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Quantum-defect model of a reactive collision at finite temperature
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We consider a general problem of inelastic collision of particles interacting with power-law potentials. Using
quantum-defect theory we derive an analytical formula for the energy-dependent complex scattering length, valid
for arbitrary collision energy, and use it to analyze the elastic and reactive collision rates. Our theory is applicable
for both universal and nonuniversal collisions. The former corresponds to the unit reaction probability at short
range, while in the latter case the reaction probability is smaller than one. In the high-energy limit we present a
method that allows us to incorporate quantum corrections to the classical reaction rate due to the shape resonances
and the quantum tunneling.
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I. INTRODUCTION

It has been a long-standing quest in atomic and molecular
physics to prepare controllable systems in which inelastic
processes at ultralow energies could be studied [1]. Precise
control of the internal states and low temperature would
give insight into fundamental aspects of quantum physics
and chemistry. Much work on this subject has been done
using molecular beams [2–8], which finally has lead to recent
observation of scattering resonances in Penning ionization
using merged beams [6]. It also recently became possible to
produce ultracold KRb molecules in optical traps by using
Feshbach resonance and the STIRAP technique, high phase
space density [9–11]. A number of different experiments based
on this technique are now being performed with other species,
for now mainly consisting of alkali-metal atoms [12–15]. The
electronic, hyperfine, rotational, and vibrational state of the
produced molecules can be controlled with external fields, so
the dependence of chemical reaction rates on the internal state
can be analyzed experimentally. Calculations show that many
of those molecules can be highly reactive [16,17]. Another
possibility is to study reactions of cold atoms and ions [18–20].
Apart from studying the inelastic collisions, ultracold atoms,
ions, and molecules offer the opportunity to act as quantum
simulators of many-body effects or to implement quantum
information processing protocols [21–25].

In the ultracold limit the collision process crucially depends
on the quantum statistics, as the scattering of identical
fermions exhibits a p-wave centrifugal barrier, in contrast
to collisions of bosons or distinguishable particles. Quantum
effects such as tunneling through the centrifugal barrier play
an important role here. Predicting the collisional properties
of a complex molecular system is in general a difficult
task, in principle requiring precise calculations of potential
surfaces [1]. The number of channels and the density of states
in molecular collisions can be very high [26,27], making ab
initio calculations extremely hard. Therefore a need arises for
simple theoretical models able to explain experimental results
and make predictions on the collision rates.

One class of such models can be built using the formalism
of multichannel quantum-defect theory (MQDT) [28–42].
This treatment takes advantage of the fact that in many
cases the interparticle potential has a known, power-law form

(−Cn/rn) at long distances, while the inelastic processes take
place only when the particles are very close to each other.
The resulting separation of length and energy scales makes the
MQDT particularly powerful, allowing us to parametrize the
short-range physics by the quantum-defect matrix which can
be regarded as energy insensitive. If the loss channels are
known to have much lesser threshold energies than the entrance
channel, the number of parameters needed to describe the
scattering process becomes very low. Based on these ideas,
in our previous paper [43] we were able to understand the
reaction rates in Penning ionization of Ar by metastable He [6]
over several orders of magnitude in energy using just two
parameters.

In this paper, we provide an extensive description of the
results introduced in Refs. [39,43]. We consider particles
which can interact with arbitrary power-law potential −Cn/rn

(n > 3) at long range. Using a simple model in which the
reaction channel has low threshold energy, we derive analytical
formulas for the complex scattering length in the entrance
channel, from which the elastic and reactive rates can be ob-
tained. They can then be characterized using quantum-defect
functions, background scattering length and a single parameter
which describes the short-range reactivity of the pair of
particles. We extend the universal models in which the particles
react at short range with unit probability P re = 1 [39,40,44]
to the case when P re < 1. We analyze in detail the behavior
of the collision rates at high and low collision energies. Our
results give the correct threshold behavior [45,46] as well
as classical high-temperature limits [47,48]. We discuss the
role of tunneling and quantum reflection from the centrifugal
barrier and show the corrections to classical results. We then
focus on the van der Waals potential (n = 6), which describes
interactions of atoms or molecules without electric or magnetic
dipole moments, and describe predictions for the collision rates
and the role of shape resonances.

This paper is organized as follows. In Sec. II we briefly
review the MQDT formalism. In Sec. III we describe inelastic
collisions for isotropic power-law potential at long range using
the two-channel quantum-defect model. In Sec. IV we consider
the case when the exit channel is far below threshold and
derive general formulas for the complex scattering length and
collision rates using MQDT functions. Section V describes
the threshold limits for the rates, while Sec. VI focuses on the
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high energy limits. Finally, in Sec. VII we apply the theory to
systems with van der Waals interactions at long range, relating
our results to recent experiments. We discuss the results and
conclude in Sec. VIII.

