized by
the vector �θ = [μ12, . . . ,μ(N−1)N ]T of independent elements
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μpq,q > p of which there are at most N2−N
2 . We assume that

all elements μpq,q �= p are uncertain and we denote by K the
number of parameters.

Denoting by L(θ |x) the likelihood function (a function of
θ ) for dipole parameter estimation [36] based on a set of
measurements x, the maximum likelihood estimator θ̂ML =
argmaxL(θ |x) is an asymptotically efficient estimator with the
corresponding covariance matrix of parameter estimates given
by

� = I−1(θ̂), (8)

where I(θ ) denotes the Fisher information matrix

I(θ ) = −E

{
∂2 ln [L(θ |x)]

∂θ∂θ ′

}
. (9)

I−1(θ0) (where θ0 denotes the true parameter vector) is called
the Cramer-Rao lower bound (CRB) for consistent estimators.
The ML estimator asymptotically achieves this lower bound
on the covariance matrix.

Alternatively, Bayesian Hamiltonian estimation may be
used [37]. Bayesian Hamiltonian estimation can employ
ab initio calculations along with experimental data to construct
system parameter estimates θ̂ . Bayesian estimation is based
on the notion of a prior plausibility distribution p(θ |I ) on
the space 	 of parameters, which is updated to a posterior
distribution p(θ |x ∧ I ) based on the measurements x, through
the relation

p(θ |x ∧ I )dθ = L(x|θ )p(θ |I )dθ∫
	

L(x|θ )p(θ |I )dθ
. (10)

Here, I denotes the prior information set and the likelihood L

is written as the conditional probability of the measurement
outcomes given θ in order to derive the posterior distribution
by application of Bayes’ rule. Using this approach, we would
have ab initio estimates for parameters represented by p(θ |I ),
in addition to the parametric model and observation law which
provide the likelihood function. In the following robustness
analysis, we assume a multivariate normal approximation
to the posterior distribution of θ is available either from
frequentist (e.g., ML) or Bayesian estimation.

In laser control of molecular dynamics, which is the applica-
tion of primary interest in the current work, uncertainties in the
control field can originate in two ways: (a) inaccuracies in the
values of manipulated field parameters [38] and (b) stochastic
disturbances or noise in the realizations of input variables.
The control input ε(t) is manipulated in the frequency domain
through the magnitudes of spectral amplitudes A(ω) and/or
phases φ(ω) of the laser field. Irrespective of whether the
random variables δε(t) originate due to stochastic fluctuations
in the realizations of these variables or inaccuracies in
manipulated parameters, the expressions for the moments of
state variables are equivalent, as will be discussed below; hence
the theory of robustness presented herein is applicable to both
problems. In the examples considered herein, we are primarily
concerned with errors in the manipulated spectral amplitudes
or phases of the laser field.

For robustness analysis in the presence of field uncertainty,
the frequency domain covariance function is used instead
of the covariance matrix (8) of parameter estimates. For

illustrative purposes, in the present work we consider examples
with uncertain spectral amplitudes and deterministic phases
[i.e., δφ(ω) = 0], and assume there is no correlation between
the different spectral amplitude random variables,

E[δA(ω)δA(ω′)] = 0, ω′ �= ±ω. (11)

The theory is, however, also directly applicable to the case
with correlated uncertainty in the frequency domain.

Studies of quantum control robustness to stochastic distur-
bances characterized by a time domain correlation function
have also been reported, for example, in Ref. [18], which
considered stationary field noise processes. Based on the
theory of Fourier transforms, there exists a one-to-one mapping
between frequency and time domain representations of field
noise processes,∫ T

0
exp(−iωt)δε(t)dt = δε(ω) (12)

= δ(A(ω) exp [iφ(ω)]). (13)

The correlation function,

1

σtσt ′
E[δε(t)δε(t ′)], (14)

where σt denotes the standard deviation of δε(t), can be calcu-
lated given sampled amplitude and phase variations, and the
frequency domain correlation function may be calculated from
sampled time domain variations, for any field noise process
(stationary or nonstationary). In the context of robustness
to control field disturbances, the theory and methodologies
developed herein are most conveniently applied to distur-
bances wherein the frequency domain correlation function
is a physically natural representation, which is the case for
intensity and phase noise in laser control [20,21,39,40].

IV. ROBUSTNESS ANALYSIS

A. Formulation of robustness criteria

The eventual goal of robustness analysis is to understand
how a control field achieves robust transition amplitude and
probability when uncertainty is present in the control field
or the system parameters. We consider robustness of the
control performance measure (e.g., transition probability) to
variations δθ in the parameters. Assuming the covariance
matrix of parameter estimates is available as in Eq. (8), the
posterior distribution of δθ is modeled as a multivariate normal
distribution, i.e., θ ∼ N (θ̂ ,�). Through choice of a confidence
level c, we can specify the set of possible realizations of δθ

corresponding to that confidence level as

	 = {
δθ |δθT �−1δθ � χ2

K (c)
}
, δθ = θ − θ̂ , (15)

where χ2
K (c) denotes the inverse cumulative distribution

function of the χ -square distribution with K degrees of
freedom, with K denoting the number of noisy or uncertain
parameters. The distribution of δθ can be used to estimate
the corresponding distribution of the control performance
measure J . Let J = Pji , the transition probability between
states i and j , and consider the case of dipole operator
uncertainty as an example. With a first-order Taylor expansion,
the only distribution function that can be derived is a normal
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distribution,

