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Adiabatic hyperspherical representation for the three-body problem in two dimensions
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We explore the three-body problem in two dimensions using the adiabatic hyperspherical representation. We
develop the main equations in terms of democratic hyperangular coordinates and determine several symmetry
properties and boundary conditions for both interacting and noninteracting solutions. From the analysis of
the three-body effective potentials, we determine the threshold laws for low-energy three-body recombination,
collision-induced dissociation, as well as inelastic atom-diatom collisions in two dimensions. Our results show
that the hyperspherical representation can offer a simple and conceptually clear physical picture for three-body
process in two dimensions which is also suitable for calculations using finite-range two-body interactions
supporting a number of bound states.
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I. INTRODUCTION

In recent years, ultracold quantum gases have offered the
most favorable conditions for exploring universal aspects of
few-body physics. Due to the experimental ability to control
interatomic interactions using Feshbach resonances [1], the
universal few-body physics originated by Efimov [2,3] has
become observable and plays an important role in the stability
of ultracold quantum gases. Other classes of universal few-
body states have also emerged for a variety of unconventional
scenarios [3–6], expanding our knowledge of fundamental
aspects of few-body systems.

We can further expand our knowledge by considering
physics in lower dimensions. In particular, we will consider
three-body systems relevant for two-dimensional (2D) ultra-
cold gases. Originally, few-body studies in reduced dimensions
were motivated by the practical computational benefit. In
the case of 2D systems, however, this simplification actually
introduces qualitatively different physical properties for the
system starting at the two-body level [7,8] with a strong impact
on the physics of few-body systems [9–11].

Although the Efimov effect does not occur in 2D [9], a
system of three identical bosons interacting via short-range
forces has been shown to support universal states [12–20],
and a whole new set of few-body states have now emerged
[21–25] with the expectation that they will impact several
properties of 2D quantum gases. Experimentally, however,
it is only possible to create a quasi-2D system, and the
connection between such universal states and what can actually
be observed experimentally is yet to be determined. Although
such experimental conditions can lend themselves to novel
physics [26–30], the study of 2D few-body systems provides
important knowledge for understanding quasi-2D systems by
describing their limiting behavior and should, in part, control
the low-energy dependence of scattering observables, i.e., the
threshold laws [31–34].

In this paper, we describe the details necessary to implement
the adiabatic hyperspherical representation for the three-body
problem in 2D. This approach is general and is thus capable
of going beyond the usual zero-range model potential used in
most of the recent studies of few-body systems in 2D [19–28].
The adiabatic hyperspherical representation offers a simple

and conceptually clear description of scattering processes in
terms of effective three-body potentials. Here, we explore
various symmetry properties and derive boundary conditions
that are suitable for numerical calculations with general
interactions. Based on our analysis of the long-range behavior
of the three-body potentials, we also derive the threshold
laws for the three-body scattering observables for ultracold
experiments, namely, three-body recombination, collision-
induced dissociation, and inelastic atom-diatom collisions.

II. ADIABATIC HYPERSPHERICAL REPRESENTATION

Although different choices of hyperspherical coordinates
exist [35], the use of hyperspherical “democratic,” or Smith-
Whitten, coordinates have proven to be extremely useful
for three-atom systems in 3D [36–44]. With this coordinate
system, one can conveniently describe all fragmentation
channels as well as define the boundary conditions in a manner
that is extremely beneficial for numerical implementations.

The motion of three particles in a plane can be described
by nearly the same democratic coordinates used in 3D and
has been considered at some length by Johnson in Ref. [45].
This is possible since the first step in defining 3D democratic
coordinates is going to the body frame, which is always a plane
for three bodies. The main difference lies in the description
of the Euler angles: in 2D, we need only a single angle.
The reduction from three Euler angles in 3D to one in 2D
has consequences for the parity and permutation symmetry
operations (as we show in Appendix) that, in turn, change the
hyperangular boundary conditions from their 3D form.

The 2D democratic coordinates are defined by first trans-
forming the Jacobi vectors ( �ρ1, �ρ2) in the laboratory frame
(superscript L) to the body frame via rotation by the Euler
angle γ :(

ρL
2x ρL

1x

ρL
2y ρL

1y

)
=

(
cos γ − sin γ

sin γ cos γ

) (
ρ2x ρ1x

ρ2y ρ1y

)
. (1)

In 3D, Eq. (1) would have ρL
1z and ρL

2z along with two additional
Euler angles in the first matrix on the right-hand side to make
it a full 3D rotation matrix, but the body-frame coordinate
matrix would not change, i.e., ρ1z = ρ2z = 0 [41]. In the above
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equation, �ρL
1 and �ρL

2 are “mass-scaled” Jacobi vectors defined
in terms of the individual particle’s laboratory-frame positions
�ri and masses mi as

�ρL
1 = (�r2 − �r1)/d12, �ρL

2 = d12

(
�r3 − m1�r1 + m2�r2

m1 + m2

)
, (2)

with

μd2
ij = mk(mi + mj )

m1 + m2 + m3
and μ2 = m1m2m3

m1 + m2 + m3
, (3)

where the indices (i,j , k) are a cyclic permutation of (1,2,3)
and μ is the three-body reduced mass. Note that the choice of
μ is arbitrary, but the present choice ensures that the volume
element remains independent of mass [46].

The hyperangles are defined by the condition that the mo-
ment of inertia tensor is diagonal [45], which is accomplished
by the transformation(

ρ2x ρ1x

ρ2y ρ1y

)
= R

(
cos θ ′ 0

0 sin θ ′

)(
cos ϕ′ sin ϕ′

− sin ϕ′ cos ϕ′

)
.

(4)

Here, θ ′ = θ/2 − π/4 and ϕ′ = ϕ/2 + π/6, with θ and ϕ

being the democratic hyperangles describing the internal
motion of the particles, and

R = (
ρ2

1 + ρ2
2

)1/2
(5)

is the hyperradius giving the overall size of the system. The
hyperspherical coordinates are defined within the ranges

0 � R < ∞, 0 � θ � π,

0 � ϕ � 4π, 0 � γ � 2π.
(6)

Besides the single Euler angle, the main difference between
the 2D and 3D definitions of these coordinates is the range of
θ . In 3D, θ only takes on values between 0 and π

2 . The change
in going to 2D comes from the fact that there is no Euler angle
that can change the orientation of the body-frame z axis. In
3D, the orientation of the z axis is determined by �ρL

1 × �ρL
2

and is thus a dynamical quantity. In 2D, the z axis is fixed.
More precisely, the plane of the particles is fixed and thus
contains all configurations of the particles, i.e., both signs of
�ρL

1 × �ρL
2 . Consequently, the range of θ is doubled to correctly

reproduce all configurations of the particles. We will further
see in Appendix that θ is affected by permutations while it is
not in 3D [42–44].

With the definitions above, we can now introduce the
three-body Schrödinger equation in 2D for the rescaled total
wave function � → �/R3/2 (atomic units will be used unless
otherwise noted),[

− 1

2μ

∂2

∂R2
+ Had(R,	)

]
�(R,	) = E�(R,	), (7)

where E is the total energy and 	 ≡ {θ,ϕ,γ } denotes the set of
all hyperangles. In Eq. (7), the adiabatic Hamiltonian is given
by

Had(R,	) = 
2(	) + 3/4

2μR2
+ V (R,θ,ϕ), (8)

containing the grand angular momentum, i.e., the hyperangular
part of the kinetic energy,


2(	) = −4

(
1

sin θ

∂

∂θ
sin θ

∂

∂θ
+ 1

sin2 θ

∂2

∂ϕ2

)

− 1

sin2 θ

(
∂2

∂γ 2
− 4 cos θ

∂2

∂γ ∂ϕ

)
,

as well as all the interparticle interactions via V (R,θ,ϕ). The
grand angular momentum operator is essentially the same as
in 3D save for a few factors of 2 [41] and, of course, the Euler
angles.

