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Theoretical analysis of Young-type electron interference in He2+ + H2 collisions
using a semiclassical model
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(Received 16 September 2014; published 21 October 2014)

A four-body semiclassical model is developed to describe interferences observed in the angular distribution
of Auger electrons emitted after double capture in 30-keV He2+ + H2 collisions. The present model is based on
both the corpuscular and wave behaviors of the emitted electron. The corpuscular aspect is used to determine
the trajectories of the collision partners, while the wave behavior occurs only in the determination of the phase
shift. The results of the calculation are found to reproduce the experiment remarkably well. Series of maxima and
minima are found in the angular distribution, with periods that are close to the experimental values. In addition, at
a fixed angle, oscillations in the energy distribution are clearly evidenced in both the experiment and calculation.
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I. INTRODUCTION

Since the famous hypothesis by Louis de Broglie [1] that a
wave can be associated with a massive moving particle, many
experiments have been conducted to show the wave-particle
duality [2–6]. In particular, since 2001, Young-type interfer-
ences caused by electrons scattering on atomic or molecular
targets have been experimentally [7–10] and theoretically
[11–13] studied.

Very recently, a theoretical description of an original
experiment has been proposed [14]. The process

He2+ + H2(1σ ) → He∗∗(2lnl′,n � 2) + H+ + H+

→ He+ (1s) + H+ + H+ + e− (1)

has been analyzed. A He2+ projectile first captures both H2

molecular target electrons on 2lnl′ doubly excited states.
After the capture, one electron is ejected mainly by Auger
effect, with energies in the range 30–40 eV. Two groups of
peaks centered at energies of �33 and 35 eV, associated
with 2s2 1S and (2p2 1D−2s2p 1P ) terms, respectively, can
be separated, while peaks located at energies larger than
36 eV and associated with 2lnl′ (n � 3) configurations are
also observed.

The electron emitted at angles close to 180° with respect
to the incident beam direction (also called backward angles)
scatters on both recoiling protons that play the role of the
two holes in a Young double slit experiment with photons.
Interferences are thus produced, and well-defined oscillations
were predicted. The realization of the present proposal was
realized a few years later, and oscillations with a period of
�17° could be observed in the angular distribution of emitted
electrons [15–17], in agreement with the theoretical prediction
[14] based on quantum mechanics. To get more information on
the oscillations themselves, a polynomial function was used
to fit the main angular dependency [17] and subtracted. The
result, also shown in Fig. 3 of Ref. [17], is presented in Fig. 1
(empty circles).

To interpret the results, an analysis based on quantum me-
chanics was performed. Briefly, the autoionization amplitude
is separated into reduced amplitude which takes into account
the decay of the autoionizing state, namely 2s2 1S, and a factor
A which describes the influence of the protons onto the emitted

electrons. Following Barrachina and Zitnik [14],

A ≈ −i

∫ ∞

0
{1 + [D(−→rN ) − 1] cos(−→s · −→

rH )}

× t2i/kT e−(1−iε)�t/2dt. (2)

In this expression, D(−→rN ) is a distortion factor which de-
pends on the distance rN between the projectile and the ionized
target center of mass, and the reduced energy ε is defined
as ε = 2/� (E − Eo), where 1/� and Eo are the lifetime
and the resonant energy of the 2s2 1S state. The quantities−→
s and −→

rH refer to the momentum transfer and the vector
characterizing the distance between one proton and the H2+

2
center of mass, respectively. The vector −→

s is defined by
−→
s = −→

k − k
−→
rN /rN , where

−→
k is the electron momentum.

The calculation was performed assuming an average distance
rH ∼ 8 a.u., defined at time t = 2/� ∼ 400 a.u. [14]. In the
frame of this approximation, the interference pattern could be
evidenced (Fig. 1 of Ref. [14]). Moreover, simple formulas
could be used to fit the experimental data (small dashed
lines in Fig. 1). Briefly, the oscillation term is governed by
the well-known Debye-Ehrenfest term sin δ/δ [18,19], with
δ = 2V L

e dHH cos (θ/2). In this expression, V L
e is electron

velocity in the laboratory frame, and dHH is the average
distance between the two protons. It has been recently shown
that the best fit occurs when the three configurations are taken
into account [20].