J ∼ N
(
J (θ̂ ),σ 2

J

)
, (16)

with variance

σ 2
J ≈ Tr[�∇θJ (∇θJ )T ], (17)

where

[∇θJ ]k = − ı

�
Tr

{
[|i〉〈i|,U †(T )|j 〉〈j |U (T )]

×
∫ T

0
U †(t)Xkε(t)U (t)dt

}
, (18)

and Xk is the Hermitian matrix obtained by setting
θk = 1, θl = 0, l �= k in μ(θ ).

An analogous representation of the variance of the perfor-
mance measure is possible in the case of input field uncertainty
in terms of either a frequency or time domain representation
of the gradient of the performance measure with respect to the
field variables [5] and the correlation function in the respective
domain. As noted above, the expressions are equivalent for
either implementation inaccuracies or field disturbances; only
the correlation functions depend on the application, with
implementation inaccuracies often displaying less correlation.

With higher-order Taylor expansions [17], one cannot de-
rive a distribution function for J analytically, although various
approximate numerical methods have been proposed [26].
Worst-case robustness analysis can be formulated either in
terms of maximization of the magnitude of the performance
measure deviation δJ subject to the inequality constraints on
δθ in Eq. (15), or directly in terms of an approximation to the
probability density function (pdf) of J . The former approach is
considered further in Sec. IV C. In the latter approach, using, as
an example, (16) as an approximation to the pdf and specifying
a confidence level c, an estimate of Jwc can be expressed as

Jwc = J (θ̂ ) + δJwc = J (θ̂ ) −
√

2σJ erf−1(c). (19)

Robustness of nonlinear systems is commonly examined
from the perspective of linearized control system dynamics.
However, for many important quantum systems, such as
femtosecond molecular dynamics, real-time feedback control
is currently impossible. In the absence of feedback, control
system linearization (as well as associated leading-order Tay-
lor expansions) can be inaccurate as a method for prediction of
the moments of state variables—and hence robustness of ob-
servable quantities to parameter uncertainty and disturbances
since the variance of the state variable deviations increases
rapidly with evolution time and the linearized system is no
longer an accurate approximation to the true nonlinear system.
Methods such as feedforward control are computationally
less intensive and quantum feedforward controllers have been
proposed based on linearized control systems [36].

Most quantum robust control strategies typically apply
leading-order approximations to quantify the robustness of
the control fidelity to system parameter uncertainty or field
disturbances [16–18]. For example, [16] considered robustness
of pulses for quantum gate operations in the presence of Hamil-
tonian parameter uncertainty and input field disturbances
using an approach based on second-order perturbation theory.
Reference [17] analyzed the Hessian curvature of the quantum

control landscape for population transfer at its extrema
and its effect on robustness of optimal quantum control to
field disturbances. This is a second-order Taylor expansion
approach to quantum control robustness analysis applied to
nominally optimal controls in order to assess their robustness
to field disturbances. The effects of landscape curvature on
controlled gate robustness were also studied in Ref. [18]. These
approaches are analogous to leading-order methods applied
previously in the engineering literature [26,41].

Here, we present an asymptotic approach that can provide
accurate estimates of the first and second moments (and higher
moments if desired) of J suitable for use in either distributional
or worst-case robustness criteria for controlled quantum
dynamics. This approach is more accurate than methods for
moment calculations [like (17)] based on leading-order Taylor
expansions. In addition, following from the analysis of the
Schrödinger equation (4) and their interpretation as quantum
pathways as in Eqs. (5) and (7), one can determine how
input and system parameter uncertainties explicitly affect
the dynamical mechanism of controlled dynamics. Given
an accurate description of the parameter distribution, its
contribution to each pathway and subsequently the transition
amplitude and probability can be determined asymptotically
up to a significant Dyson order M . Analogous to classical
robust control [25–29], given the noisy distribution of the input
parameters, a measure of robustness can be expressed in terms
of the moments of the quantum control objective (commonly,
first and second).

However, unlike in the classical control counterpart, there
is an interference phenomenon which is responsible for the
observed dynamics in a quantum system, since the total
transition probability between an initial state |i〉 and a final
state |j 〉 at time T can be expressed as

Pji =
∑
m

∣∣Um
ji (T )

∣∣2︸ ︷︷ ︸
mth−order transition

+ 2
∑
m′<m

Re
{[

Um
ji (T )

][
Um′

ji (T )
]∗}

︸ ︷︷ ︸
Interferences between different transitions

.