Although it is not necessary, we typically assume the
interactions to be a pairwise sum of the form

V (R,θ,ϕ) = v(r12) + v(r23) + v(r31), (9)

where the interparticle distances rij are given in terms of the
hyperspherical coordinates by

r12 = 2−1/2d12R [1 + sin θ cos(ϕ + ϕ12)]1/2 ,

r23 = 2−1/2d23R [1 + sin θ cos(ϕ + ϕ23)]1/2 , (10)

r31 = 2−1/2d31R [1 + sin θ cos(ϕ + ϕ31)]1/2 .

The mass-dependent angles are ϕ12 = 2 tan−1(m3/μ), ϕ23 =
0, and ϕ31 = −2 tan−1(m2/μ). Nonadditive forces be can
easily introduced in Eq. (9) with effectively no cost to the
calculations [47].

It should be noted that the wave function must satisfy the
condition

�(R,θ,ϕ + 2π,γ + π ) = �(R,θ,ϕ,γ ) (11)

to ensure that the wave function is single valued.
In the adiabatic hyperspherical representation, the total

wave function is expanded in terms of the channel functions
�ν(R; 	),

�(R,	) =
∑

ν

Fν(R)�ν(R; 	), (12)

where Fν(R) are the hyperradial wave functions and ν

represents all quantum numbers necessary to specify each
channel. The channel functions �ν(R; 	) form a complete
set of orthonormal functions at each value of R and are
eigenfunctions of Had,

Had(R,	)�ν(R; 	) = Uν(R)�ν(R; 	). (13)

The eigenvalues Uν(R) are the three-body potentials from
which, as we will see next, one can define effective three-body
potentials for the hyperradial motion.

Substituting Eq. (12) into the Schrödinger equation
(7) and projecting out �ν ′ (the volume element in 2D
is dR sin θ dθ dϕ dγ /4 [45]), we obtain the hyperradial
Schrödinger equation[

− 1

2μ

d2

dR2
+ Wν(R)

]
Fν(R) − 1

2μ

∑
ν ′ �=ν

[
Pνν ′ (R)

d

dR

+ d

dR
Pνν ′ (R) + Qνν ′(R)

]
Fν ′(R) = EFν(R), (14)
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that describes the motion of the three-body system under the
influence of the effective potentials

Wν(R) = Uν(R) − Qνν(R)

2μ
. (15)

As we will see in Sec. V, including Qνν(R) in the definition
of the effective potential Wν(R) is crucial for obtaining
potentials with the correct behavior at large distances. In
the adiabatic hyperspherical representation, the nonadiabatic
coupling terms Pνν ′ (R) and Qνν ′ (R) (ν �= ν ′) drive inelastic
collisions and are defined as

Pνν ′ (R) =
〈〈
�ν

∣∣∣d�ν ′

dR

〉〉
(16)

and

Qνν ′ (R) =
〈〈d�ν

dR

∣∣∣d�ν ′

dR

〉〉
. (17)

The double brackets denote integration over the angular
coordinates 	 only. As it stands, Eq. (14) is exact. In practice,
of course, the sum over channels must be truncated and the
number of channels retained increased until one achieves the
desired accuracy.

III. SYMMETRIZED HYPERSPHERICAL HARMONICS

To quickly assess the symmetry properties and degeneracy
that are important for the large-R behavior where interactions
are negligible, we analyze the 2D noninteracting [V (R,θ,ϕ) =
0 in Eq. (8)] solutions, i.e., the hyperspherical harmonics.
The symmetrized hyperspherical harmonics derived here will,
of course, also satisfy the boundary conditions we derive in
Sec. IV. They thus serve as a confirmation of those findings.

One interesting property of the three-body problem in 2D,
unlike the 3D case, is that the hyperspherical harmonics can
be written in closed form


2Yλ
ωM (	) = λ(λ + 2)Yλ

ωM (	), (18)

with Y being defined in terms of the Wigner d-function as

Yλ
ωM (	) = 1

π

√
λ + 1

4
ei ω

2 ϕd
λ
2
ω
2

M
2

(θ )eiMγ . (19)

Here, λ is the hyperangular momentum quantum number, ω

is a quantum number labeling degenerate eigenstates, and M

is the total orbital angular momentum. Note that the condition
in Eq. (11) and the fact that −λ � {ω,M} � λ (from the
properties of the Wigner d-functions) imply that λ, ω, and
M must all be either even or odd integers. This condition is
satisfied if these quantum numbers, specifically λ/2, ω/2, and
M/2, obey the usual rules for angular momenta if ω and M

are regarded as projections of λ.
With this closed form for the hyperspherical harmon-

ics, we can explore the allowed quantum numbers for a
given permutation symmetry when the three-body system
has indistinguishable particles. The idea is to determine the
effects of the coordinate transformations due to parity �

and to permutations of particles i and j (Pij ) on these
analytic functions. This analysis is outlined in Appendix and

summarized here:

�Yλ
ωM (	) = (−1)MYλ

ωM (	), (20)

P12Y
λ
ωM (	) = (−1)

M+λ
2 e−iω π

3 Yλ
−ωM (	), (21)

P23Y
λ
ωM (	) = (−1)

M+λ
2 eiω π

3 Yλ
−ωM (	), (22)

P31Y
λ
ωM (	) = (−1)

M+λ
2 eiωπY λ

−ωM (	), (23)

P12P23Y
λ
ωM (	) = eiω 2π

3 Yλ
ωM (	), (24)

P12P31Y
λ
ωM (	) = e−iω 2π

3 Yλ
ωM (	). (25)

Note that the hyperradius is invariant under all the sym-
metry operations above. Note also that in the derivation of
Eqs. (20)–(25) the only nontrivial relation used was that the
d function in Eq. (19) has the following property: d�

mm′ (π −
θ ) = (−1)�+m′

d�
−mm′ (θ ). As one can see, the hyperspherical

harmonics are already parity eigenstates. Since M is the total
orbital angular momentum and is thus a good quantum number,
none of the permutation operators change M . The symmetrized
harmonics we will construct based on Eqs. (20)–(25) will thus
remain parity eigenstates. Note also that our derivation of the
symmetrized harmonics below assumes that the spin part of
the total wave function is symmetric under permutation. As
a result, we only need to impose permutation symmetry on
the spatial part of the wave function represented here by the
hyperspherical harmonics.

A. Three identical bosons

For three identical bosons (BBB), we are interested
in the completely symmetric hyperspherical harmonics. To
obtain these states, we apply the (un-normalized) symmetriza-
tion operator S = (1 + P12 + P23 + P31 + P12P23 + P12P31)
to the hyperspherical harmonics defined in Eq. (19) and use
Eqs. (20)–(25). Doing so, we find

SYλ
ωM (	) = [1 + (−1)Meiω π

3 + eiω 2π
3 ]

× [
Yλ

ωM (	) + (−1)
3M+λ

2 Yλ
−ωM (	)

]
. (26)

The prefactor here should not vanish. This condition deter-
mines, for a given value of M , the allowed values for λ and ω.
By inspection, we find that we must have

ω =
{

6n, M even

6n + 3, M odd.
(n = 0,1,2, . . .). (27)

Note that these conditions are essentially what we found for
the 3D case [41]. Now, we recall from Eq. (11) that λ, ω, and
M must all be even or odd. Equation (26) further tells us that if
3M+λ

2 is odd, then ω cannot be zero or the function will vanish.
But, ω can only be zero if M is even. So, we amend Eq. (27)
to

ω =
{

6n, (n �= 0 if 3M+λ
2 odd), M even

6n + 3, M odd.
(28)

Explicit examples for the allowed quantum numbers are given
in Table I for the lowest few values of M .
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TABLE I. Sample of allowed hyperspherical harmonic quantum
numbers for three identical bosons (BBB). We list the lowest few
values for both λ and M .