II. QUANTUM-DEFECT FORMALISM

Our goal is to develop a simple model of a reactive
collision which will capture the essential physics. To this end
we introduce a multichannel scattering problem, where the
internal states are labeled by the index p and the channels by
the index i = {p�m}, where �,m are the angular momentum
quantum numbers, to shorten the notation. We assume that
the long-range interaction between the particles is described
by a power-law potential −Cn/rn (n > 3), with which the
characteristic length Rn = (2μCn/�

2)1/(n−2) and energy En =
�

2/(2μR2
n) can be associated (μ is the reduced mass). The

short-range forces, including the interchannel couplings which
are responsible for inelastic processes, are assumed to be
limited to the short range, acting at distances R0 � Rn. The
interaction matrix is then asymptotically diagonal:

Wpp′(r)
r→∞−→

(
E∞

p + �
2�(� + 1)

2μr2
− Cn

rn

)
δpp′ , (1)

where E∞
p are the threshold energies for each channel and � is

the angular momentum quantum number.
We analyze this problem using MQDT, following its formu-

lation by Mies [30,31,49]. In this treatment one first chooses a
reference potential Vp in each channel. With each potential one
can associate a pair of linearly independent solutions f̂ (r,E)
and ĝ(r,E) that have local WKB-like normalization at short
distances

f̂i(r,E) ∼= ki(r)−1/2 sin βi(r),

ĝi(r,E) ∼= ki(r)−1/2 cos βi(r),

⎫⎬
⎭ r � R0, (2)

where ki(r) = √
2μ(E − Ui(r))/� is the local wave vector,

Ui(r) = Vp(r) + �
2�(� + 1)/(2μr2), and βi(r) = ∫ r dx ki(x)

is the WKB phase. Another possibility is to use the inhomoge-
neous Milne equation for parametrization [49]. The total wave
function at short range can be written as

�(r,E) = A(E)[f̂(r,E) + Y(E,�)ĝ(r,E)]. (3)

Here, A(E) is the amplitude, f̂ij = f̂iδij , ĝij = ĝiδij are
diagonal matrices, and Y(E,�) is the so-called quantum-
defect matrix, a crucial object in this method. At long range
the solution of the problem can be expressed using energy

normalized functions

fi(r,E) ∼= sin(kr − �π/2 + ξi)/
√

k,

gi(r,E) ∼= cos(kr − �π/2 + ξi)/
√

k,

}
r → ∞, (4)

where ξi denotes the phase shift induced by the full potential
Ui . The short- and long-range solutions can then be matched
using the quantum-defect functions C(E,�) and tan λ(E,�):

fi(r,E) = C−1
i (E)f̂i(r)

gi(r,E) = Ci(E)(ĝi(r) + tan λi(E)f̂i(r)).
(5)

We notice that one can intuitively interpret C and tan λ

functions as a measure of deviation of the solution from WKB
one. As a result it is clear that for energies high above threshold
C(E) → 1 and tan λ → 0.

The solution of any scattering problem is given by the
scattering matrix S, from which one can calculate all the
relevant quantities [50]. In MQDT framework the S matrix
is given in terms of the R matrix [30]

S(E) = eiξ [1 + iR(E)][1 − iR(E)]−1eiξ , (6)

where

R(E) = C−1(E)(Y−1(E) − tan λ)−1C−1(E). (7)

Here ξ ij = ξiδij , Cij = Ciδij and tan λij = tan λiδij . The
pleasing aspect of this theory is that the Y(E) matrix remains
analytic in energy across the thresholds and can usually be
regarded as energy- and angular-momentum insensitive [35],
so that Y(E) ≈ Y and the matrix elements do not depend on
the partial wave. This results from the separation of length and
energy scales. As a result, all energy and angular momentum
dependence is encoded in C and tan λ functions.

III. COLLISION RATES IN TWO CHANNEL MODEL

The formalism introduced in the previous section was
general and suitable for any multichannel scattering problem.
Let us now restrict our attention to a two-channel problem,
where p = 1 is the entrance channel and p = 2 is the loss
channel; both channels are assumed to be open. It is possible
to include more channels in the analysis, but this simple case
already exhibits interesting features. By choosing the reference
potentials to accurately reproduce the scattering lengths in each
channel we ensure that Y contains only off-diagonal terms,
Y11 = Y22 = 0 and Y12 = Y21 = √

y. Under these assumptions
we can obtain an analytic formula for the S matrix using
formulas (6) and (7). The off-diagonal element S1,2, which
is of particular importance here as it describes the reaction
process, is given by

|S1,2|2 = 4yC−2
1 C−2

2

1 + 2y
(
C−2

1 C−2
2 − tan λ1 tan λ2

) + y2
(
C−2

1 + tan λ1
)(

C−2
2 + tan λ2

) . (8)

For y � 1 this reduces to

|S1,2|2 = 4yC−2
1 (E)C−2

2 (E). (9)

The scaling of the loss rate is thus given by the product of C−2

functions and the y parameter.

To better understand the meaning of y parameter, one can
define a short-range S matrix as Ssh = (1 − iY)(1 + iY)−1 in
analogy to Eq. (6), obtaining S11 = 1−y

1+y
and S12 = 2i

√
y

1+y
. This

defines the short-range reaction probability P re = |S12|2 =
4y/(1 + y)2. y is thus a parameter describing the short-range

042705-2



QUANTUM-DEFECT MODEL OF A REACTIVE COLLISION . . . PHYSICAL REVIEW A 90, 042705 (2014)

reactivity and fulfills 0 � y � 1. The same intuition can be
gained by using WKB to find the wave function at short range,
as discussed in Sec. VI C.