(20)

The robustness criteria are formulated as follows: using
the case of spectral amplitude uncertainty as an example, the
amplitude pathways are first normalized with respect to the
product of spectral amplitudes involved in the pathways as
shown in Eq. (5),

c�α = Uji(T ,�α)∏K
k A

αk

k

. (21)

Given the reasonable assumption that the amplitude modes
A1, . . . ,AK are independent variables with uncorrelated dis-
tribution, the expected amplitude pathway E[Uji(T ,�α)] can be
determined as follows:

E[Uji(T ,�α)] = c�α
K∏
k

E
[
A

αk

k

]
. (22)

In turn, the mth-order contribution E[Um
ji (T )] to the transition

amplitude is

E
[
Um

ji (T )
] =

∑
�α∈M

c�α
K∏
k

E
[
A

αk

k

]
, (23)
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where the sum term represents the addition of all amplitude
pathways of order m. The expectation value of the total
transition amplitude can be subsequently calculated as

E[Uji(T )] = E

[∑
m

Um
ji (T )

]
=
∑
m

∑
�α∈M

E[Uji(T ,�α)], (24)

and the first moment of transition probability as

E[Pji(T )] = E

[∑
m

∣∣Um
ji

∣∣2]

+ E

[
2
∑
m′<m

Re
{(

Um′
ji

)(
Um

ji

)∗}]
, (25)

where

E

[∑
m

∣∣Um
ji

∣∣2] =
∑
m

∑
�α∈M

|c�α|2
K∏
k

E
[
A

2αk

k

]

+ 2
∑
m

∑
�α′∈M<

�α∈M

Re

{
c�α′c∗

�α

K∏
k

E
[
A

α′
k+αk

k

]}
,

(26)

and

E

[
2
∑
m′<m

Re
{(

Um
ji

)(
Um′

ji

)∗}]

= 2
∑
m′<m

∑
�α′∈M,

�α∈M′

Re

{
c�α′c∗

�α

K∏
k

E
[
A

αk+α′
k

k

]}
. (27)

The binary operator < applied to �α in the expressions
above refers to any ordering of pathways, such as �α′ < �α
if α′

kmin
< αkmin where kmin ≡ mink|α′

k �= αk . It is worthwhile
to note that the calculation of the moment of transition
probability involves interferences between pathways of the
same and different order (i.e., c�αc∗

�α′ for (�α,�α′) ∈ M and
�α ∈ M and �α′ ∈ M′). The latter is specifically associated
with the determination of the moment of interferences between
transitions of different order. Both of these terms can be
calculated for complete mechanistic analysis of quantum
control robustness. Additionally, the variance of the transition
amplitude can be expressed as the following:

var{Re,Im[Uji(T )]}

= E

⎧⎨
⎩
[∑

�α
Re,Im {c�α}

(
K∏
k

A
αk

k −
K∏
k

E
[
A

αk

k

])]2
⎫⎬
⎭

=
∑

�α
(Re,Im {c�α})2

(
K∏
k

E
[
A

2αk

k

]−
K∏
k

E2
[
A

αk

k

])

+ 2
∑
�α′<�α

Re,Im {c�α} Re,Im {c�α′ }

×
(

K∏
k

E
[
A

α′
k+αk

k

]−
K∏
k

E
[
A

α′
k

k

] K∏
k

E
[
A

αk

k

])
. (28)

[Re,ImUji]wc can be obtained via Eqs. (16) and (28). The
expected transition probability is given by

E[Pji(T )] = E

⎡
⎣∣∣∣∣∣∑�α

c�α
K∏
k

A
αk

k

∣∣∣∣∣
2
⎤
⎦

=
∑

�α
|c�α|2

K∏
k

E
[
A

2αk

k

]

+ 2
∑
�α′<�α

Re

{
c�α′c∗

�α

K∏
k

E
[
A

α′
k+αk

k

]}
. (29)

The expression for varPji can be derived analogously.
A controller may choose to either arbitrarily specify the

maximum Dyson order M at first and check its accuracy
based on the time order expansion of the Schrödinger equa-
tion, or choose M based on the upper bounds on moment
approximation errors. Continuing from (5) and (21), the upper
bounds on moment approximation errors can be derived and
will be presented in a separate work. The first moment of the
dipole pathway can be computed in an analogous fashion. The
normalized dipole pathway is, in turn, given as

c�α = Uji(T ,�α)∏
p<q μ

αpq

pq

, (30)

with Uji(T ,�α) given in Eq. (7), and where the expressions
for E[Uji] and var(Uji) are identical to those for amplitude
uncertainty, with E[Aαi

i ] replaced by E[μ
αji

j i ]. Here, the μpq

correspond the elements of θ in Eqs. (8)–(10).
Calculation of all moments of the control and system

parameters can be computed once and used where they appear
in the moment expressions (25) and (28). Given a particular
distribution of a parameter, e.g., amplitude mode Ak , the
different moment terms E[Aαk

k ] can be computed. As an
example, assuming Ak, k ∈ [1,K], is Gaussian distributed, for
a particular k, E[Aα] are calculated as follows:

E[A] = Ā, E[A2] = σ 2 + Ā2,

with the higher moment term E[Aα] calculated recursively
using the expression below starting with α = 3 as follows:

E[Aα] = E[(A − Ā)α]

−
n∑

i=0

(
α

i (α − i)

)
E[Ai](−Ā)(n−i),

E[(A − Ā)α] =
{

0, α odd

(α − 1)σα, α even

}
.