When relation (2) is fully applied, and after subtraction
of the intensity by a polynomial function, no oscillations are
observed (full line of Fig. 1) [21]. This surprising result can
be understood as follows. Whatever the expression of the
distortion factor D(−→r ), the interference term is governed by
cos(−→s · −→

rH ), which depends on time via the vectors −→
rH and −→

rN .
The addition of infinite cosine terms destroys the interference
pattern. The result is quite similar to the one we would obtain
using white light in photon interference experiments.

To get more detailed information on the pseudoperiods
of the oscillation pattern, fast Fourier transform (FFT) has
been applied on the angular distribution. Figure 2 shows the
results of the FFT on the experiment (open circles), the fitting
result (dashed curve), and the quantum calculation (full curve).
Surprisingly, even if one Bessel function could be enough to fit
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FIG. 1. Oscillation term in the angular distribution of Auger
electrons following 30-keV He2+ + H2 collision. Open circles:
experiment. Dashed curve: fit of the experimental oscillations. Full
curve: result of the calculation using relation (2).

the angular distribution [15] in the first approximation, three
maxima, located at 0.055, 0.125, and 0.2 deg−1, are clearly
evidenced. This shows that interferences are due to the
combination of the three configurations. The fitting curve
(dashed curve) presents also three maxima. Whereas the
maxima associated with the 2p2 1D and 2s2p 1P terms are
close to the experimental one, the maximum associated with
the 2s2 1S term is located at 0.08 deg−1, which disagrees
with the experimental value of 0.055 deg−1. Maxima are also
present in the FFT of the quantum calculations. However, the
amplitude is multiplied by a factor of 4000, and the positions
of the maxima are far from the experimental one.

Since no other quantum theory is available to describe the
interference phenomenon in such slow collisions, a four-body
semiclassical model (4BSCM) has been developed, based on
the corpuscular and wave aspects of the emitted electrons.
The idea originates from macroscopic-scale experiments
developed a few years ago [22]. In this experiment, a droplet of
silicon oil falls on a vertically vibrated bath of the same fluid.
Under specific conditions, the droplet “walks” on the surface,
generating waves. Thus, the so-called walker is constituted of a
corpuscle and a wave. The authors let individual droplets walk
and cross a slit. Despite the chaotic behavior of the trajectories,
the number of droplets was shown to follow a law that clearly
shows the wave character of the droplet. Indeed, a diffraction
figure was obtained, similar to what we would observe with
light.

The corpuscular-wave association gave us the idea to build a
model resembling the experiment described above. The model

FIG. 2. Fast Fourier transform (FFT) of the angular distributions
shown in Fig. 1. Open circles: experiment. Dashed curve: fit of the
experiment. Full line: full calculation using relation (2). The latter
result is multiplied by 4000 to emphasize the structures. The maxima
are depicted by arrows.

we constructed is first based on the corpuscular aspect and
then on the wave behavior of the electrons, meaning that each
aspect is independently treated.

In Sec. II, the model is described in detail. Approximations
will be discussed. Then, in Secs. III and IV, angular distribu-
tions and energy distributions derived from the present model
will be shown and compared with the experimental results.

II. SEMICLASSICAL MODEL

A. Initial conditions

Suppose there is an electron, located at
−→
rm
e = −→vp tme + −→

b

from the H2+
2 center of mass, which is emitted with a velocity−→

vm
e in the projectile frame (Fig. 3). Assuming, to simplify, an

impact parameter b = 0, it follows that
−→
rm
e = zm

e
−→
uz .

It was verified that the influence of b on the angular distri-
bution is weak. Indeed, the introduction of a nonzero impact
parameter only induces a shift in the angular distribution and
does not change its shape.