A convenient way to describe the scattering process is to
use energy-dependent complex scattering length, which can
be defined as [39,51]

ãp�m(E) = α̃p�m(E) − iβ̃p�m(E) = 1

ik

1 − Sp�m,p�m

1 + Sp�m,p�m

. (10)

The elastic and reactive rate constants for channel p are defined
as

Kel
p (E) =

∑
�,m

Kel
p�m(E) = g

h

2μk

∑
�,m

|1 − Sp�m,p�m(E)|2 ,

(11)

Kre
p (E) =

∑
�,m

Kre
p�m(E) = g

h

2μk

∑
�,m

(1 − |Sp�m,p�m(E)|2) .

(12)

Here, k2 = 2μE/�
2 with E denoting the total energy, and g is

a quantum statistical factor equal to 2 in the case of identical
bosons or fermions in the same internal states, for which only
even or odd �, respectively, can occur, or 1 in other cases.
Alternatively, using Eq. (10), we can write

Kel
p�m(E) = 2g

hk

μ
|ãp�m(k)|2fp�m(k) , (13)

Kre
p�m(E) = 2g

h

μ
β̃p�m(k)fp�m(k) , (14)

where

fp�m(k) = 1

1 + k2|ãp�m(k)|2 + 2kβ̃p�m(k)
. (15)

Parametrization using f function can be useful, as near

threshold we have f
k→0→ 1.

IV. FAR FROM THRESHOLD EXIT CHANNEL

We will now consider the case when the loss channel is
strongly open, which means that E∞

2 is large and negative
while we set E∞

1 to 0. In this case one can apply the high energy
limit for the MQDT functions in the loss channel C2(E,�) ≈ 1
and tan λ2(E,�) ≈ 0. The only remaining functions are C1

and tan λ1, so from now on we will drop the index 1 in the
notation and move the angular momentum dependence to the
argument of the functions. Using the analytical results for the
S matrix and the definitions from the previous section, we
obtain a general formula for the complex scattering length in
the entrance channel ã�m:

ã�m(E) = −1

k
tan

[
ξ (E,�) − tan−1

(
yC−2(E,�)

i + y tan λ(E,�)

)]
.

(16)

Substituting this into Eqs. (13) and (14), one can express the
elastic and reactive rate constants directly in terms of the
MQDT functions, obtaining

Kre
�m = g

h

2μk
P re C−2(E,�)(1 + y)2

(1 + yC−2(E,�))2 + y2 tan2 λ(E,�)
(17)

for the reactive rate constant and

Kel
�m = g

2h

μk

tan2 ξ (E,�) + y2( tan λ(E,�) tan ξ (E,�) − C−2(E,�))2

(1 + tan2 ξ (E,�))(y2 tan2 λ(E,�) + (1 + yC−2(E,�))2)
(18)

for the elastic rate constant. We note that in contrast to the
reactive rate, the elastic one depends explicitly on the phase
shift ξ (E,�) of the reference potential.

We notice that the properties of the loss channel do not
influence the loss rate as long as its threshold energy is far
below the threshold energy of the entrance channel, so that the
high energy limit can be applied. This observation motivates
replacing the problem with the effective single-channel model
with a complex potential [39], which gives the same results.
Apart from the MQDT functions which depend on the energy,
partial wave, and the long-range potential, the only remaining
parameters in our model are the coupling term y and the phase
shift ξ introduced by the full interaction potential. This phase
shift determines the background scattering length a, which we
will express in units of the mean scattering length ā, defined
as [52]

ā = π (n − 2)(n−4)/(n−2)

	2
(

1
n−2

) Rn. (19)

V. LOW ENERGY LIMITS

A. MQDT functions

We calculated analytically the threshold behavior of MQDT
functions directly from their definitions for arbitrary 1/rn

potential, extending the previous results derived for n =
6 [49] and n = 4 [53]. For s-wave scattering (� = 0) we
obtain

C−2(E,� = 0)
E→0−→ kā(1 + (s − ν)2), (20)

tan λ(E,� = 0)
E→0−→ ν − s, (21)

and by definition tan ξ → −kās, where s = a/ā and ν =
cot π

n−2 . Results for the p wave (� = 1), relevant for scattering
of ultracold fermions, read

C−2(E,� = 1)
E→0−→ k3V

(1 + (s − ν)2)(1 + ν2)

(s − 2ν)2
, (22)

tan λ(E,� = 1)
E→0−→ 1 + ν(s − ν)

s − 2ν
, (23)
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tan ξ (E,� = 1)
E→0−→ k3V

(1 + ν2)(1 − 2sν + ν2)

(s − 2ν)(1 − 3ν2)
, (24)

where we have defined the mean p-wave scattering volume

V = π

9

(n − 2)(n−8)/(n−2)

	2
(

3
n−2

) R3
n. (25)

We note that in the case of n = 4, in the p-wave case one
has to add the ∝ k2 term to the phase shift coming from the
long-range nature of the potential, as discussed in Ref. [54].
This term gives the leading order contribution and modifies
the threshold behavior of the elastic rate constant.