M = 0 |M| = 1 |M| = 2 |M| = 3

λ |ω| λ |ω| λ |ω| λ |ω|
0 0 3 3 2 0 3 3
4 0 5 3 6 0,6 5 3
6 6 7 3 8 6 7 3
8 0,6 9 3,9 10 0,6 9 3,9

B. Three identical fermions

For three identical fermions (FFF ), we are interested in the
completely antisymmetric hyperspherical harmonics. So, we
now apply the antisymmetrization operator A = (1 − P12 −
P23 − P31 + P12P23 + P12P31) to Eq. (19) and find

AYλ
ωM (	) = [1 + (−1)Meiω π

3 + eiω 2π
3 ]

× [
Yλ

ωM (	) − (−1)
3M+λ

2 Yλ
−ωM (	)

]
. (29)

Just as for the bosons, the prefactor here should not vanish, so
we must have

ω =
{

6n, M even

6n + 3, M odd.
(30)

These conditions are exactly the same as for bosons. The
difference due to antisymmetry stems from the fact that 3M+λ

2
must be odd when ω = 0 or the function will vanish (opposite
the case for bosons). But, ω can only be zero if M is even, so
λ/2 must be odd. So, we qualify Eq. (30) as

ω =
{

6n, (n �= 0 if 3M+λ
2 even), M even

6n + 3, M odd.
(31)

Explicit examples are given in Table II.

C. Two identical bosons

When there are only two identical bosons (BBX) and
they are labeled 1 and 3, we symmetrize the hyperspherical
harmonics by applying S = (1 + P31) to Eq. (19). In this case,
symmetrization for bosons requires

SYλ
ωM (	) = Yλ

ωM (	) + (−1)
3M+λ

2 Yλ
−ωM (	). (32)

There are thus no restrictions on ω except that ω �= 0 if 3M+λ
2

is odd. Some of the allowed λ and ω are given in Table III.

TABLE II. Same as Table I but for three identical fermions (FFF ).

M = 0 |M| = 1 |M| = 2 |M| = 3

λ |ω| λ |ω| λ |ω| λ |ω|
2 0 3 3 4 0 3 3
6 0,6 5 3 6 6 5 3
8 6 7 3 8 0,6 7 3
10 0,6 9 3,9 10 6 9 3,9

TABLE III. Same as Table I but for two identical bosons (BBX).

M = 0 |M| = 1 |M| = 2 |M| = 3

λ |ω| λ |ω| λ |ω| λ |ω|
0 0 1 1 2 0,2 3 1,3
2 2 3 1,3 4 2,4 5 1,3,5
4 0,2,4 5 1,3,5 6 0,2,4,6 7 1,3,5,7
6 2,4,6 7 1,3,5,7 8 2,4,6,8 9 1,3,5,7,9

D. Two identical fermions

To complete our analysis, we consider the case of two
identical fermions (FFX), i.e. applying A = (1 − P31) to
Eq. (19). For this case, we find

AYλ
ωM (	) = Yλ

ωM (	) − (−1)
3M+λ

2 Yλ
−ωM (	). (33)

Again, there are no restrictions on ω except that ω �= 0 if
3M+λ

2 is now even. Some of the allowed λ and ω are given in
Table IV.

IV. BOUNDARY CONDITIONS

While the symmetrized harmonics of Sec. III can be used
as a basis to expand �ν and solve Eq. (13), they are an
inefficient choice in practice. The difficulty with this basis
is due to the localization of �ν in the hyperangular plane
as R increases, requiring the number of basis functions to
grow. Specifically, a simple uncertainty argument shows that
their number must grow at least linearly with R in order
to describe the localized two-body channels. More flexible
methods such as b-splines or finite elements have proven
much more effective [41]. Symmetries must still be imposed,
however, and can actually improve these methods’ efficiency
by reducing the required integration domain. This reduction
is accomplished by imposing boundary conditions on the
smallest unique region the symmetry allows. For instance,
three identical particles permits a reduction of the integration
domain by 3! [41].

In this section, we will derive these boundary conditions.
Although the analysis in the previous section already gives the
information necessary for obtaining the boundary conditions,
we will take an alternative, independent approach here. The
results, of course, are equivalent. Note that since the hyper-
radius is invariant under symmetry operations in Eqs. (20)–
(25), symmetry-motivated boundary conditions need only be
imposed in the hyperangles.

For isotropic two-body interactions, such that M is a good
quantum number, the channel functions are separable in the

TABLE IV. Same as Table I but for two identical fermions (FFX).

M = 0 |M| = 1 |M| = 2 |M| = 3

λ |ω| λ |ω| λ |ω| λ |ω|
2 0,2 1 1 2 2 3 1,3
4 2,4 3 1,3 4 0,2,4 5 1,3,5
6 0,2,4,6 5 1,3,5 6 2,4,6 7 1,3,5,7
8 2,4,6,8 7 1,3,5,7 8 0,2,4,6,8 9 1,3,5,7,9
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Euler angle γ , with the corresponding solution normally
expressed by exp(iMγ ). As a result, �ν is an eigenstate of
Lz = i∂/∂γ . In this basis, however, the adiabatic Schrödinger
equation (13) is complex and the boundary conditions are
difficult to implement. As we will show in the following, a
change of basis to sin(Mγ ) and cos(Mγ ),

�(R; 	) = φs(R; θ,ϕ) sin Mγ + φc(R; θ,ϕ) cos Mγ,

(34)

transforms the adiabatic equation into a real system of
equations[

−4

(
1

sin θ

∂

∂θ
sin θ

∂

∂θ
+ 1

sin2 θ

∂2

∂ϕ2

)
+ M2

sin2 θ

](
φs

φc

)

+ 4
cos θ

sin2 θ
M

∂

∂ϕ

(−φc

φs

)
= 2μR2U (R)

(
φs

φc

)
, (35)

where each component φs and φc will have its own set
of boundary conditions, making this basis more convenient
computationally. This choice, of course, also implies that �ν

is an eigenstate of L2
z rather than of Lz.

A. Reflection symmetry

We start the present analysis by first noting that, besides the
symmetry operations in Eqs. (20)–(25) (see also Appendix),
Had is invariant under the operations

Rx : (θ,ϕ,γ ) → (π − θ,ϕ,2π − γ ), (36)

Ry : (θ,ϕ,γ ) → (π − θ,ϕ,π − γ ), (37)

where Rx and Ry are reflections along the body-frame x

and y axes, respectively, as can be verified by applying the
above transformations in Eq. (4). Since Had commutes with
Rx and Ry , they can share common eigenstates. Therefore, the
solutions of Had, i.e., the channel functions �ν in Eq. (13),
can be chosen to obey the boundary conditions resulting from
these reflections. We note, however, that since RxRy = � we
only need to specify the boundary conditions with respect
to one of the reflections, which we arbitrarily choose to be
Rx . We also note that the sin(Mγ ) and cos(Mγ ) functions
in Eq. (34) are eigenstates of Rx (Ry) with eigenvalues −1
(+1) and +1 (−1), respectively, while exp(iMγ ) is not.
Expressing �ν as in Eq. (34), we have thus chosen to construct
eigenstates of {Had,�,L2

z,Rx} instead of {Had,�,Lz}, purely
for our computational convenience. Three-body states are thus
labeled by |M|πr where r indicates the Rx symmetry as defined
below.