At time tme = 0, where the electron is emitted, the quantity
vm

e is chosen so that, before scattering on the protons, Gaussian
curves with natural widths �S,�P , and �D [23,24] are used to
describe the three configurations 2s2 1S, 2s2p 1P, and 2p2 1D,
respectively. Since no information is known concerning the
relative weight of the initial populations of the configurations,
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FIG. 3. Schematic three-dimensional view of initial and final
conditions of an emitted electron in the field of two protons P 1 and
P 2. At t = 0, the angles θm

e and ϕm
e characterize the direction of the

velocity
−→
vm

e of the electron, which is located at zm
e from O. The angles

θm
H and ϕm

H characterize the position of the doubly ionized target. At
t = tmax, the electron is at a distance re from O and has a velocity−→ve . The quantities θV

e and θr
e are the angles between the incident

beam direction and the final electron velocity −→ve and position −→
re ,

respectively.

they are assumed to be equally distributed. The angles θm
e

and ϕm
e which characterize the direction of

−→
vm

e , as well as
the angles θm

H and ϕm
H which characterize the position of

the doubly ionized target, are randomly chosen in order to
obtain spherical distributions. More precisely, the cosine of
θm
e and θm

H are chosen in the range [–1;1] in order to get
homogeneous distributions. The distance rm

e is also randomly
chosen, weighting by a decreasing exponential function e−�i t

(i = S, P , D), which takes into account the Auger deexcitation
probability. Since the interference phenomenon is assumed to
begin when the electron is emitted, the initial distance dm

HH
between the two hydrogen ions is calculated at time tme . Finally,
the remaining projectile electron is considered to be frozen.

B. Calculation of the trajectories

From these initial conditions, Hamilton equations for the
motion of He+, the two protons, and the emitted electron are
numerically solved using the Runge-Kutta method of order 4,
with an adaptive step [25]. This method has been shown to be
very efficient in many cases (see, for example, Ref. [26]). The
Hamiltonian writes (atomic units are used)

H =
2∑

i=1

p2
i

2M
+ p2

e

2
+ p2

He

2MHe

+
2∑

i=1

(
− 1

‖−→ri − −→
re ‖ + 2

‖−→ri − −→
rHe‖

)
+ 1

‖−→r1 − −→
r2 ‖ .

(3)

In the above expression, −→pi , −→pe , and −→
pHe are the momenta of

the protons, the electron, and the projectile; M and MHe are the
proton and projectile masses; and −→

ri , −→re , and −→
rHe characterize

the positions of the protons, the electron, and the projectile.
Finally, the time evolution of the system is

dpiα

dt
= − ∂H

driα

;
driα

dt
= ∂H

dpiα

. (4)

where i refers to the four moving particles, and α indicates
the three components of the vectors along the three coordinate
axes.

It is supposed that each particle acts with the three other
particles, except He+ which interacts only with the protons and
not with the ejected electron, since the Auger electron velocity
at t = 0 is the one it has at infinity. To obtain good statistics,
the number of calculated trajectories was fixed to 500 000.
Integration time was chosen as follows: Let us call θV

e and θr
e

the angles between the incident beam direction and the final
electron velocity −→ve and position −→

re , respectively; calculation
was ended when the condition θV

e − θr
e < 0.1◦ was fulfilled.

This condition corresponds to an integration time tmax of the
order of 1000 a.u.

C. Determination of the phase shift

At the end of the integration time, suppose two electrons are
located at M1 and M2, characterized by their respective angles
(θ1,ϕ1) and (θ2,ϕ2). After rotation of M1 and M2 by ϕ1 and
ϕ2, respectively, around the (Oz) axis, the problem to solve is
confined to the (y0z) plane (Fig. 4). The points obtained after
rotation are called M1y and M2y . Their respective coordinates
are (y1/ sin ϕ1,z1) and (y2/sin ϕ2,z2), as shown in Fig. 4.
Similarly to notations in Fig. 3, θV

i and θr
i are the angles

between the incident beam direction and the final electron
velocity −→vi and position −→

ri .
The electron that is detected on M1y reaches the detector

before the electron which reaches M2y . The latter is therefore
delayed compared to the first electron, and the missing distance
for the electron to reach the detector is δ12 = M2yM

′
2y , which

is easily calculated as a function of the coordinates and the
final angles.