B. Elastic and reactive rate

Formulas derived in the previous section enable us to
calculate the low energy limits of the reactive and elastic
rate constants using Eqs. (17) and (18) and some algebraic
transformations. For the reactive rate constant we obtain

Kre
00

E→0−→ 2g
h

μ
āy

1 + (s − ν)2

1 + y2(s − ν)2
, (26)

Kre
1m

E→0−→ 2g
h

μ
k2V y

1 + ν2

ν2

1 + (s − ν)2

y2(s − ν + ν−1)2 + (sν−1 − 2)2
,

(27)

while for the elastic one

Kel
00

E→0−→ 2g
h

μ
kā2 s2 + y2(1 + ν2 − sν)2

1 + y2(s − ν)2
, (28)

Kel
1m

E→0−→ 2g
h

μ
k5V

2
(

1 + ν2

1 − 3ν2

)2

× (1 − 2sν + ν2)2 + y2(s + ν − sν2 + ν3)2

(s − 2ν)2 + y2(1 + (s − ν)ν)2
. (29)

We note that in the universal regime (y = 1) all the above
formulas reduce to the form which is independent of the s

parameter

Kre
00 → 2g

h

μ
ā, Kre

1m → 2g
h

μ
k2V (30)

Kel
00 → g

h

2μ
(1 + ν2)kā2, Kel

1m → g
h

2μ

(1 + ν2)3

(1 − 3ν2)2
k5V

2
.

(31)

Due to the correction coming from the ∝ k2 term in the phase
shift mentioned above, for n = 4 the leading term in the p-
wave elastic rate is proportional to k3 instead.

VI. HIGH ENERGY LIMITS

A. Reactive rate

At high energies we first derive an approximate expression
corresponding to the classical limit of the scattering. We
assume C−2(E,�) = 1 and tan λ(E,�) = 0 for partial waves
at which the collision takes place above the barrier, while
for collisions below the barrier we take C−2(E,�) = 0. This
neglects the effects of the quantum tunneling and of the

quantum reflection. In this approximation we obtain

Kre E→∞−→ h

2μ
P re�max(E)[1 + �max(E)], (32)

where �max(E) is the maximal angular momentum at which
the top of the barrier is equal to the collision energy E. For a
power-law potential V (r) = −Cn/rn this leads to

Kre E→∞−→ h

2μk
P re n

2

(
E/En

n
2 − 1

)(n−2)/n

. (33)

In particular we notice that for van der Waals interaction the
reactive rate constant behaves as E1/6, while for polarization
potential (n = 4) it remains constant at high energy. This can
be reproduced by solving the classical problem of scattering
on −Cn/rn potential, assuming that all trajectories that fall on
the collision center contribute to the total reaction cross-section
σ re with the probability of reaction P re [47]. Then,Kre = σ rev,
with v = �k/μ denoting the mean relative velocity in the gas.
We will call this classical result for the reaction rate constant
KL. For a general review of high temperature transition state
theories, we refer the reader to Ref. [55].

B. Elastic rate

In the case of the elastic rate constant the situation is not
as straightforward, as each partial wave contributes to the
elastic cross section. Inspired by the approach of Cote and
Dalgarno [56], we derived an approximate expression for the
elastic rate constant in the limit of high collision energy. In
this approach we consider separately two contributions

Kel = Kel,(1) + Kel,(2), (34)

where Kel,(1) and Kel,(2) denote reactive rate from collisions
well below the barrier and collisions close or above the
centrifugal barrier, respectively. Some characteristic angular
momentum �t separating the two regions can be defined such
that

sin ξ (E,�t) = 1
2 . (35)

Since this value can be chosen with some flexibility, we
decided to pick the value which gives good agreement with
numerical calculations. For collisions with angular momenta
larger than �t, we assume that tunneling is not important,
thus we neglect the effects of the shape resonances. In this
approximation we can set y = 0 in the formula (18), obtaining

Kel,(1) = 2h

μk

∑
�>�t

(2� + 1) sin2 ξ (E,�). (36)

When the collision happens with the energy well below the
top of the barrier, one can evaluate the phase shift ξ (E,�),
using an approximate expression derived in the semiclassical
approximation [57]

ξ (E,�) ≈ − μ

�2

∫ ∞

r0

dr
V (r)√

k2 − (
� + 1

2

)2
/r2

. (37)

This formula describes the contribution from the long-range
part of the potential V (r), where r0 describes the classical
turning point at large distances. In this way for the 1/rn
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potential we obtain

Kel,(1) = π2h

8μk

(
Rnk

2�t + 1

)2n−4
	(n − 1)2

(n − 2)	4(n/2)
. (38)

In the second regime relevant for collisions close to the
top of the barrier or above the barrier we can assume the
high-energy limit for MQDT functions, setting C(E,l) ≈ 1
and tan λ(E,l) ≈ 0. In principle this approximation works well
only for collisions with energies well above the centrifugal
barrier. Nevertheless, we make only a small error making a
similar approximation for a few partial waves from the region
of energies close to the top of the barrier. This yields

Kel,(2) = 2h

μk

∑
�<�t

(2� + 1)
tan2 ξ (E,�) + y2

(1 + tan2 ξ (E,�))(1 + y)2
. (39)