Now, in order to establish the boundary conditions due to
Rx , we recognize that the channel functions, irrespective of
the system’s permutation symmetry, can only be symmetric
or antisymmetric with respect to reflections. This allows us to
write

Rx�(R; 	) = (−1)r�(R; 	), (38)

where r = 0 for symmetric solutions and r = 1 for anti-
symmetric solutions. Moreover, since Rx [Eq. (36)] keeps ϕ

unchanged, the boundary conditions due to reflections will
only affect θ . Substituting Eq. (34) into Eq. (38) and projecting

out sin(Mγ ) and cos(Mγ ), we obtain

φs(R; π − θ,ϕ) = (−1)r+1φs(R; θ,ϕ), (39)

φc(R; π − θ,ϕ) = (−1)rφc(R; θ,ϕ) (40)

and

∂

∂θ
φs(R; π − θ,ϕ) = (−1)r

∂

∂θ
φs(R; θ,ϕ), (41)

∂

∂θ
φc(R; π − θ,ϕ) = (−1)r+1 ∂

∂θ
φc(R; θ,ϕ). (42)

Equations (39)–(42) imply that φs and φc are either even or
odd upon reflection through θ = π/2. We can thus extract
the following boundary conditions at θ = π/2. For symmetric
solutions (r = 0),

φs

(
R,

π

2
,ϕ

)
= 0 and

∂

∂θ
φc(R; θ,ϕ)

∣∣∣∣
θ= π

2

= 0. (43)

For antisymmetric solutions (r = 1), the boundary conditions
are:

∂

∂θ
φs(R; θ,ϕ)

∣∣∣∣
θ= π

2

= 0 and φc

(
R,

π

2
,ϕ

)
= 0. (44)

Since the volume element vanishes at θ = 0, no boundary
condition is required. The integration domain has thus been
reduced to 0 � θ � π/2, thereby reducing the numerical effort
by a factor of 2.

B. Permutation symmetry

The boundary conditions in ϕ originate from the permu-
tation symmetry, i.e., they will depend on the bosonic or
fermionic character of the three particles. As we will see,
however, the reflection symmetry [Eqs. (39) and (40)], as well
as the condition in Eq. (11), will also be used in deriving the
boundary conditions in ϕ.

Because we assume the atoms are in a spin-stretched state,
i.e., the spin part of the wave function is symmetric under
permutations, the bosonic or fermionic symmetry must be
satisfied by the spatial part of the wave function. In fact, the
boundary conditions for the channel functions are derived from
the requirement that they must have a well-defined permutation
symmetry, namely,

Pij�(R; 	) = (−1)s�(R; 	). (45)

In the above equation, s = 0 for a pair of identical bosons while
s = 1 for identical fermions. Two dissimilar particles require
no such condition. Otherwise, the derivation of the boundary
conditions in ϕ follows closely, in spirit, to the θ -boundary-
condition derivation in the previous section.

1. Three identical particles

Although there exists a total of five possible permutations
of three particles, i.e., P12, P23, P31, P12P23, and P12P31,
we only need to symmetrize with respect to two of them
(see Appendix). This simplification follows from the fact
that the S3 permutation group has only two generators so
that all permutations can be written as products of any two
permutations [48]. We will, therefore, choose P31 and P23 as
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generators and derive the boundary conditions based on these
operations.

Since we expect a 3! reduction in the integration do-
main, we will seek boundary conditions at ϕ = 0 and π/3
[Eq. (11) already reduced the range of ϕ from Eq. (6) to
0 � ϕ � 2π ]. So, substituting � from Eq. (34) into Eq. (45),
using P31(θ,ϕ,γ ) = (π − θ,2π − ϕ,γ ) from Eq. (A15), and
projecting out sin(Mγ ) and cos(Mγ ), we obtain at ϕ = 0

φs(R; θ,0) = (−1)r+s+M+1φs(R; θ,0), (46)

φc(R; θ,0) = (−1)r+s+Mφc(R; θ,0) (47)

and

∂

∂ϕ
φs(R; θ,ϕ)

∣∣∣∣
ϕ=0

= (−1)r+s+M ∂

∂ϕ
φs(R; θ,ϕ)

∣∣∣∣
ϕ=0

, (48)

∂

∂ϕ
φc(R; θ,ϕ)

∣∣∣∣
ϕ=0

= (−1)r+s+M+1 ∂

∂ϕ
φc(R; θ,ϕ)

∣∣∣∣
ϕ=0

. (49)

We note that to obtain Eqs. (46)–(49) we used Eqs. (39) and
(40) which introduced the dependence on r , as well as Eq. (11),
which introduced the dependence on M .

For ϕ = π/3, we similarly use Eqs. (A13) and (A14),
P23(θ,ϕ,γ ) = (π − θ,2π/3 − ϕ,γ ), to obtain the following
conditions,

φs

(
R; θ,

π

3

)
= (−1)r+s+1φs

(
R; θ,

π

3

)
, (50)

φc

(
R; θ,

π

3

)
= (−1)r+sφc

(
R; θ,

π

3

)
(51)

and

∂

∂ϕ
φs(R; θ,ϕ)

∣∣∣∣
ϕ= π

3

= (−1)r+s ∂

∂ϕ
φs(R; θ,ϕ)

∣∣∣∣
ϕ= π

3

, (52)

∂

∂ϕ
φc(R; θ,ϕ)

∣∣∣∣
ϕ= π

3

= (−1)r+s+1 ∂

∂ϕ
φc(R; θ,ϕ)

∣∣∣∣
ϕ= π

3

. (53)

Therefore, we need only integrate Eq. (13) from ϕ = 0 to π/3,
making the integration domain a factor of 6 smaller. Note that,
similar to the boundary conditions in θ , Eqs. (50)–(53) finally
only require φs and φc, or their derivative, to vanish and are
thus relatively simple to implement in practice.

2. Two identical particles

For systems with only two identical particles, the deter-
mination of the boundary conditions is simpler since the
channel function must be symmetrized for only a single
permutation. Here, we will assume that particles 1 and
3 are identical such that the relevant permutation is P31,
leading us to seek boundary conditions at ϕ = 0 and π .
Therefore, proceeding as in Sec. IVB1, substituting � into
(45), where P31(θ,ϕ,γ ) = (π − θ,2π − ϕ,γ ) from Eq. (A15),
and projecting out sin(Mγ ) and cos(Mγ ), we obtain at ϕ = 0

φs(R; θ,0) = (−1)r+s+M+1φs(R; θ,0), (54)

φc(R; θ,0) = (−1)r+s+Mφc(R; θ,0) (55)

TABLE V. Summary of the boundary conditions for bosonic
(BBB and BBX) and fermionic (FFF and FFX) systems. The
table indicates the relevant quantum number for permutation (s) and
reflection (r) symmetry. The boundary conditions at θ = 0, ϕ = 0,
and ϕ = π/3 (for BBB and FFF ) or π (for BBX and FFX) specify
whether the components φs and φc of �, or their derivative, vanishes
(∂θ = ∂/∂θ and ∂ϕ = ∂/∂ϕ).

