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Calculation of fine-structure splittings in high-lying 2F states of rubidium
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We present relativistic many-body calculations of the fine-structure splittings of the n 2F Rydberg states of Rb
(n = 4–16) using both order-by-order relativistic many-body perturbation theory (RMBPT), up to a subset of
fourth-order corrections, and relativistic equation-of-motion coupled-cluster methods, including singles, doubles,
and an approximate treatment of valence triples. Good overall agreement is found with the measurements of
Brandenberger et al. [Phys. Rev. A 65, 042510 (2002); 81, 032515 (2010)] to better than the 1% level, which
is our expected level of theoretical uncertainty due to omitted higher-order correlation effects. It is shown
that the RMBPT of the fine-structure splittings is complex and slowly convergent, and that relativistic effects
are enhanced compared with the RMBPT of the ionization energy of the 2F states. We also analyze smaller
field-theoretic contributions to the fine-structure splittings from retardation and the radiative self-energy and
vacuum polarization, finding them to enter at the 0.1% level.

DOI: 10.1103/PhysRevA.90.042514 PACS number(s): 31.10.+z, 31.15.aj, 31.15.am, 31.15.bw

I. INTRODUCTION

It has long been realized that the fine-structure splitting
in heavy alkali-metal atoms, an inherently relativistic effect,
can be strongly modified by correlation corrections beyond a
mean-field model of the atom such as the Hartree-Fock [1–3]
model. A striking example is provided by the measurements
of fine-structure splittings in 2F Rydberg states of rubidium
(Rb) by Brandenberger et al. [4,5], who used a three-step laser
excitation with cycling transitions to achieve a precision of
better than 0.1% in the measured splittings of the lower-lying
states. The n 2F7/2 level was found to be lower than the n 2F5/2

level, the inverse of the fine-structure ordering in hydrogen,
and the fine-structure splittings scaled neither as 1/n3, as in
hydrogen, nor as 1/(n − δ)3, where δ is the quantum defect, as
they do to quite good accuracy in the 2P , 2D, and 2F series of
lighter alkali metals (see, for example, Ref. [6], and references
therein). This is a clear indication that correlation effects play
a very important role in the 2F splittings of Rb.

However, the theory of fine-structure splittings in atoms
with more than a few electrons continues to present a
challenge for existing methods of atomic theory because of
the combination of strong correlation and relativity, and the
precise data for the 2F states of Rb [4,5] mentioned above
remain unexplained. In this paper, we apply modern methods
of relativistic atomic many-body theory in a detailed study
of the 2F fine-structure splittings of Rb. In lowest order,
we assume a relativistic Hartree-Fock (Dirac-Fock) model;
then we evaluate higher-order terms in relativistic many-body
perturbation theory (MBPT) using relativistic finite basis sets.
We consider order-by-order MBPT, as well as relativistic
coupled-cluster (CC) methods, which allow for the summation
of large subclasses of many-body terms to all orders of
perturbation theory. This is shown to lead to an understanding
of the observed fine-structure splittings and their trends at a
level of 1% (or better). We show that the relativistic MBPT
of the splittings is complex and slowly convergent, with
high-order CC terms arising from triple excitations, which
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represent the state-of-the-art in CC methods for medium-to-
heavy alkali-metal atoms, entering the fine-structure splittings
at the 4% level. Also, relativistic many-body effects are found
to be enhanced, including relativistic correlation corrections
arising from the Breit interaction (magnetic interactions)
among electrons.

The plan of the paper is as follows. In Sec. II A, we give a
brief overview of the relativistic MBPT and CC methods used,
including a newly developed relativistic equation-of-motion
CC method, which is particularly suited to extracting medium-
high-lying excited (Rydberg) states. The need to calculate such
Rydberg states also places high demands on the quality of the
relativistic basis sets employed, and these issues are discussed
in Sec. II B. The results along with some discussion are then
given in Sec. III A, where we also analyze the phenomenon
of the inversion of the splittings, followed by calculations of
ionization energies for comparison in Sec. III B. Some smaller
effects, such as the isotope shifts and the radiative self-energy
and vacuum polarization, are then taken up in Sec. III C and
a discussion of various scaling properties of the fine-structure
splittings is given in Sec. III D. The conclusions are given in
Sec. IV.