In the considered range of angular momenta the phase shifts
ξ (E,�) vary strongly with the angular momentum. Taking this
into account, we can treat ξ (E,�) as a random variable in this
regime, and we can perform an average assuming uniformly
distributed phase shifts

1

π

∫ π

0
dξ

tan2 ξ + y2

(1 + tan2 ξ )(1 + y)2
= 1 + y2

2(1 + y)2
. (40)

Substituting this into Eq. (39) we get

Kel,(2) = 2h

μk

1 + y2

2(1 + y)2

(
�t + 1

2

)2

. (41)

In order to calculate �t we can use the semiclassical
expression (37) again, substituting it into Eq. (35), which gives

2�t + 1 =
(

3	(n − 1)

	2(n/2)

)1/(n−1) (
E

En

)(n−2)/(2n−2)

. (42)

This finally yields the result for the total elastic rate constant

Kel ≈ hRn

μ

(
π2

32(n − 2)
+ 1 + y2

4(1 + y)2

)

×
(

3	(n − 1)

	2(n/2)

) 2
n−1

(
E

En

) n−3
2n−2

. (43)

C. Approximate treatment including shape resonances

The high energy approximations from the previous section
do not take into account the presence of shape resonances. If
the collision energy is close to the energy of a quasibound state
behind the centrifugal barrier, the rates may be significantly
modified. At high temperatures the total effect of many
shape resonances in different partial waves should result in
some average additional contribution. In this section, we
derive a simple model which incorporates this effect. To this
end we approximate the centrifugal barrier by an inverted
parabolic potential V (x) = − 1

2kx2, with k > 0. For such a
potential one can find an analytic solution, which is given in
terms of parabolic cylinder functions. Considering asymptotic
expansions of these solutions at large distances one can show
that they have a WKB-like form. We perform the expansion of
fully analytical solution far away from the barrier and identify
the parts propagating to the left and to the right. After that we

calculate the S matrix with the following boundary conditions

�(x)
x→−∞−→ A−

(
exp

[
−i

∫ x

−∞
|k(x ′)|dx ′ − iϕ

]

− 1 − y

1 + y
exp

[
i

∫ x

−∞
|k(x ′)|dx ′ + iϕ

])
(44)

at large distances to the left of the barrier, and

�(x)
x→∞−→ A+

(
exp

[
−i

∫ ∞

x

k(x ′)dx ′
]

− S exp

[
i

∫ ∞

x

k(x ′)dx ′
])

(45)

at large distances to the right of the barrier. Here y is as before
the parameter describing the reactivity of the system [39], ϕ is
some arbitrary phase, S denotes the S matrix, A− and A+ are
normalization coefficients, and k(x ′) is the local wave vector.
Using the exact solution we calculate the S matrix, and the
reaction probability P = 1 − |S|2. As in this section we are
interested only in the behavior of thermally-averaged reaction
rates at high temperatures, where the phase shifts vary rapidly
with collision energy, we may perform an averaging over the
short-range phase. In this way we incorporate the effect of the
shape resonances on the reaction rates in an average sense.
Calculating reaction probability through the parabolic barrier
and performing an average over uniformly distributed values
of ϕ, we obtain a result valid for arbitrary short-range reaction
probability

P (�,y) = 1 − |S�|2 = P re

P ree−2πε + 1
. (46)

Here, ε = E/�
√

μ/k denotes dimensionless energy measured
with respect to the peak of the parabola. In the universal regime
y = 1 one can recover the WKB solution derived in Ref. [58].
We can fit analytically the parabolic potential to the centrifugal
barrier for arbitrary power-law potential, by equating the first
and the second derivative in the maximum of the barrier.
Then we change the zero of energy to the asymptotic zero
of the physical potential. In the following we will work in
dimensionless units defined by Rn and En.

Applying Eq. (46) with the energy

ε(�,E) = (n/2)(2/(n−2)) 1√
2n − 4

E(l(l + 1))−
n+2

2n−4

−
√

n

2
− 1

√
l(l + 1)

n
(47)

obtained by fitting the parabolic potential to the centrifugal
barrier for V (r) = −1/rn and integrating over angular mo-
menta � we get

Kre E→∞−→ g
h

2μk

∫ ∞

0
d�(2� + 1)P (�,y)

= g
h

2μk

∫ ∞

0
d�(2� + 1)

P re

P reeε(�,E) + 1
. (48)

The reaction probability P (�,y) as a function of the continuous
variable �(� + 1) is shown in Fig. 1, while the contribution
of several partial waves within this model is shown in
Fig. 2. The figure compares the reaction probability calculated
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FIG. 1. (Color online) Reaction probability calculated for a
parabolic potential fitted to the actual centrifugal barrier of the van
der Waals potential versus the angular momentum squared �(� + 1)
(red solid dashed and green dashed lines). The result is independent
of the short-range parameter s, and is averaged over the short-range
phase. Langevin approximation depicted by black solid lines assumes
constant reaction probability P re above the barrier, and no reaction
below the barrier.

from the parabolic potential approximation with the classical
approach assuming that only collisions with energies above
the barrier contribute to the reaction rate. The latter exhibits
a steplike behavior, while the former is reminiscent of a
Fermi distribution. The classical description does not include
the contribution from the shape resonances and at the same
time overestimates the reaction rate in the regime affected
by the quantum reflection. In the universal regime y = 1
both contributions are almost equal, and in this particular
case the Langevin approximation works relatively well. In
contrast, for y < 1 the contribution from the shape resonances
is typically larger than the modification due to the quantum
reflection above the barrier. In such cases the two effects do
not cancel and the Langevin theory underestimates the reaction
probability.