BBB or BBX (s = 0)

r M θ = π/2 ϕ = 0 ϕ = π/3 or π

0 even {φs,∂θφc} = 0 {φs,∂ϕφc} = 0 {φs,∂ϕφc} = 0
odd {φs,∂θφc} = 0 {∂ϕφs,φc} = 0 {φs,∂ϕφc} = 0

1 even {∂θφs,φc} = 0 {∂ϕφs,φc} = 0 {∂ϕφs,φc} = 0
odd {∂θφs,φc} = 0 {φs,∂ϕφc} = 0 {∂ϕφs,φc} = 0

FFF or FFX (s = 1)
r M θ = π/2 ϕ = 0 ϕ = π/3 or π

0 even {φs,∂θφc} = 0 {∂ϕφs,φc} = 0 {∂ϕφs,φc} = 0
odd {φs,∂θφc} = 0 {φs,∂ϕφc} = 0 {∂ϕφs,φc} = 0

1 even {∂θφs,φc} = 0 {φs,∂ϕφc} = 0 {φs,∂ϕφc} = 0
odd {∂θφs,φc} = 0 {∂ϕφs,φc} = 0 {φs,∂ϕφc} = 0

and

∂

∂ϕ
φs(R; θ,ϕ)

∣∣∣∣
ϕ=0

= (−1)r+s+M ∂

∂ϕ
φs(R; θ,ϕ)

∣∣∣∣
ϕ=0

, (56)

∂

∂ϕ
φc(R; θ,ϕ)

∣∣∣∣
ϕ=0

= (−1)r+s+M+1 ∂

∂ϕ
φc(R; θ,ϕ)

∣∣∣∣
ϕ=0

. (57)

These boundary conditions are identical to Eqs. (46)–(49).
To obtain the other set of boundary conditions, we repeat

the process above without imposing the condition in Eq. (11).
This yields the following conditions at ϕ = π ,

φs(R; θ,π ) = (−1)r+s+1φs(R; θ,π ), (58)

φc(R; θ,π ) = (−1)r+sφc(R; θ,π ) (59)

and

∂

∂ϕ
φs(R; θ,ϕ)

∣∣∣∣
ϕ=π

= (−1)r+s ∂

∂ϕ
φs(R; θ,ϕ)

∣∣∣∣
ϕ=π

, (60)

∂

∂ϕ
φc(R; θ,ϕ)

∣∣∣∣
ϕ=π

= (−1)r+s+1 ∂

∂ϕ
φc(R; θ,ϕ)

∣∣∣∣
ϕ=π

. (61)

The boundary conditions above have the same form as
Eqs. (50)–(53) but are evaluated at ϕ = π instead of π/3.
Therefore, for systems with two identical particles we need
only to integrate Eq. (13) from ϕ = 0 to π , reducing the
integration domain by a factor of 2.

In Table V, we summarize all the boundary conditions
derived in this section for systems with three identical particles
(BBB and FFF ) as well as for systems with two identical
particles (BBX and FFX).

3. Three distinguishable particles

For three distinguishable particles, of course, no per-
mutational symmetry is required, resulting in no boundary
conditions in ϕ. The only boundary condition in ϕ is the one
provided by Eq. (11) for the one-to-one correspondence of the
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wave function in the body and laboratory frames. This results
in periodic boundary conditions for the channel functions, and
their derivative, given by

φs(R; θ,0) = (−1)Mφs(R; θ,2π ), (62)

φc(R; θ,0) = (−1)Mφc(R; θ,2π ), (63)

∂

∂ϕ
φs(R; θ,ϕ)

∣∣∣∣
ϕ=0

= (−1)M+1 ∂

∂ϕ
φs(R; θ,ϕ)

∣∣∣∣
ϕ=2π

, (64)

∂

∂ϕ
φc(R; θ,ϕ)

∣∣∣∣
ϕ=0

= (−1)M+1 ∂

∂ϕ
φc(R; θ,ϕ)

∣∣∣∣
ϕ=2π

. (65)

For this case, therefore, the only reduction in the integration
domain in Eq. (6) is provided by the reflection symmetry which
reduces the range in θ by a factor of 2.

V. STRUCTURE OF THE THREE-BODY
POTENTIALS IN 2D

One of the advantages of the adiabatic hyperspherical
representation is that besides producing numerically accurate
results, it also offers a simple and conceptually clear descrip-
tion of the system in terms of the three-body potentials Uν(R).
The three-body potentials are obtained by solving the adiabatic
equation (13) for fixed values of R. Once this step is completed,
one can solve the hyperradial Schrödinger equation (14) to
obtain the three-body bound and scattering states from which
any three-body observable can be computed.

A. Numerical details

For 2D three-body systems, we must thus solve the two
coupled partial differential equations in θ and ϕ (one for M =
0) in Eq. (35). The resulting differential equations are solved
by expanding φs and φc in Eq. (34) onto a direct product of

basis splines [49], in the same spirit as the 3D three-body
problem [41], with the boundary conditions shown in Table V.
Here, we used 50 basis splines for each direction in the θ -ϕ
hyperangular plane and obtained at least six digits of accuracy
for the potentials Uν for values of R up to 10r0. As usual,
we used a nonuniform grid distribution, concentrating more
points near the potential minima where the channel functions
change more drastically. The grid distribution and the number
of points depends on the behavior of the interaction potential.
The values quoted above are specific to our assumed form
[Eq. (66)] for the two-body potential. Its lack of a strong
repulsive core facilitates the numerical calculations without
impacting the universality of the results.

In what follows, we will present the results in units based
on the short-range length scale r0, i.e., length is in units of r0

and energy in units of 1/mr2
0 , where m is the mass of each

identical particle.

B. Results

To illustrate the structure of the 2D three-body potentials
and gain information about the collisional properties of the
system, we have calculated the three-body potentials Uν(R) for
three identical bosons and three identical fermions for various
values of |M|πr , with the results shown in Figs. 1 and 2. For
these calculations, we assumed the interatomic interaction to
be a pairwise sum of two-body interactions as shown in Eq. (9),
where the two-body interaction is given by the short-range
potential

v(r) = D sech2(r/r0). (66)

Here, D is the potential depth and r0 is the range of the
interaction. This potential is known as the Pöschl-Teller
potential [50]. The results in Figs. 1 and 2 were obtained for
D = −30/mr2

0 , such that v(r) supports three two-body bound
states with total angular momentum m2b = 0 (s wave), two
with |m2b| = 1 (p wave), one with |m2b| = 2 (d wave), and
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FIG. 1. (Color online) Three-body potentials for three identical bosons in 2D with (a) |M|πr = 0+
s (solid lines) and 0+

a (dashed lines),
(b) |M|πr = 1−

s and 1−
a , and (c) |M|πr = 2+

s and 2+
a (shaded region indicates the region in R in which particles can be found at distances smaller

than the range of the interaction r0). Note that for |M| �= 0, the potentials for the symmetric and antisymmetric three-body systems (with respect
to reflection) are exactly degenerate, while for |M| = 0 they are not. Note also that m2b = 0 states are forbidden for the 0+

a symmetry in (a).
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FIG. 2. (Color online) Three-body potentials for three identical fermions in 2D with (a) |M|πr = 0+
s (solid lines) and 0+

a (dashed lines), (b)
|M|πr = 1−

s and 1−
a , and (c) |M|πr = 2+

s and 2+
a (shaded region indicates the region R in which particles can be found at distances smaller than

r0). Note that, similar to identical bosons, the |M| �= 0 potentials for the symmetric and antisymmetric 2D three-body systems (with respect to
reflection) are exactly degenerate, while for |M| = 0 they are not.

one with |m2b| = 3 (f wave). Note that for identical bosons the
only states allowed by symmetry have m2b even while identical
fermions have m2b odd. Note that our choice for D was made
in order to produce nonresonant pairwise interactions.