II. FORMALISM AND METHODOLOGY

A. Relativistic many-body formalism

The 2F states of Rb consist of a single valence f electron
outside a closed-shell 36-electron Kr-like core. We describe
the atom in lowest order by a V N−1 (Coulomb) Dirac-Fock
(DF) approximation, based on the DF potential for the atomic
core. The single-particle states φi satisfy

(
hD − Z(r)

r
+ VDF

)
φi = εiφi, (1)

where hD is the Dirac Hamiltonian, −Z(r)/r is the nuclear
Coulomb potential including finite nuclear size, and VDF is the
core DF potential

〈i|VDF|j 〉 =
∑

c

(gicjc − giccj ). (2)
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The sum in Eq. (2) is over states c in the atomic core (excluding
the valence electron) and gijkl is a Coulomb matrix element,

gijkl = 〈ij |r−1
12 |kl〉. (3)

Here and in the following we use atomic units (a.u.),
|e| = me = � = 4πε0 = 1.

To improve systematically upon this approximation, we
use methods of relativistic many-body perturbation theory
(RMBPT) [7]. We thus make the “no-virtual-pair” approx-
imation of suppressing the negative-energy states of the
Dirac-Fock spectrum with total energy (including rest-mass
energy) εi < −mec

2 and take the electron-electron interaction
to be instantaneous. In some parts of the calculation we shall
generalize the two-body interaction gijkl to include also the
Breit interaction, which is an instantaneous approximation
to transverse-photon exchange [7]. Smaller field-theoretic
effects, including retardation (Sec. II A) or the radiative
self-energy and vacuum polarization (Sec. III C), will then be
added by considering low orders of quantum electrodynamic
perturbation theory.

We calculate the the fine-structure splitting �E(nF ) as a
difference of ionization energies −E(nFj ),

�E(nF ) = E(nF7/2) − E(nF5/2). (4)

This difference is calculated separately at each level of
approximation (DF level, second-order RMBPT, etc.) and
tested carefully for numerical significance. Below we present
formulas for the (negative of the) ionization energy Ev of a
general valence state v, where v will be taken to be the nf7/2

or nf5/2 state required for the difference (4).
In order-by-order MBPT, the lowest-order approximation

to the valence ionization energy is the valence eigenvalue of
the V N−1 DF equations, E(0)

v = εv , and the first-order valence
ionization energy E(1)

v in this potential vanishes [8]. The
leading correlation term is the second-order energy,

E(2)
v = 〈v|�(2)(εv)|v〉, (5)

where �(2) is the second-order many-body self-energy op-
erator (to be distinguished from the radiative self-energy
discussed in Sec. III C), which is given by [8,9]

〈i|�(2)(ω)|j 〉 =
∑
amr

grmja(giarm − giamr )

ω + εa − εr − εm

−
∑
abm

gimab(gabjm − gabmj )

εa + εb − ω − εm

. (6)

Here a and b are core states, m and r are excited states above
the core (including the valence state v), and i and j are general
states. The sum over excited states r and m, which in RMBPT
are restricted to the bound and positive-energy continuum
branch of the DF spectrum, is performed using a relativistic
finite basis set constructed from B splines [10].

The third-order ionization energy E(3)
v is given by a sum

of 12 Brueckner-Goldstone diagrams, the evaluation of which
is discussed in Refs. [7,11]. However, studies of heavy alkali-
metal atoms [11] have shown that, in general, the third-order
valence ionization energy E(3)

v does not significantly improve
upon the second-order energy E(2)

v ; to obtain improvement for
a neutral atom, it is usually necessary to include subclasses of

slowly convergent higher-order terms summed to all orders of
perturbation theory. One such subclass consists of chains of
second-order self-energy units �(2), which bring in important
terms from fourth-, sixth-, eighth-, ..., order perturbation
theory. We define the all-order sum of these diagrams of fourth
and higher order to be E(4ch)

v , which is calculated as described
in Ref. [7].