Analyzing Fig. 1 one can develop relatively a simple
approximation, allowing one to calculate the integral in
Eq. (48). It is based on the observation that the reaction
probability P is almost symmetric with respect to the point
where P = 1

2P re, similarly to the Fermi distribution. The
integral corresponding to the area below the distribution can
be calculated by approximating it by a rectangle

K re ≈ g
π�

μk
P re�∗(�∗ + 1), (49)

where �∗ is the angular momentum corresponding to the point
where P = 1

2P re

P = P re

P ree2πε(�∗,E) + 1
= P re

2
. (50)

In the universal case y = 1 the above equation yields ε = 0,
and in this particular case we recover the classical approxima-
tion.

In order to verify whether the contribution of quantum
corrections due to shape resonances and quantum reflection
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FIG. 2. (Color online) Contribution of few partial waves to reac-
tion rates for the universal (y = 1, top) and nonuniversal case (y =
0.1, bottom) within the parabolic approximation for the centrifugal
barrier averaged over the short-range phase. Horizontal black line
represents P re.

is still important at high energies, Fig. 3 depicts the quantum
corrections for energies up to 106 En for the two physically
most important power law potentials. We also study the
dependence of the quantum corrections on the power n of
the potential, for fixed energy and fixed reaction amplitude y.
They are shown in Figs. 4 and 5. Typical energy scales for
several systems are shown by Table I.

VII. RESULTS FOR VAN DER WAALS POTENTIAL

In addition to analytical low- and high-energy limits, within
our model it is possible to obtain the reactive and elastic rate
constants at any collision energy. This can be done either
by finding the MQDT functions analytically (for example, in
terms of Z functions for van der Waals potential developed by
Gao [59]) and using formulas (17) and (18), or by numerical
treatment. In the latter case we perform scattering calculations,
propagating the wave function using Numerov algorithm and
extracting the phase shift. The key point here is to set proper
boundary conditions at short range, given by Eq. (3). A possible
way to do it is to use solutions of 1/rn potential at zero energy
(at short range the kinetic energy is negligible compared to the
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FIG. 3. (Color online) Quantum corrections to the classical reac-
tion rates due to the contribution of the shape resonances. Presented
results are averaged over the short-range phase, as its value becomes
unimportant at large energies.

well depth), combined to reproduce the zero energy limit of
the scattering length (16).

At finite energies the reactive rate constant can be greatly
enhanced by shape resonances, which are due to the presence
of quasibound states behind the barrier. In particular, analytic
theory [59,60] predicts a p-wave resonance for s = 2 and
a d-wave resonance for s = 1. This is confirmed by the
low energy behavior of MQDT functions for those partial
waves. The impact of the resonances for near-resonant values
of s is presented in Fig. 6. We note that the resonances
are more important for low values of y, where the par-
ticles need more time behind the centrifugal barrier for
chemical reaction, so forming a quasibound state greatly
enhances the reaction rate. At high energies many partial
waves contribute to the reaction rate and we observe quite
a dense structure of peaks. However, after averaging the
reaction rate with respect to thermal distribution 〈K re〉th(T ) =
2/

√
π (kBT )(3/2)

∫
dE

√
Ee−E/kBT K re(E) the resonances are
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FIG. 4. (Color online) Relative corrections of reaction rates given
by the quantum analytical model with respect to the classical ap-
proach, calculated for different interaction potentials 1/rn, energies,
and amplitudes of reactions y.
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FIG. 5. (Color online) Relative corrections of reaction rates given
by the quantum analytical model with respect to the standard
Langevin approach, calculated for different interaction potentials
1/rn and energies for y = 0.01.
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TABLE I. Typical energy scales for several systems interacting
with atom-ion (n = 4) or van der Waals (n = 6) potential at long
range.

System Power n En [μK]

174Yb+ + 87Rb 4 0.022
174Yb+ + 7Li 4 3.2
He∗ + Ar 6 14000
KRb + KRb 6 22.35
LiCs + LiCs 6 1.32

washed out but on average add an extra contribution to the reac-
tion rate, making it larger than classical approximation (33), as
can be seen in Fig. 7. At energies above ∼100E6 the parabolic
approximation starts to agree well with the numerical results,
giving a good estimate of this contribution.

The elastic rate is particularly important for experiments
which aim to use the evaporative cooling technique [61].
Reaching thermal equilibrium is possible only if the elastic
collisions are more frequent than chemical reactions. Formu-
las (33) and (43) predict that at high energies the elastic rate
behaves like E3/10, while the reactive one behaves like E1/6,
so elastic collisions should dominate for hot gases, but not
necessarily in the evaporative cooling regime. Figure 8 shows
the elastic rate for some exemplary cases. The high energy
approximation (43) agrees with exact calculations at energies
above ∼100E6.