Results for |M| = 0, 1, and 2 are given in Figs. 1 and
2 labeled by |M|πr , indicating the parity π = (−1)M as
well as the reflection symmetry r = s,a for symmetric and
antisymmetric states, respectively. For states with |M| �= 0,
the symmetric and antisymmetric solutions |M|πs and |M|πa
are exactly degenerate, which is equivalent to the degeneracy
of +M and −M . For |M| = 0 states [see Figs. 1(a) and
2(a)], however, the 0+

s and 0+
a states are nondegenerate and

possess distinct properties for both bound and scattering states.
Such differences, however, will become more clear below
once we discuss the asymptotic behavior (R � r0) of the
three-body potentials. At these distances, two configurations
for the three-body system are possible: three free particles
(three-body continuum channels) and a diatom plus a free
particle (atom-diatom channels).

C. Three-body continuum channels

As we saw in Sec. III, the motion of three free particles can
be described in terms of hyperspherical harmonics [see Eqs.
(18) and (19)]. Therefore, the leading-order behavior of the
continuum channels is

Wν(R) −→
R→∞

λ(λ + 2) + 3/4

2μR2
, (67)

with the allowed values for λ given in Tables I–IV in
Sec. III. Our numerical results show that Qνν falls faster
than 1/R2.

As mentioned above, |M|πs and |M|πa states with M �= 0
are degenerate. For 0+

s and 0+
a , however, the potentials are

not degenerate, and the results in Tables I–IV include both
symmetry states for M = 0. For instance, for three identical
bosons, the λ = 0 solution is symmetric with respect to

reflection and is therefore a state of 0+
s symmetry. The lowest

value of λ possible for M = 0 thus occurs for 0+
s , and we

will see that λmin largely determines the low-energy behavior
of scattering observables. For 0+

a , λmin = 8. The opposite
scenario holds for identical fermions where λmin = 2 for 0+

a

while λmin = 6 for 0+
s .

D. Atom-diatom channels

Asymptotically, Wν for atom-diatom channels approaches
the energy of the two-body bound states Ev,m2b , v being the
vibrational quantum number, with a leading 1/R2 behavior:

Wν(R) −→
R→∞

Ev,m2b + m2
AD − 1/4

2μR2
. (68)

Here, mAD is the relative angular momentum between atom
and diatom, satisfying M = m2b + mAD. For atom-diatom
channels, the −Qνν/2μ term is proportional to 1/R2, and
its inclusion is crucial in order to properly recover Wν

at large distances since it exactly cancels an attractive
term in Wν . [Note that in Figs. 1 and 2 we show the
numerical results for Uν but label them with the expres-
sion for the asymptotic behavior of Wν from Eqs. (67)
and (68).]

For channels with m2b �= 0, two atom-diatom potentials
converge to each threshold with mAD = M ∓ |m2b| corre-
sponding to the m2b = ±|m2b| states. For m2b = 0 states, of
course, only mAD = M is allowed. These properties can be
seen in the three-body potentials shown in Figs. 1(b) and 1(c)
and Figs. 2(b) and 2(c). These statements must be qualified
for the 0+

s and 0+
a curves in Figs. 1(a) and 2(a). Specifically, in

Fig. 1(a), two-boson states with m2b = 0 are not allowed for 0+
a

since no reflection-antisymmetric solution can be constructed
with m2b = 0. Further, for both bosons and fermions with
m2b �= 0, one of the two possible values of mAD is of 0+

s

symmetry, and the other is 0+
a .
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VI. THRESHOLD LAWS FOR INELASTIC
COLLISIONS IN 2D

In this section, we determine the threshold laws [31],
i.e., the low-energy dependence, of three-body scattering
observables in 2D that are relevant for ultracold atoms. We
have previously shown [31,34] that the energy dependence for
inelastic scattering observables can be obtained by a simple
WKB analysis and relies mostly on the asymptotic behavior of
the initial potential relevant for the collision process. In fact,
from Eqs. (67) and (68), we see that both atom-diatom and
continuum channels can be written in terms of the familiar 3D
centrifugal potential

Wν(R) −→
R→∞

�eff(�eff + 1)

2μR2
, (69)

with an effective angular momentum �eff that depends on either
λ or mAD. It is now straightforward to derive the threshold laws.

The energy dependence of scattering observables can be
determined [34] from the observation that inelastic transitions
occur at distances much smaller than the classical turning point
rc. In this case, the relevant transition probability |Tf ←i |2
is proportional to the probability for all three particles to
approach to such distances. We can thus approximate |Tf ←i |2
using the WKB approximation for the tunneling probability
from rc to distances comparable to r0,

|Tf ←i |2 ∝ exp

{
−2

∫ rc

r0

√
2μ

[
Wi(R) + 1/4

2μR2
− E

]
dR

}
.

(70)

In this expression, we have included the Langer correction
[51] and will use Eq. (69) for Wi(R). The turning point
is then rc = (�eff + 1

2 )/k with k2 = 2μE. Therefore, in the
WKB approximation, the energy dependence of the transition
probability can be derived from the above integral, leading to

|Tf ←i |2 ∝ (kr0)2�eff+1, (71)

with the value of �eff determined from the symmetry of the
system (through λ and mAD) as described in the previous
sections.

We emphasize that our treatment here and the threshold
laws in Eq. (71) assume that any corrections to Eq. (69)
are sufficiently short ranged compared to R−2. However,
when there exists a weakly bound m2b = 0 two-body state,
it is not known what form the threshold laws will take.
Equation (71) no longer applies since m2b = 0 two-body states
imply a large admixture of logarithm-containing terms in the
low-energy two-body scattering state [7,8]. These, in turn, lead
to logarithm-containing terms in Wν(R) [19,20] that are not
sufficiently short ranged compared to R−2. For nonresonant
interactions, however, our results should be valid. A more
detailed study of the resonant case will be the subject of future
analysis.

A. Atom-diatom collisions

In an ultracold mixture of atoms and molecules, the
collisional processes primarily responsible for the mixture’s

stability are rovibrational relaxation

XY (v,m2b) + Z → XY (v′,m′
2b) + Z,

and reactive scattering

XY (v,m2b) + Z → XZ(v′,m′
2b) + Y.

At ultracold temperatures, these reactions only occur if they
are exothermic since the collision energy is generally orders of
magnitude smaller than excitation energies. By the same token,
the excitation energy released in these collisions as relative
kinetic energy of the fragments is usually sufficient for the
fragments to escape the trapping potential, thus leading to loss
from the mixture. The energy dependence of both scattering
processes, however, is the same as it only depends on the
properties of the initial collision channel XY (v,m2b) + Z.

For atom-diatom collisions, the initial collision channel is
described at large distances by Eq. (68). Comparison with
Eq. (69) allows us to identify �eff = mAD − 1/2. From Eq.
(71) and the fact that the atom-diatom inelastic collision rate
is proportional to |T |2, we obtain

K
(M)
AD ∝ (kADr0)2|mAD|, (72)

where k2
AD = 2μAD(E − Ev,m2b ) and μAD is the atom-diatom

reduced mass. The above expression is valid for energies
smaller than the smallest energy scale in the system [52].
Therefore, if no other two-body state is more weakly bound
than the diatom state, Eq. (72) should be valid for k2

AD �
2μAD|Ev,m2b |.