The chaining of the many-body self-energy is one example
of a subset of many-body terms summed to all orders of
perturbation theory. To obtain higher accuracy, it is neces-
sary to sum further subclasses of RMBPT terms. The CC
approach [12,13] is a formalism for performing such all-order
sums in a complete and systematic way. One of the first
relativistic implementations of such an all-order method for
atoms was given in Refs. [14,15], which used a Fock-space
coupled-cluster (FS-CC) scheme [8,16,17] to compute valence
ionization energies and other properties of alkali-metal atoms,
including single and double excitations of core and valence
states to all orders of MBPT. The method of Ref. [15] omitted
nonlinear CC terms, but it did include a subset of valence triple
excitations (an excitation involving one valence and two core
electrons). Later relativistic atomic FS-CC work included the
nonlinear CC terms [18–21] and provided more complete (but
still partial) treatments of triple excitations [22,23].

In this work we employ an equation-of-motion coupled-
cluster (EOM-CC) approach (reviewed in Ref. [13]) in the
electron-attachment (EA-EOM-CC) form of Nooijen and
Bartlett [24], which is suitable for describing valence ion-
ization energies of one-valence-electron atoms. Our version of
EA-EOM-CC is relativistic and adapted to atoms. We include
all single and double excitations (with all possible nonlinear
CC terms), and a partial treatment of valence triple excitations.
A detailed presentation of this recently developed approach
will be given elsewhere; here we provide a only brief summary
of the main points. Note that a relativistic single-reference
EOM-CC method was recently presented [25,26] that is
suitable for calculating excited states of closed-shell atoms.

The EOM method was initially developed in nuclear
physics by Rowe and co-workers [27], and there were also
applications in quantum chemistry during the same period (for
example, Ref. [28]). In EOM approaches, one expresses the
state of interest as |
k〉 = �k|
0〉, in terms of an excitation
operator �k acting on a (fully correlated) reference state |
0〉.
The operator �k satisfies

[H,�k]|
0〉 = ωk|
0〉, (7)

which effectively acts as an eigenvalue equation for �k

with eigenvalues ωk = Ek − E0, where H |
k〉 = Ek|
k〉 and
H |
0〉 = E0|
0〉. In practical schemes, the reference state
|
0〉 must be approximated and the operator �k truncated.
CC methods were incorporated into the EOM approach by
using an exponential ansatz for the reference state |
0〉 having
the general form |
0〉 = exp(T )|0〉, where |0〉 is a mean-field
state and the operator T is suitably truncated [29,30]. The steps
required to extend EOM-CC methodology to the calculation
of matrix elements are reviewed in Ref. [13].

Following the EA-EOM-CC approach [24], we take the
reference state to be the ground state of the closed-shell
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(N − 1)-electron core (that is, with no valence electron
present)

|
0〉 = eT |0〉, (8)

where here |0〉 is the ground-state V N−1 DF determinant of the
core, and T is the core CC operator (with no valence electron
present)

T =
∑
ma

tma a†
maa + 1

4

∑
mrab

tmr
ab a†

ma†
r abaa + · · · , (9)

with the excitation amplitudes tma , tmr
ab , ..., etc., satisfying the

usual single-reference CC equations [8,13]. Here and below,
a,b, ..., etc., signify core states, and m, r , ..., etc., excited
states (above the core). In this work we truncate T at double
excitations (CCSD level).

Following the EA-EOM-CC approach [24], the excitation
operator �k is then taken to be

�k =
∑
m

ρm(k)a†
m + 1

2

∑
m

ρmr
a (k)a†

ma†
r aa + · · · . (10)

The overall effect of �k is to add one electron to the state
it acts on, so that |
k〉 has N electrons while the core state
|
0〉 has (N − 1). In the first instance we truncate �k at the
second term in (10), which corresponds to valence doubles (an
excitation of one valence and one core electron) and yields the
EA-EOM-CCSD scheme. The excitation amplitudes ρm(k),
ρmr

a (k), ..., etc., in Eq. (10) are found by diagonalizing the
nonsymmetric matrix [24]

H̄αβ = 〈0|α̂(H̄ β̂†)C |0〉, (11)

yielding eigenvalues ωk and eigenvectors ρα(k),

H̄αβ ρβ(k) = ωkρα(k). (12)

In Eqs. (11) and (12), H̄ = e−T HeT is the similarity-
transformed Hamiltonian, the subscript C indicates connected
terms only, and α and β are used to denote generically all
possible single, double, ..., etc., excitations in �k , with α̂† and
β̂† the corresponding excitation operators (e.g., β̂† = a