This method can be extended to include other probability
distributions, which can be expected to arise in different
experimental conditions.

The approach for computing the quantum control ro-
bustness criteria described above assumes that the various
order quantum pathways have been calculated and sorted
in terms of the amplitude, phase, and dipole parameters. In
the case of dipole parameter uncertainty, the E[μpq] and the
σ 2(μpq) correspond to the parameter estimates and variance
of parameter estimates (8), in which � is assumed to be
diagonal. While these pathways could be evaluated by multiple
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integration of the Dyson terms, this can be computationally
taxing especially when a large number of Dyson terms are
involved in the dynamics. An efficient method to factorize the
different contributions of the field’s spectral parameters and
system’s dipole in the Dyson series is described in the next
section. Convergence analysis of the aforementioned moment
expressions will be presented in a separate work.

B. Fourier encoding of control and system parameters

The different quantum pathways defined by (5) and (7)
can be efficiently computed using a commonly used method
in signal processing, referred to as Fourier encoding and
Fourier decoding. In fact, due to the complexity of the
explicit expressions (5) and (7) for the quantum pathways, it

is convenient to define these pathways in terms of Fourier
transforms. The technique was originally implemented to
study the mechanism of controlled quantum dynamics [34,35].

In revealing amplitude pathways, a set of Fourier functions
are implemented as amplitude encoding,

Ak → Ake
ıγks,

A
αk

k → A
αk

k eı(αkγk)s , (31)

where γk is the modulating frequency specific to the amplitude
power αk associated with a particular pathway (�α). Using the
modulation, the Schrödinger equation can be propagated in the
time variable t and dummy variable s, for which the resulting
encoded transition amplitude Uji(T ,s) is

Uji(T ,s) =
∑
m

(
ı

�

)m ∑
�α∈M

ei(
∑K

k αkγk)s
K∏
k

A
αk

k

∑
(k1,...,km)

N∑
lm−1

μjlm−1

∫ T

0
eiωjlm−1 tm cos

[
ωkm

tm + φ
(
ωkm

)]× · · ·

×
N∑
l1

μl11

∫ t2

0
eiωl1 i t1 cos

[
ωk1 t1 + φ

(
ωk1

)]
dt1 · · · dtm. (32)

The encoded total transition amplitude can be expressed in
terms of amplitude pathways as

Uji(T ,s) =
∑
m

∑
�α∈M

Uji(T ,�α)ei(
∑K

k αkγk)s . (33)

Deconvolution of the total transition amplitude leads to

Uji(T ,γ ) =
∫ ∞

−∞
Uji(T ,s)e−iγ sds. (34)

This suggests that all amplitude pathways of different orders
can be extracted through deconvolution of the encoded
transition amplitude if all γ ’s associated with each pathway are
uniquely known, i.e., Uji(T ,γ =∑K

k=1 αkγk) → Uji(T ,�α).
We can thus use (33) along with (31) and (34) to concisely
define amplitude pathways �α in Eq. (5).

Similarly, dipole encoding would reveal the contribution of
the dipole moments in the transition amplitude. Here, each of
the dipole matrix elements is encoded with a Fourier function,

μpq → μpqe
ıγpq s ,

μ
αpq

pq → μ
αpq

pq eı(αpqγpq )s , (35)

with γqp = γpq . The encoded and propagated unitary propa-
gator consists of the different order dipole pathways with the
encoded total transition amplitude,

Uji(T ,s) =
∑
m

∑
�α∈M

Uji(T ,�α)ei(
∑

p<q αpqγpq )s . (36)

Deconvolution of the total transition amplitude leads to the
decoded dipole pathway, i.e., Uji(T ,γ =∑p<q αpqγpq) →
Uji(T ,�α). We can similarly use (36) along with (35) and (34)
to define dipole pathways in Eq. (7). Now that the contribution
of the control and system parameters to the different orders
of the Dyson terms have been delineated, this information,

together with moments of parameters, can be used to explicitly
calculate the effect of manipulated input or system parameter
uncertainties on the quantum interferences and transition
probability. The details of the numerical implementation of
the method are discussed in the next section.

C. Worst-case robustness analysis

As noted above, worst-case robustness analysis can also be
carried out based on constrained maximization of the distance
between the nominal and worst-case values of the performance
measure [15]. These approaches are based on leading-order
Taylor expansions. For example, in a first-order formulation,
the problem can be expressed as

max
δθ∈	

|δJ |2 ≈ δθT (∇θJ )T ∇θJ δθ, (37)

where 	 was defined in Eq. (15) and ∇θJ in Eq. (18) (assuming
J = Pji). If we let x = χ−1

K (c)Q−1δθ , where QT Q = �, then
under this change of variables the constrained maximization
problem (37) is mapped,

max
δθ∈	

|δJ |2 → max
xT x�1

χ2
K (c)xT QT (∇θJ )T (∇θJ )Qx. (38)