Equation (72) states that the threshold law is determined
by the smallest value of |mAD| allowed. Although it is not
directly determined by identical particle symmetry, symmetry
does indirectly influence it via m2b in mAD = M ± |m2b|. As
we saw previously, for a given M and m2b = 0 (s wave) only
one value for mAD is allowed, mAD = M . For m2b �= 0 two
values for mAD are allowed. We are interested, however, only
on the lowest value for |mAD|, |mAD| = ||M| − |m2b|| since it
gives the dominant contribution to KAD as kAD → 0.

In Table VI, we summarize the threshold laws for the atom-
diatom inelastic rate for all combinations of identical bosons
and fermions for the lowest few values of |M|. Note that we use
the 3D notation for angular momentum, i.e., m2b = 0,1,2, . . .

are represented by s,p,d, . . . . Note also that for BBX systems,
even values of m2b can be attributed either to a BB or BX

molecule, while if m2b is odd it only can be attributed to a
BX diatom. On the other hand, for FFX systems, even m2b

can only be attributed to an FX diatom, while odd m2b can be
either an FF or FX diatom. Based on these results, we can
conclude that for any system the dominant partial wave (M)
contribution to KAD (see underlined results in Table VI) will
be |M| = |m2b| and that KAD is constant as kAD → 0, even for
identical fermions.

B. Three-body recombination

In ultracold atomic gases, three-body recombination

X + Y + Z → XY + Z (73)

is often the major atom-loss mechanism since the atomic states
are typically chosen to eliminate two-body collisional losses.
The atom and diatom produced have large kinetic energy and
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TABLE VI. Summary of the threshold laws for inelastic three-
body processes in 2D for the lowest few values of |M|πr . Results are for
atom-diatom inelastic rates (KAD), three-body recombination (K3),
and collision-induced dissociation (D3) for systems of three identical
bosons (BBB), three identical fermions (FFF ), two identical bosons
(BBX), and two identical fermions (FFX), for both symmetric-
and antisymmetric-reflection symmetries. The dominant partial wave
contribution (M) is underlined for each system.

|M|πr |m2b|(|mAD|) K
(M)
AD λmin K

(M)
3 D

(M)
3

BBB 0+
s s(0),d(2) k0

AD,k4
AD 0 k0 k2

0+
a d(2),g(4) k4

AD,k8
AD 8 k16 k18

1−
s/a s(1),d(1) k2

AD,k2
AD 3 k6 k8

2+
s/a s(2),d(0) k4

AD,k0
AD 2 k4 k6

BBX 0+
s s(0),p(1),d(2) k0

AD,k2
AD,k4

AD 0 k0 k2

0+
a p(1),d(2),f (3) k2

AD,k4
AD,k8

AD 4 k8 k10

1−
s/a s(1),p(0),d(1) k2

AD,k0
AD,k2

AD 1 k2 k4

2+
s/a s(2),p(1),d(0) k4

AD,k2
AD,k0

AD 2 k4 k6

FFF 0+
s p(1),f (3) k2

AD,k6
AD 6 k12 k14

0+
a p(1),f (3) k2

AD,k6
AD 2 k4 k6

1−
s/a p(0),f (2) k0

AD,k4
AD 3 k6 k8

2+
s/a p(1),f (1) k2

AD,k2
AD 4 k8 k10

FFX 0+
s s(0),p(1),d(2) k0

AD,k2
AD,k4

AD 2 k4 k6

0+
a p(1),d(2),f (3) k2

AD,k4
AD,k8

AD 2 k4 k6

1−
s/a s(1),p(0),d(1) k2

AD,k0
AD,k2

AD 1 k2 k4

2+
s/a s(2),p(1),d(0) k4

AD,k2
AD,k0

AD 2 k4 k6

are thus lost from the trap. In general, calculating three-body
recombination rates requires the infinity of initial continuum
channels [Eq. (67)], making the calculations extremely chal-
lenging. Fortunately, at ultracold collision energies, the lowest
continuum channel provides the dominant contribution. This
simplification allows us to apply the WKB approach above by
identifying �eff = λ + 1/2, leading to

K
(M)
3 ∝ k2λr2λ+2

0 (74)

for the three-body recombination rate K3 ∝ |T |2/k2, where
k2 = 2μE. This result is also expected to be valid for energies
much smaller than any other energy scale in the system [52].
Therefore, Eq. (74) shows that for a given M , the dominant
channel is determined by λ = λmin.

Table VI includes the three-body recombination threshold
laws for all combinations of identical particles. The dominant
partial wave contribution, i.e., the one that has the lowest value
for λmin, is underlined in Table VI. For instance, for bosonic
systems BBB and BBX, M = 0 is dominant with λmin = 0,
implying that K3 is constant for E → 0. For FFF systems,
the dominant contribution is still M = 0, but with λmin = 2
giving K3 ∝ k4. For FFX systems, M = 1 dominates with
λmin = 1 for K3 ∝ k2.

We note that for three identical bosons near an m2b = 0
resonance, Ref. [20] found K3 to vanish in the limit of
E → 0. The most likely explanation of this disagreement with
the present analysis is that the logarithmic terms in Wν(R)

mentioned above do indeed have a dramatic effect on the
threshold laws.

C. Collision-induced dissociation

The time reverse of three-body recombination, collision-
induced dissociation

XY + Z → X + Y + Z (75)

is only allowed if the collision energy is greater than the diatom
binding energy such that the dissociation channels (three-body
continuum channels) are energetically accessible. Therefore,
at ultracold temperatures only dissociation of weakly bound
molecules is possible. Because the collision-induced disso-
ciation rate D3 behaves as D3 ∝ (kr0)2λ+2(kADr0)2|mAD|, it is
the final three-body continuum channel that determines the
threshold law since kAD is finite at the breakup threshold where
k = 0. The threshold law thus simplifies to

D
(M)
3 ∝ (kr0)2λ+2. (76)

We note that the energy dependence for D3 differs from the
one for K3 by a factor k2 due to the difference in phase-space
factors from the reversed roles of the initial and final states.
The D3 threshold laws are also summarized in Table VI.

VII. SUMMARY

We have explored three-body systems in two dimensions
using the adiabatic hyperspherical representation. We de-
rived symmetry properties and boundary conditions for all
permutation symmetries, establishing an efficient numerical
approach for solving three-body problems in 2D. From explicit
numerical examples, we demonstrated the asymptotic behavior
of the three-body potentials and illustrated the topology of such
potentials. From this analysis, complemented by our symmetry
considerations, we were able to determine the threshold laws
for atom-diatom inelastic collisions, as well as three-body
recombination and collision-induced dissociation for various
partial waves and symmetries. These results can be used for
determining the expected collisional behavior and stability of
ultracold atomic and molecular gases in two dimensions. The
hyperspherical formalism we outline in this work is capable of
treating three-body systems in which the two-body interactions
can support deeply bound states as well as weakly bound states.
Thus, in contrast to the formalisms in which a zero-range
model potential is used, our approach is suitable for studying
more realistic systems where the finite range aspect of the
interatomic interactions plays an important rule.
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APPENDIX: EFFECTS OF SYMMETRY OPERATORS

To understand the effects of the symmetry operators, it is
simplest to draw pictures of the mass-weighted Jacobi vectors
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FIG. 3. Relation of the coordinate θ to the relative positions of
the Jacobi vectors in the body frame.

in the center-of-mass frame. It is also necessary to understand
the role of the coordinate θ . The essential point is illustrated
in Fig. 3 which shows that the value of θ indicates the relative
positions of the two Jacobi vectors.

The general scheme will then be to draw the Jacobi
vectors, then draw the vectors resulting from the symmetry
operation. The changes to the coordinates will be inferred
from comparing the figures.