†
ma

†
r aa

for a valence doubles electron-attachment excitation a → mr).
The index k = 0,1,2, . . . is used to label the eigenvalues of
H̄αβ . The lowest eigenvalue k = 0 corresponds to the ground
state of the N -electron atom, and the low-lying excited states
(k = 1,2, . . .) correspond to dominant configurations in which
the valence electron is singly excited (thus, the 5s electron in
Rb is excited to the 5p1/2, 5p3/2, ..., etc., states). Since E0 here
is the total energy of the (N − 1)-electron core, ωk = Ek − E0

is the valence ionization energy for these low-lying states. Note
that the ground-state eigenvalue ω0 is nonzero and gives the
ground-state valence ionization energy.

From the point of view of configuration interaction, the EA-
EOM-CCSD scheme includes not only all single and double
excitations of the N -electron atom, but also the dominant
quadruple excitations, which arise from disconnected products
(1/2)T 2

2 or T2(�k)2 of the two-body parts of T and �k [8,13].
The dominant triple excitations, however, correspond to
connected diagrams [8,13], and for the highest accuracy these
must be included explicitly in the procedure. Unfortunately,
simply adding the next (third) term on the right-hand sides of
Eqs. (9) and (10) (which would yield the EA-EOM-CCSDT

approach [31]) is computationally too demanding for all but
the smallest atoms. In this work, we therefore continue to
truncate the core excitations T at double excitations (CCSD
level), and construct approximations for the effect of valence
triple excitations.

Triple excitations can be regarded as perturbing the singles
and doubles amplitudes, giving contributions that we refer to
as TS and TD , respectively. When these terms are added to
the EA-EOM-CCSD equations, one obtains what we shall
refer to as the EA-EOM-CCSDTSD approach. A detailed
description of this procedure will be given elsewhere. The
derivation of expressions for TS and TD is analogous to the
way the triples perturbation of single excitations was derived
in Ref. [15] in the context of FS-CC; the approach also follows
the same general lines as the CCSDT-1 approximation in
single-reference (closed-shell) CC theory [32]. Methods for
constructing triples approximations in EA-EOM-CC theory
have also been discussed in Ref. [33]. The many-body content
of our partial-triples scheme is close to that of the atomic
FS-CC approaches of Refs. [22,23]. Note that we here include
only valence triples in this way (triple excitations involving
the valence electron and two core electrons); examples
of MBPT diagrams containing such excitations are given
in Fig. 1.

The leading omissions in our EA-EOM-CCSDTSD ap-
proach are thus: (i) connected core triple excitations (exci-
tation of three core electrons), and (ii) connected quadruple
excitations, of which the dominant terms are expected to be
connected valence quadruples (an excitation of the valence
electron and three core electrons, described by a connected
MBPT diagram). In general, in an alkali-metal atom the effect
of valence excitations is expected to dominate that of pure
core excitations of the same rank (single, double, etc.), in
part because the excitation energy associated with a valence
excitation is significantly less than that for excitation from the
core (see, for example, Ref. [11]).

As in the RMBPT approach, we make the no-virtual-pair
approximation, restricting all states to the positive-energy
branch (core and excited) of the DF spectrum as given by
a relativistic B-spline finite basis set [10]. The two-body
interaction is taken to be pure Coulomb (3). Eigenvalues
and eigenvectors are extracted from H̄αβ by a nonsymmetric

FIG. 1. (a) Connected valence triple excitations for a valence
state v in third-order MBPT; (b) and (c) show, respectively, examples
of third- and fourth-order valence-ionization-energy diagrams that
involve a valence triples excitation. The diagrams in (b) and (c) would
be absent in the EA-EOM-CCSD approach, but are picked up in the
present approach (together with higher-order diagrams).

042514-3



S. A. BLUNDELL PHYSICAL REVIEW A 90, 042514 (2014)

subspace-iteration algorithm [34]. For the present work, we
require the lowest 13 eigenvalues with f7/2 or f5/2 valence
symmetry (4 2F to 16 2F Rydberg states), which can all be
readily converged to ten or more digits of accuracy (for a given
basis set). It can be shown that the EA-EOM-CCSD approach
should give valence ionization energies in exact agreement
with those of the FS-CCSD approach for a single valence
electron [(1,0) sector of Fock space], both for the ground state
and, in principle, also for the low-lying excited states [24,35].
However, the many-body diagrams for H̄αβ given by Eq. (11)
are organized in a sufficiently different way from those of the
FS-CCSD method that numerical agreement between the two
methods is not completely trivial. One of the debugging tests
we used while developing our EA-EOM-CCSD approach was
to compare low-lying valence ionization energies with those
given by an older FS-CCSD code, finding better than ten-digit
agreement with identical basis sets.