This problem has the form of a Rayleigh quotient [42],
which has an analytical solution for Jwc and θwc = θ̂ + δθwc,
with δθwc = argmax|δJ |2 written in terms of a singular value
decomposition with appropriately chosen sign. However, since
the formulation is first order, it is subject to the same issues of
accuracy noted above. Future work will compare the accuracy
of various approaches to the estimation of Jwc for quantum
control systems.
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V. NUMERICAL IMPLEMENTATION

A. Fourier encoding

The key to a successful encoding (and, therefore, decoding)
of quantum pathways is to ensure that the encoding frequency
γ for each pathway is unique. Hence, the choice of γk directly
depends on the pathway definition as given in Eqs. (5) and (7)
for amplitude and dipole pathways, respectively. For amplitude
encoding, assuming that the significant number of Dyson
terms is M , the encoding frequency corresponding to each
amplitude mode must be separated by at least M terms. If
A1 is encoded with frequency γ1, A2 must be encoded with
γ2 = (M + 1)γ1, and Ak with γk = (M + 1)k−1γ1. This is to
ensure that each amplitude mode Ak with power up to M

would not have overlapping encoding frequency with the rest
of the amplitude modes Ak′,k �= k′ε[1,K]. As described in
the previous section, the same set of encoding frequencies
can be employed for the case of dipole pathways. Again, if
the quantum dynamics is significant up to a Dyson order M ,
each transition between the intermediate states of |i〉 and |j 〉
can be repeated at the most M times, such that the dipole
moment μij would have a maximum power of M . Using this
assumption, each μij ,i �= jε[1,N ] must be separated by M
terms. For instance, if μ1j = μj1 is encoded with γ1j = γj1,
then μ2j = μj2 is encoded with γ2j = γj2 = (M + 1)γ1j and
μnj = μjn with γnj = γjn = (M + 1)n−1γ1j for n �= jε[1,N ].
This type of encoding assumes that there is connectivity in
all of the states within the quantum system (i.e., μij �= 0
for all i �= jε[1,N ]). For a sparse dipole matrix, it may be
more computationally efficient to start with an evenly spaced
encoding frequency and subsequently ensure that none of them
overlap during the decoding process.

B. Fourier decoding

The decoding procedure begins with deconvolution of
encoded transition amplitude via Fourier transform. Each
deconvoluted term is then assigned to the appropriate pathway
based on their respective sum of encoding frequencies. As
discussed in the previous section, the encoding frequencies
are initially chosen so that the γ ’s for each pathway belonging
to each order are implicitly known. This means that any
pathways associated with A

α1
1 , . . . ,A

αK

K are associated with
γ = α1γ1 + · · · + αK (M + 1)K−1γ1. Using this information,
each sum of encoding frequency γ is factorized with respect
to γ1 to reveal all amplitude pathways of all orders, i.e.,
Uji(T ,γ =∑K

k=1 αkγk) → Um
ji (T ,�α). The result is a set of

amplitude pathways of up to a maximum order M . An
analogous approach can be used for dipole pathways.

VI. RESULTS: EXAMPLE

This section demonstrates the application of methods and
procedures described in Secs. III–V on an artificial quantum
system.

The majority of quantum robust control studies—especially
in the context of Hamiltonian uncertainty—have consid-
ered the robustness of controlled quantum gate fidelity. For
example, gate control systems including qubit arrays with
Heisenberg couplings [32], atomic lattices [43], as well as

TABLE I. RCGA algorithmic parameters used for obtaining
quantum control fields listed in Table II.

Operator Parameter

Initial population Size = 300
Reproductive population Size = 30
Crossover Simulated Binary Crossover,

probability = 0.2
Mutation Gaussian, probability = 0.01
Selection Tournament, size = 2

other coupled qubit systems [23] have been studied either
from the perspective of the robustness of nominally optimal
control fields (i.e., fields that were optimized in the absence of
uncertainty) or the perspective of optimization in the presence
of uncertainty.

The theory and methodologies developed in the present
work are applicable to both control of population transfer
in molecular systems, which is typically achieved using
shaped femtosecond laser pulses [4], and control of quantum
gates. Robustness analysis and robust control methods are
especially important in laser control because there is currently
no way to use real-time feedback methods to regulate the
controlled dynamics. Thus far, successful laser control of
molecular dynamics has been achieved almost exclusively
through experimental learning loops that are not based on
first-principles quantum mechanical models of the molecular
systems. Model-based control techniques have not yet been
successfully applied. Hence we emphasize laser controlled
population transfer problems in our analysis and examples.
Potential applications of our methods include model-based
dynamic control of chemical reactions. In these applications,
the robustness of quantum interferences between transition
pathways is of particular importance.

The Hamiltonian parameters of the example system studied
in the present work are chosen as follows:

H0 =

⎛
⎜⎝

0 0 0 0
0 1 0 0
0 0 1.5 0
0 0 0 2

⎞
⎟⎠, μ =

⎛
⎜⎝

0 2 1 0
2 0 0 2
1 0 0 0
0 2 0 0

⎞
⎟⎠. (39)

The system evolves according to (1), with the time-varying
electric field ε(t) parametrized as a linear combination of

TABLE II. Quantum control field parameters obtained via RCGA
optimization. The control field duration is fixed at T = 10 and the
amplitude modes Ak at 0.1. The number of modes used in the
optimization is 3.