Because we do not change the moments of inertia with these
symmetry operations, the body frame x and y axes can at most
be inverted since they are defined from the Jacobi vectors.
Consequently, γ can only be changed by 0 or π . It helps to
know the moments of inertia:

Ixx = R2 sin2

(
θ

2
− π

4

)
, (A1)

Iyy = R2 cos2

(
θ

2
− π

4

)
. (A2)

For the same reason, θ can only be changed to π − θ , if it is
changed at all. This fact has the convenient consequence that
we can pick a particular θ to work with and know that our
results work for all θ . Thus, we will pick θ = 0 (equilateral
triangle) so that �ρ1 is orthogonal to �ρ2. This choice also
produces a particularly simple form for the coordinates:

(
ρL

2x ρL
1x

ρL
2y ρL

1y

)
= R√

2

(
cos(γ + ϕ′) sin(γ + ϕ′)

sin(γ + ϕ′) − cos(γ + ϕ′)

)
(A3)

for θ = 0, and

(
ρL

2x ρL
1x

ρL
2y ρL

1y

)
= R√

2

(
cos(γ − ϕ′) − sin(γ − ϕ′)

sin(γ − ϕ′) cos(γ − ϕ′)

)
(A4)

for θ = π . Given the coordinates’ dependence on θ and ϕ

[see Eq. (4)], in what follows it is simpler to work with θ ′ =
( θ

2 − π
4 ) and ϕ′ = ( ϕ

2 + π
6 ). The coordinate ϕ′ just measures

the angle of �ρ2 from the x axis and takes on values between
π
6 and 7π

6 . Nevertheless, our results will finally be expressed
in terms of θ and ϕ. Note that we found we had to be careful
to split each operation up over two intervals in ϕ [45]. Not
too surprisingly, it turns out that even though the coordinates
are affected differently in the two intervals, the functions that
depend on them are not. This property allows us to obtain the
single expression for each operator shown in Eqs. (20)–(25),
valid over the whole range of ϕ.

FIG. 4. (Color online) Jacobi vectors before (black) and after
(red) the parity operation �.

1. Parity

The parity operation has the following effects on the mass-
scaled Jacobi vectors,

�( �ρ1, �ρ2) = (−�ρ1,−�ρ2). (A5)

This operation is illustrated in Fig. 4. Now, using Eq. (4) of
the main text, we find that the hyperspherical coordinates are
affected by parity operation as

�(θ,ϕ,γ ) = (θ,ϕ,π + γ ). (A6)

As a consequence, it is easy to determine that the hyperspher-
ical harmonics [Eq. (19)] are affected by parity as

�Yλ
ωM (	) = (−1)MYλ

ωM (	), (A7)

where 	 ≡ {θ,ϕ,γ }.

2. Permutation: P12

Choosing �ρ1 as the Jacobi vector connecting particles 1 and
2, P12 has the following effect,

P12( �ρ1, �ρ2) = (−�ρ1, �ρ2) (A8)

as illustrated in Fig. 5.
First, since the relative positions of �ρ1 and �ρ2 have changed

in the sense of Fig. 3, we know P12θ
′ = −θ ′ (P12θ = π − θ ).

As a consequence, P12ϕ
′ increases in the direction opposite

FIG. 5. (Color online) Jacobi vectors before (black) and after
(red) the P12 permutation operation.
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1

2

3
2

3

FIG. 6. (Color online) Jacobi vectors before (black) and after
(red) the P23 permutation operation.

to ϕ′, i.e., P12ϕ
′ increases clockwise while ϕ′ increases

counterclockwise [see Eqs. (A3) and (A4)]. Second, since
P12ϕ

′ has the same range as ϕ′, we must make sure that both
stay within this range. After some head scratching and careful
drawing, we find the following:

P12(θ ′,ϕ′,γ ) =
{

(−θ ′,π − ϕ′,π + γ ) for π
6 � ϕ′ � 5π

6 ,

(−θ ′,2π − ϕ′,γ ) for 5π
6 �ϕ′� 7π

6 .

(A9)

Note that both of these branches give the same value of γ − ϕ′
consistent with Eq. (A4). This will be true for all the Pij .
Converting to the original coordinates gives

P12(θ,ϕ,γ ) =
{(

π − θ, 4π
3 − ϕ,π + γ

)
for 0 � ϕ � 4π

3 ,(
π − θ, 10π

3 − ϕ,γ
)

for 4π
3 � ϕ � 2π.

(A10)

Now, from Eq. (19) and using d�
mm′ (π − θ ) =

(−1)�+m′
d�

−mm′ (θ ) and Eq. (11), one can show that the
effect of the permutation P12 on the hyperspherical harmonics
does not depend on the range in ϕ and is given by

P12Y
λ
ωM (	) = (−1)

M+λ
2 e−iω π

3 Yλ
−ωM (	). (A11)

3. Permutation: P23

For this operation, we could write out the explicit changes
in �ρ1 and �ρ2, but we believe it is easier to just draw the vectors
illustrating the effect of P23 as shown in Fig. 6.

We should now make a drawing like Fig. 5, but hopefully
the idea is getting clear. The key is to realize that since the
particles are in an equilateral configuration, the angle between
P23 �ρ1 and �ρ1 is π

3 . We similarly know all of the other relative
angles, and they are simple, which is why we chose to work

with θ = 0. We find

P23(θ ′,ϕ′,γ ) =
{( − θ ′, 2π

3 − ϕ′,γ
)

for π
6 � ϕ′ � π

2 ,( − θ ′, 5π
3 − ϕ′,π + γ

)
for π

2 � ϕ′ � 7π
6

(A12)

or

P23(θ,ϕ,γ ) =
{(

π − θ, 2π
3 − ϕ,γ

)
for 0 � ϕ � 2π

3 ,(
π − θ, 8π

3 − ϕ,π + γ
)

for 2π
3 � ϕ � 2π.

(A13)
Similar to P12, one can show that the effect of P23 does not
depend on the range in ϕ and is given by

P23Y
λ
ωM (	) = (−1)

M+λ
2 eiω π

3 Yλ
−ωM (	). (A14)

4. Permutations P31, P12 P23, and P12 P31

Making drawings like Figs. 5 and 6, it is possible to derive
the effect of the permutations P31, P12P23, and P12P31. Note
that these effects could be worked out from the P12 and P23,
but because of the different ranges for ϕ, this approach would
be complicated. We will forego more figures, however, and
simply state the results for the remaining permutations and
corresponding actions on the hyperspherical harmonics.

For P31 the result is particularly simple (the range of ϕ is
not split),

P31(θ,ϕ,γ ) = (π − θ,2π − ϕ,γ ), (A15)

which leads to

P31Y
λ
ωM (	) = (−1)

M+λ
2 eiωπY λ

−ωM (	). (A16)

For P12P31 and P12P23, we obtain

P12P31(θ,ϕ,γ ) =
{(

θ, 2π
3 + ϕ,π + γ

)
for 0 � ϕ � 4π

3 ,(
θ,− 4π

3 + ϕ,γ
)

for 4π
3 � ϕ � 2π

(A17)

and

P12P23(θ,ϕ,γ )

=
{(

θ, 4π
3 + ϕ,γ

)
for 0 � ϕ � 2π

3 ,(
θ,− 2π

3 + ϕ,π + γ
)

for 2π
3 � ϕ � 2π.

(A18)

These, therefore, lead to

P12P31Y
λ
ωM (	) = e−iω 2π

3 Yλ
ωM (	), (A19)

P12P23Y
λ
ωM (	) = eiω 2π

3 Yλ
ωM (	). (A20)
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