VIII. CONCLUSIONS

We introduced a simple model of a reactive collision based
on the formalism of quantum-defect theory. We represented the
inelastic processes by a single, strongly open collision channel.
Our model can be applied to all systems for which the long-
range interaction behaves like 1/rn and describes the collision
by two parameters: y, connected with short-range probability
of reaction, and s, describing the phase shift. We obtained

10-3 10-2 10-1 100 101 102 103

0.01

0.1

1

y=1
y=0.1 s=2.1
y=0.1 s=1.1
y=0.01 s=2.1
y=0.01 s=1.1

K
re
/(2
ha
/μ
)

E/E
6

FIG. 6. (Color online) Reactive rate vs collision energy for dis-
tinguishable particles with van der Waals interaction at different
reaction amplitudes y. The s values are chosen to be close to p-wave
and d-wave shape resonances. The dashed lines show classical
approximation (33).
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FIG. 7. (Color online) Same as in Fig. 6, but averaged over
thermal distribution. The shape resonances can still be seen, especially
for low reactivity. The dot-dashed lines show the results obtained
using parabolic approximation (48).

analytical formulas for the low energy limits of elastic and
reactive rates in terms of those parameters. We also discussed
the behavior of the rates at finite temperatures and derived their
high energy limits. Our theory takes into account the effect
of shape resonances, which may increase the reaction rate
above the universal values and explains the observed scattering
resonances in collisions of argon with metastable helium [43].

For realistic systems one can expect more terms in the
interaction potential, such as C8/r8 and higher order ones,
small exchange terms ∝ r−3 and others. In many cases
they have negligible contribution at distances ∼Rn and thus
can be incorporated in the short-range boundary conditions,
affecting only the s parameter. They can, however, influence
the dynamics especially at energies much smaller or much
larger than En. In this case, numerical treatment using MQDT
boundary conditions is still possible (see, e.g., Ref. [7]).
We expect that using only a single van der Waals term
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FIG. 8. (Color online) Thermally averaged elastic rates for the
same parameters as in Figs. 6 and 7. The dashed lines show the
approximate high energy result given by Eq. (43). The dotted lines
show the low-energy s-wave limit. Small discrepancy is due to
thermal averaging and p-wave contribution.
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in the potential and constant y,s parameters should work
better for heavier systems. In general, the y,s parameters can
fluctuate with energy and partial wave; especially s, which is
connected with the phase shift, can change. Another possible
numerical approach, also taking advantage of the short-range
nature of interchannel couplings and using MQDT to obtain
scattering properties from short-range K matrix, is presented
in Ref. [62].

We also did not consider here the effect of multiple closed
channels, which introduce additional resonance effects. In
fact the density of closed channel states may be very high
and in some physical systems one should expect multiple
overlapping resonances [26], which our simple model cannot
reproduce. In this case the particles form a collision complex
with large phase space and effectively “stick” to each other for
long times. Interestingly, in the highly resonant regime it is
reasonable to make statistical assumptions about the strength
of the interchannel couplings basing on Gaussian Orthogonal
Ensemble. Within this model the collision complex, once
created, ergodically explores the available phase space. In the
limit of many possible exit channels, this brings the reaction

rate back to the universal limit [27], as it is impossible to come
back to the entrance channel and thus there is no outgoing flux
from the short range. It is also possible that the underlying
physics is in fact controlled by a few dominating resonances,
while most of the other ones have negligible impact on the
collision process (for example, in the collision of two cesium
atoms most of the high partial wave resonances are extremely
narrow [63], so they would not contribute much to the collision
rates). Exploring this situation will be the subject of our future
research.
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F. Ferlaino, R. Grimm, P. S. Julienne, and J. M. Hutson, Phys.
Rev. A 87, 032517 (2013).