Index Frequency modes (ωk) Phase modes (φk)

ε1 [1.0311, 2.4347, 1.0540] [3.6380, 3.3807, 3.4839]
ε2 [1.7671, 1.0048, 1.0019] [4.7794, 4.2516, 4.2667]
ε3 [1.0076, 1.0105, 1.7279] [1.1894, 1.1694, 1.8371]
ε4 [1.0004, 1.0996, 1.0411] [2.3030, 3.3381, 3.5704]
ε5 [1.0067, 1.8850, 1.0426] [0.6550, 0.6656, 0.4101]
ε6 [3.7307, 1.0442, 1.0209] [0.0449, 0.4724, 0.6493]
ε7 [3.0631, 1.0239, 1.0512] [0.2068, 0.5943, 0.4091]
ε8 [1.0009, 1.0112, 1.8064] [0.8815, 0.8174, 1.3002]
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TABLE III. The table shows the amplitude pathways of the first two significant orders (m = [2,4]) associated with ε1 from Table II
with their corresponding encoding frequency γ and contribution to the transition amplitude in the nominal and expected case with variance
[σ (Ak) = 0.3].

Pathway Encoding
(�α = [α1,α2,α3]) frequency(γ ) Amplitude Um

41(T ) E
[
Um

41(T )
]

var
(
Re
{
Um

41

})+ var
(
Im
{
Um

41

})
[0,0,2] 2 0.1816 − 0.2149i

[0,1,1] 23 0.7366 − 0.8381i

[0,2,0] 44 0.7462 − 0.8164i 0.2346 − 2.3926i 0.2498 − 2.4861i 0.0190 + 0.9171i

[1,0,1] 485 −0.04693 − 0.07756i

[1,1,0] 506 −0.09012 − 0.1555i

[0,0,4] 4 −0.01389 + 0.02558i

[0,1,3] 25 −0.1101 + 0.2025i

[0,2,2] 46 −0.3281 + 0.6014i

[0,3,1] 67 −0.4356 + 0.7946i

[0,4,0] 88 −0.21739 + 0.3941i 0.3342 + 2.0936i 0.3902 + 2.6029i 0.1321 + 0.2991i

[1,0,3] 487 0.01617 + 0.01658i

[1,1,2] 508 0.09452 + 0.09914i

[1,2,1] 529 0.1841 + 0.1979i

[1,3,0] 550 0.1194 + 0.1318i

cosine wave forms. The manipulated field parameters are
the spectral frequency, amplitude, and phase, and the control
objective is the maximization of the transition probability
between the initial state |1〉 and the target state |4〉, i.e., P41(T ).

Several types of optimization algorithms have been applied
to identify control strategies that maximize the fidelity of
controlled quantum dynamics in the presence of system or
input field uncertainty, both for quantum gates [15,24,38]
and control of observables [19,44]. For example, Ref. [38]
considered microwave control of quantum gates in the
presence of both pulse amplitude and frequency detuning,
and proposed techniques for combating both simultaneously
through a numerical optimization scheme. Reference [15]
applied nonlinear programming algorithms to the design of
robust quantum gate controls in the presence of system
parameter uncertainty. These algorithms, commonly applied
in engineering robust control, are well suited to the solution of
robust optimal control problems in the presence of constraints.
References [19,44] presented algorithms for identifying robust
control solutions in the context of laser control of molecular
dynamics.

Here, the real coded genetic algorithm (RCGA)1 is
employed to obtain the combinations of field parameters
which maximize the objective. The decision variables of the
optimization are formulated as �x ≡ [ω1, . . . ,ωK,φ1, . . . ,φK ],
where the number of modes K has been predetermined to be
3. The field duration T and the amplitude modes Ak have
also been predetermined to be 10 and 0.1, respectively, based
on value prescreenings to ensure control optimality (data not
shown). Table I summarizes the RCGA algorithmic parameters
used to obtain the control solutions. The acquired control

1RCGA is a stochastic optimization algorithm whose principle of
optimality and convergence is based on survival of the fittest and
principles of genetics. For more information regarding the procedure
of the algorithm, the reader is encouraged to refer to [45,46].

parameters are listed in Table II and are analyzed for robustness
below.

In this example, the contribution of Gaussian uncertainty
in the spectral amplitude is considered. Nevertheless, as
discussed in previous sections, an analogous analysis can be
readily performed in the case of dipole parameter distribution.
As described in Sec. IV, the robustness analysis reveals how
distribution in the parameters due to uncertainty affects the
pathway interference and transition probability. Traditionally,
as in classical control, the robustness criteria have been defined
as the first and second moment of the control objective. While
these criteria are directly applicable in the quantum case,
moments of pathway interferences provide additional insights
into the mechanism of quantum control robustness. The
theoretical and numerical implementations of the robustness
analysis are performed using the procedure described in
Secs. IV and V, respectively. In the first step, modulation
of the Schrödinger equation using Fourier functions are
performed to reveal the amplitude pathways. The Fourier
encoding parameters corresponding to the three amplitude
modes obtained in the optimization are γ1 = 1, γ2 = 22, and
γ3 = 485, respectively. Postencoding, the encoded unitary
propagator is deconvoluted and the resulting decoded matrix
is identified as a particular pathway according to its encoding
frequency. Table III lists the significant amplitude pathways of
the first two orders sorted in terms of their order and decoded
frequency.