Since double capture is not taken into account in the
calculation, the probability that an electron is emitted by Auger
effect is equal to unity. Thus, the amplitude associated with an
electron i is

Ai = e
−iEi (tmax− δ1i

Vi
)
, (5)

FIG. 4. Schematic two-dimensional view of two electron trajec-
tories. An electron is detected at M1y on the detector, while the
second electron is delayed. The missing distance is δ12 = M2yM

′
y .

The projection of the trajectories on a plan is used to increase the
statistics.
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where Ei and Vi are the final electron energy and velocity,
respectively, and δ1i/vi is the phase shift induced by the
delay. The total amplitude A (θd ) at a fixed angle θd ± 
θd ,
where 
θd = 2◦ is the experimental angular resolution, is the
sum of the individual amplitudes Ai . Finally, the intensity is
determined using I (θd ) = |A (θd )|2.

III. ANGULAR DISTRIBUTION OF AUGER ELECTRONS

Figure 5(a) shows the Auger electron angular distribution
calculated using the model described above, in the range
90°–180°. At angles larger than 170°, the intensity is found
to be maximum. In the range 90°–170°, series of maxima and
minima are clearly observed. The shape of the present intensity
strongly differs from the experimental one (see, for example,
Fig. 2 of Ref. [17]), since no pseudosinusoidal oscillation is
clearly evidenced. However, a refined analysis using the FFT
method shows [filled squares in Fig. 5(b)] three structures
whose maxima, depicted by arrows, are located at frequencies
corresponding to pseudoperiods of about 15.2°, 10.0°, and
7.4°. Comparison with frequencies deduced from experimental
(open circles in Fig. 5) shows a qualitative agreement. Despite
the observed differences between the structure maxima, the
calculated pseudoperiods are consistent with experimental
pseudoperiods (18.2°, 8.0°, and 5.0°). Consequently, the
present result supports the idea that the series of maxima and
minima seen in the calculated angular distribution are caused
by Young-type interferences.

.....

FIG. 5. Auger electron angular distribution (a) calculated using
the 4BSC model (see text), in the range 90°–180°. Series of maxima
and minima are clearly observed. (b) presents the FFT of the
calculation (full squares). The experimental FFT is also shown
for comparison. Three maxima are observed, giving evidence for
Young-type interferences in the calculated angular distribution.

IV. ENERGY DISTRIBUTION AT A FIXED ANGLE

Since the present model is able to reproduce at least
qualitatively the angular distribution of Auger electrons, the
question arises whether it can provide information on the
Auger spectra at fixed angles. Since the energy resolution is
the best at large angles [15], the spectra were calculated at a
detection angle of 160°. Figure 6(a) presents the result of the
calculation, convoluted by an apparatus function, for the 2s2 1S

configuration and the (2s2p 1P − 2p2 1D) configurations, lo-
cated at 12.4 and 13.5 eV, respectively. The dashed curve is
the result of the calculation when the interferences between
the three configurations are not taken into account, while the
full curve is the calculation result when interferences between
the three terms are introduced. In the latter case, oscillations
in the energy distribution are clearly seen, especially between
10.5 and 13 eV, with an average period of �0.5 eV.

The same FFT procedure was applied to the present
results. Figure 6(b) shows the FFT calculation result for both
angular distributions represented in Fig. 6(a). Without any
interferences, the FFT amplitude decreases from 1 to 5 eV−1.
The visible oscillations are mainly due to the shape of the
structures and to the fact that the energy range is not infinite.
When interferences are included, the shape of the amplitude

........