042705-10

http://dx.doi.org/10.1103/PhysRevA.64.010701
http://dx.doi.org/10.1103/PhysRevA.64.010701
http://dx.doi.org/10.1103/PhysRevA.64.010701
http://dx.doi.org/10.1103/PhysRevA.64.010701
http://dx.doi.org/10.1103/PhysRevA.72.042719
http://dx.doi.org/10.1103/PhysRevA.72.042719
http://dx.doi.org/10.1103/PhysRevA.72.042719
http://dx.doi.org/10.1103/PhysRevA.72.042719
http://dx.doi.org/10.1103/PhysRevA.78.012702
http://dx.doi.org/10.1103/PhysRevA.78.012702
http://dx.doi.org/10.1103/PhysRevA.78.012702
http://dx.doi.org/10.1103/PhysRevA.78.012702
http://dx.doi.org/10.1103/PhysRevA.79.010702
http://dx.doi.org/10.1103/PhysRevA.79.010702
http://dx.doi.org/10.1103/PhysRevA.79.010702
http://dx.doi.org/10.1103/PhysRevA.79.010702
http://dx.doi.org/10.1103/PhysRevLett.104.113202
http://dx.doi.org/10.1103/PhysRevLett.104.113202
http://dx.doi.org/10.1103/PhysRevLett.104.113202
http://dx.doi.org/10.1103/PhysRevLett.104.113202
http://dx.doi.org/10.1103/PhysRevA.83.062712
http://dx.doi.org/10.1103/PhysRevA.83.062712
http://dx.doi.org/10.1103/PhysRevA.83.062712
http://dx.doi.org/10.1103/PhysRevA.83.062712
http://dx.doi.org/10.1103/PhysRevA.87.032706
http://dx.doi.org/10.1103/PhysRevA.87.032706
http://dx.doi.org/10.1103/PhysRevA.87.032706
http://dx.doi.org/10.1103/PhysRevA.87.032706
http://dx.doi.org/10.1103/PhysRevA.88.022701
http://dx.doi.org/10.1103/PhysRevA.88.022701
http://dx.doi.org/10.1103/PhysRevA.88.022701
http://dx.doi.org/10.1103/PhysRevA.88.022701
http://dx.doi.org/10.1103/PhysRevLett.110.213202
http://dx.doi.org/10.1103/PhysRevLett.110.213202
http://dx.doi.org/10.1103/PhysRevLett.110.213202
http://dx.doi.org/10.1103/PhysRevLett.110.213202
http://dx.doi.org/10.1103/PhysRevLett.105.263203
http://dx.doi.org/10.1103/PhysRevLett.105.263203
http://dx.doi.org/10.1103/PhysRevLett.105.263203
http://dx.doi.org/10.1103/PhysRevLett.105.263203
http://dx.doi.org/10.1103/PhysRevA.82.020703
http://dx.doi.org/10.1103/PhysRevA.82.020703
http://dx.doi.org/10.1103/PhysRevA.82.020703
http://dx.doi.org/10.1103/PhysRevA.82.020703
http://dx.doi.org/10.1103/PhysRevA.81.022702
http://dx.doi.org/10.1103/PhysRevA.81.022702
http://dx.doi.org/10.1103/PhysRevA.81.022702
http://dx.doi.org/10.1103/PhysRevA.81.022702
http://dx.doi.org/10.1103/PhysRevA.62.012708
http://dx.doi.org/10.1103/PhysRevA.62.012708
http://dx.doi.org/10.1103/PhysRevA.62.012708
http://dx.doi.org/10.1103/PhysRevA.62.012708
http://dx.doi.org/10.1088/1367-2630/9/5/152
http://dx.doi.org/10.1088/1367-2630/9/5/152
http://dx.doi.org/10.1088/1367-2630/9/5/152
http://dx.doi.org/10.1088/1367-2630/9/5/152
http://dx.doi.org/10.1103/PhysRevA.48.546
http://dx.doi.org/10.1103/PhysRevA.48.546
http://dx.doi.org/10.1103/PhysRevA.48.546
http://dx.doi.org/10.1103/PhysRevA.48.546
http://dx.doi.org/10.1088/1367-2630/13/8/083005
http://dx.doi.org/10.1088/1367-2630/13/8/083005
http://dx.doi.org/10.1088/1367-2630/13/8/083005
http://dx.doi.org/10.1088/1367-2630/13/8/083005
http://dx.doi.org/10.1088/0953-4075/33/5/201
http://dx.doi.org/10.1088/0953-4075/33/5/201
http://dx.doi.org/10.1088/0953-4075/33/5/201
http://dx.doi.org/10.1088/0953-4075/33/5/201
http://dx.doi.org/10.1021/cr050205w
http://dx.doi.org/10.1021/cr050205w
http://dx.doi.org/10.1021/cr050205w
http://dx.doi.org/10.1021/cr050205w
http://dx.doi.org/10.1103/PhysRevA.62.012709
http://dx.doi.org/10.1103/PhysRevA.62.012709
http://dx.doi.org/10.1103/PhysRevA.62.012709
http://dx.doi.org/10.1103/PhysRevA.62.012709
http://dx.doi.org/10.1103/PhysRevA.58.1728
http://dx.doi.org/10.1103/PhysRevA.58.1728
http://dx.doi.org/10.1103/PhysRevA.58.1728
http://dx.doi.org/10.1103/PhysRevA.58.1728
http://dx.doi.org/10.1103/PhysRevA.62.050702
http://dx.doi.org/10.1103/PhysRevA.62.050702
http://dx.doi.org/10.1103/PhysRevA.62.050702
http://dx.doi.org/10.1103/PhysRevA.62.050702
http://dx.doi.org/10.1038/nature11718
http://dx.doi.org/10.1038/nature11718
http://dx.doi.org/10.1038/nature11718
http://dx.doi.org/10.1038/nature11718
http://dx.doi.org/10.1103/PhysRevA.90.032711
http://dx.doi.org/10.1103/PhysRevA.90.032711
http://dx.doi.org/10.1103/PhysRevA.90.032711
http://dx.doi.org/10.1103/PhysRevA.90.032711
http://dx.doi.org/10.1103/PhysRevA.87.032517
http://dx.doi.org/10.1103/PhysRevA.87.032517
http://dx.doi.org/10.1103/PhysRevA.87.032517
http://dx.doi.org/10.1103/PhysRevA.87.032517