The next step of the analysis is the calculation of expected
amplitude modes assuming a Gaussian parameter distribution.
As shown in Fig. 1 (top), the ratio of the expected to
nominal amplitude increases exponentially. This implies that
higher-order pathways which may be negligible under nominal
condition would become significant in a noisy environment.
Figure 1 (bottom) shows an example in the case of control
field ε1 under nominal and noisy condition [σ (Ak) = 0.3].
In addition, calculation of the first moment of the amplitude
pathway shows how pathways of different orders change in

043414-9



ANDY KOSWARA AND RAJ CHAKRABARTI PHYSICAL REVIEW A 90, 043414 (2014)

FIG. 1. (Color online) Top: Calculation of the first moment of
Aα(E[Aα]). The log plot shows that for an amplitude mode with
a Gaussian distribution, the moment of amplitude with increasing
power becomes exponentially larger relative to its nominal value.
Bottom: The bar plot shows the Dyson terms involved in ε1 at nominal
and expected case [σ (Ak)=0.3]. It suggests that terms of higher
orders, which may not be negligible under the nominal condition,
will become significant in a noisy environment.

magnitude and direction as the control parameter is distributed
(Table III). The interferences between different pathways are
calculated according to (27) for the nominal and noisy case.

FIG. 2. (Color online) Plot of expected population transfer (top)
and interference (bottom). The data suggests that control field
implementation uncertainty increases destructive interference and,
in turn, reduces the moment of transition probability.

The results of the interference calculations are shown in Fig. 2
and they suggest that implementation inaccuracies destroy
the constructive interference or amplify the destructive in-
terference. This effect on destructive interference increases as
parameter distribution is increased (Figs. 3 and 4) and reduces
the control field’s fidelity proportionally. The calculation for
the second moment of transition amplitude is also performed

TABLE IV. The table lists the expected transition probability and variance of transition amplitude associated with the control field ε1

defined in Table II as correlated with increasing variance of the field amplitude disturbance distribution. The computed values are compared to
its simulated counterpart (out of 800 samples).

σ (A(ωk)) E[P41] Mean(P41) (by sampling) var(Re{U41}) + var(Im{U41}) var(Re{U41}) + var(Im{U41}) (by sampling)

0.06 0.9571 0.9550 8.295e − 4 + 6.968e − 005i 9.323e − 4 + 9.243e − 005i
0.12 0.9392 0.9345 0.003163 + 0.0005661i 0.003388 + 0.0006441i
0.18 0.9115 0.9089 0.006558 + 0.002185i 0.007091 + 0.002265i
0.24 0.8766 0.8688 0.01038 + 0.005571i 0.01165 + 0.008212i
0.30 0.8374 0.8372 0.01397 + 0.01072i 0.01587 + 0.01361i
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FIG. 3. (Color online) Bar plot of interferences between different
pathways involved in the control field dynamics of ε1 from Table II
in the nominal (top) and expected (bottom) case [σ (Ak) = 0.3]. As
seen from the plot, Gaussian uncertainty increases the destructive
interferences between transitions.

and can be compared with the simulated values (Table IV).
The trend is analogous to that of the first moment in that the
magnitude of the variance increases as the variance of the

FIG. 4. (Color online) Plot of nominal and expected transition
amplitude [σ (Ak) = 0.3] associated with ε1 from Table II decom-
posed in terms of each Dyson term.

amplitude modes increases. These values can be further used
for the calculation of worst-case scenario Jwc, as discussed in
Sec. IV A in Eq. (16).

In the laboratory, there are cases where the pdf is not
identical across different input or system parameters. In this
case, different pathways are affected by input or system param-
eter uncertainty to different extents. Under this condition, the
amplitude robustness analysis showed that there exists a set of
pathways which are less affected by implementation inaccura-
cies and, thus, are more robust. For this analysis, the standard
deviations of the second of the three amplitude modes of the
control fields listed in Table II are varied while the rest are fixed
at 0.3. The robustness analysis shows that some combination
of amplitude modes and, therefore, pathways is more resistant
to implementation uncertainty, which in turn minimizes
the effect of parameter distribution on destructive interfer-
ence (ε8) relative to its nonrobust counterpart (ε1 and ε7)
(Fig. 5). As an illustration, Fig. 6 shows the plot of relatively
robust and nonrobust control fields (ε8 and ε1, respectively)
and their corresponding control trajectories under nominal and
noisy condition.