FIG. 6. Energy distribution of Auger electrons following deex-
citation of 2lnl′ configurations, calculated using the 4BSC model
(a), for a detection angle of 160°. Dashed curve: no interferences
between the structures. Full curve: interferences between Auger peaks
are taken into account. (b) shows the respective FFT amplitudes.
When interferences between Auger peaks are taken into account, a
large structure is observed, with an average frequency of the order of
4 eV−1.
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........
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FIG. 7. Experimental energy distribution of Auger electrons
following deexcitation of 2lnl′ configurations [open circles in (a)],
at a detection angle of 160°. The full curve fits the experimental
structures. (b) shows the respective FFT amplitudes. Full curve: FFT
amplitude for the fit. Open circles: FFT amplitude associated with the
experiment. The inset in (a) increases the visibility of the oscillating
structures. The full line in the inset is used as a guide for the eye.

differs from the previous one. It is seen that the amplitude
is larger between 2 and 5 eV−1 than that found without any
interferences. The average frequency is of the order of 4 eV−1,
giving rise to a pseudoperiod of 0.25 eV.

If the present model is valid, such oscillations would
be also present in the experiment. In Fig. 7(a), a typical
spectrum obtained at 160° is presented (open circles). A
careful inspection of the spectra [the inset of Fig. 7(a)] reveals
additional structures at energies of about 11.5 and 11.8 eV, with
small amplitude compared to that found in the calculation.

Since the presence of oscillations is not obvious, the FFT
method was again used to get evidence for possible structures.
First, to compare with experiment, the experimental spectra
are fitted using distorted Gaussian curves [20]. The result of

the FFT amplitude is given in Fig. 7(b) for the experimental
energy distribution (open circles) and the fitting curves (solid
lines). Whereas the latter amplitude decreases monotonously
when frequency increases, a large structure appears between
2 and 20 eV−1, showing that oscillations are present. The
agreement with calculation is reasonable, except that the range
of frequencies is shifted. Indeed, the average frequencies for
the experiment and the calculation are 3.93 and 2.28 eV−1,
respectively, corresponding to average pseudoperiods of 0.25
and 0.44 eV. Such structures in the energy spectra were clearly
observed several decades ago in collision between He+ ions
and He target, at a projectile energy of 1400 eV [27]. Os-
cillating structures with a period of about 1 eV could become
visible because the spectra were measured at 180°with respect
to the incident beam direction so that the Doppler effect was
minimized. The authors showed that the oscillatory structure
can be described by an approximate semiclassical formulation
of a postcollision interaction model, in which the possible
interference of contributions from different coherently excited
autoionization states in the ejected-electron spectrum was
taken into account. Consequently, our model which also
takes into account interferences between autoionizing states
is consistent with previous analysis.

V. CONCLUSION

In the present paper, a 4B-SC model has been developed
and applied to collisions between Auger electrons and two
protons, in order to describe interference phenomena observed
experimentally in the angular distribution of Auger electrons
following double electron capture in 30-keV He2+ + H2

collisions. In contrast with calculation based on quantum
mechanics, the present model is able to reproduce, at least
qualitatively, but also quantitatively, the angular distribution
of Auger electrons, as well as energy distribution of Auger
electrons at a fixed angle. At present, there is no explanation
for this surprising result. A more detailed analysis of electron
trajectories that lead to maximum and minimum intensity is
thus needed.

Since only autoionization has been studied, the next step in
our future work will be to include the double electron capture
process in the calculation. Indeed, if the separation of the
primary process (double capture) and the postcollision process
(autoionization) is well adapted to calculate, for example, total
or partial cross sections, both processes have to be included to
study interferences, since interference phenomena are already
present before the collision in the H2 molecule itself. The
classical treatment of the whole collision is thus a challenge,
which first requires that we correctly simulate the H2 molecule,
by the inclusion of electron-electron interaction.
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