Moreover, given the multiplicities of quantum control
solutions, we investigated how stronger fields which utilize
more pathways are affected by implementation uncertainties
relative to their weaker counterparts. As seen in Eq. (3), fields
with high amplitude and longer duration involve more Dyson
terms and, as a result, more pathways. This subsequently poses
more entry points for control or system parameter uncertainty
to affect the control’s optimal state trajectory. To demonstrate
this property, we perform optimization of control fields with
variable time duration in order to analyze the optimality and
robustness of the control as a function of field strength and
number of Dyson terms involved in the dynamics. The same
algorithmic parameters and decision variables as the ones
used to obtain control fields listed in Table II apply in this
case, but with the amplitude strength across all three modes
varied in a range between 0.05 to 0.15. Ten optimization runs
were performed for each amplitude case and the best one is
reported in Fig. 7 (left). As shown in the plot, fields with higher
amplitude are better at maximizing transition probability under
nominal conditions but perform worse when implementation
uncertainties are present. This observation is consistent with
the interpretation of the robustness analysis, which is that
while stronger fields utilize more quantum pathways and
therefore result in greater control, these fields may become
more susceptible to implementation errors manifested in more
pathways [Fig. 7 (right)]. This observation also suggests that
there is a trade-off between the optimality of a control field
and its robustness.

These results demonstrate that (a) nominally optimal con-
trols are generally not the most robust and do not provide the
highest expectation values of controlled observables, and (b)
the mechanistic origin of the reduced robustness of nominally
optimal controls lies in their use of higher-order pathways
and associated quantum interferences, which are sensitive to
uncertainty. In this regard, Ref. [47] reported methods for
the design of simple, easy-to-implement control pulses that
are close to optimal, but not necessarily optimal. The above
analysis shows why easier-to-implement control pulses may
be more robust, and provides theoretical foundations for the
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FIG. 5. (Color online) Plot of expected population transfer (left) and interference (right) for uncertainty distributions that differ across
amplitude modes. The x axis shows increasing standard deviation of the second amplitude mode, while the rest of the amplitude modes are
fixed at 0.3. The data suggest that certain pathways are more resistant to uncertainty, leading to higher expected transition probability and
reduced destructive interferences.

identification of controls that employ such robust population
transfer mechanisms.

VII. SUMMARY AND PROSPECTIVE

In this paper, theoretical foundations for the robustness
analysis of coherent quantum control systems have been
presented. This theory enables the prediction of moments
of observables in any bilinear coherent control system under
Hamiltonian parameter and input field uncertainty, without the
use of leading-order approximations. Due to the bilinear nature
of the interaction between a quantum system and an external
field, the dynamics of a controlled quantum system can be
described using Dyson expansion. The resulting Dyson terms

can, in turn, be interpreted as a combination and interference
of quantum pathways, appropriately defined for the purpose of
robustness analysis, whose outcome is a transition amplitude
and probability between an initial and final state. These
pathways are an explicit function of the control and system
parameters such that the effect of control field implementation
errors and system parameter uncertainty on the state-to-
state transitions can be calculated using the expressions and
associated computational methodologies derived herein. The
robustness criteria of controlled quantum dynamics include
the moment of quantum control objectives, such as the
transition amplitude and probability. Moreover, since quantum
pathways interfere with one another in order to produce the
observed dynamics, the moment of interference is an essential

FIG. 6. (Color online) Plot of the temporal field of ε1 and ε8 as defined in Table II (left) and their corresponding population transfer
trajectory (right) in the nominal and expected case [σ (A1) = σ (A2) = 0.45 and σ (A2) = 0.65].
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FIG. 7. (Color online) Left: Plot of the expectation value of transition probability vs increasing amplitude strength. The figure shows that
under nominal condition, better control is achieved as stronger fields are optimized (circle). In the presence of amplitude uncertainty (σ = 0.2),
however, there is a particular field strength corresponding to a robust point which is not necessarily optimal under the nominal condition
(square). Right: The bar plot shows the significant number of Dyson terms involved in the dynamics of two control fields with different field
strength. It indicates that the more robust field involves fewer significant Dyson terms and, hence, amplitude pathways relative to the nonrobust
field.

robustness criteria in the understanding of quantum control
robustness.

The robustness analysis method described herein can be
implemented in robust control algorithms in a couple of ways.
First, robustness analysis for time-independent Hamiltonian
uncertainty can be used to compute model-based robust control
solutions in an open-loop setting given Hamiltonian parameter
estimates. This can, in turn, be used in conjunction with deter-
ministic robust control algorithms to achieve robust solutions
based on either distributional or worst-case criteria, specif-
ically, taking into account quantum pathway interferences
and maximizing the performance measure by minimizing
the destructive interference. Future work may also compare
the mechanisms by which robustness is achieved using the
present methodology with those obtained under leading-order
approximations, for problems with more general types of
correlation in Eqs. (8) and (11). Second, the asymptotic nature
of robustness analysis can be used to help determine the

number of observations required to obtain accurate estimates
of control robustness using experimental sampling of noisy
fields in learning control algorithms. These robust open-loop
and learning control methods could ultimately be combined
in model-based quantum adaptive feedback control. Finally,
these asymptotic methods are also applicable to robustness
analysis of other bilinear systems and may prove useful in
robust control of such systems. However, it is important
to emphasize that the role of interferences (and robustness
thereof) in producing the observed robustness of quantum
dynamics is unique to quantum control.
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