The approximate expressions for valence triples depend
on the singles and doubles amplitudes in the operators T

and �k (as do the analogous terms in Ref. [15] and the
CCSDT-1 single-reference method [32]). Thus, it is possible to
evaluate the valence triples perturbatively (noniteratively), by
solving the EA-EOM-CCSD equations once and using these
amplitudes to evaluate the valence-triples energy contribu-
tions. Alternatively, they can be evaluated iteratively, with
the triples-perturbed singles and doubles amplitudes being
reinserted into the triples terms and the process iterated to
self-consistency. As we shall see, in the present application
the iteration of triples to self-consistency leads to a significant
additional contribution.

So far, relativistic effects have been included by using
single-particle states that are solutions of the DF equations (1),
but the electron-electron interaction (3) has been taken to
be purely Coulombic. Further relativistic effects can be
introduced by generalizing the two-body interaction (3) to
include the Breit interaction B12 [7],

gijkl → 〈ij |r−1
12 |kl〉 + 〈ij |B12|kl〉, (13)

which describes magnetic electron-electron interactions.
As we will see in Sec. III, in the present application the

effect of the Breit interaction is not negligible, but quite
small (of order 1.5% of the fine-structure splittings in lowest
order). Since as we will see E(2)

v + E(3)
v + E(4ch)

v accounts
for 90% or more of Coulomb correlation corrections to
fine-structure splittings, we assume here that it is sufficient
to evaluate Breit correlation corrections at the same level.
The procedure we use to do this is as follows. First, we
solve the DF equations (1) with the generalized two-body
interaction (13) (the Breit-Coulomb DF equations), yielding
modified eigenvalues εi and basis states φi . The lowest-order
Breit correction εB

v is defined as the shift in the valence
eigenvalue,

εv → εv + εB
v , (14)

where εv on the right-hand side of Eq. (14) is now understood
as the purely Coulombic valence DF eigenvalue, and εB

v is the
modification due to including the Breit interaction (13). Sim-
ilarly, each higher-order RMBPT term acquires a correction

defined by

E(2)
v → E(2)

v + B(2)
v , (15)

E(3)
v → E(3)

v + B(3)
v , (16)

E(4ch)
v → E(4ch)

v + B(4ch)
v . (17)

These corrections arise both from using the generalized two-
body interaction (13) in the RMBPT expressions, and at the
same time replacing all single-particle states and energies in
these expressions by their Breit-Coulomb DF counterparts.

To relax the approximation of instantaneous electron-
electron interactions, we calculate the lowest-order retardation
correction arising from one-photon exchange between valence
and core using the method of Ref. [7]. Higher-order Coulomb
corrections to retardation may be included by analyzing
retardation corrections to the self-consistent Breit-Coulomb
DF equations [36], and we use this approach also. However, the
higher-order corrections turn out to be small, and the overall
size of retardation is only about 0.1% of the fine-structure
splittings (see Sec. III).

B. Numerical procedure and uncertainties

The relativistic B-spline basis set [10] is set up by placing
the atom in a cavity, so that the continuum states are
discretized. The cavity radius must be sufficiently large so as
not to “compress” the highest-lying Rydberg states of interest
(16f5/2 and 16f7/2), and in addition the number of basis states
Nf included in the f -wave channels (f5/2 and f7/2) must
be sufficiently large that the highest-lying Rydberg state is
accurately reproduced. We use a cavity radius of 750a0 and
Nf = 90 for f -wave states, which accurately reproduces DF
eigenvalues and fine-structure splittings for all Rydberg states
4–16f , the fine-structure splittings being in agreement with the
DF values to better than 10−11 a.u. For the other (non-f -wave)
states, we use a cavity radius in the range 20–40a0 with
N = 20–60 basis states in each angular-momentum channel
(s1/2, p1/2, p3/2, ..., etc.), the precise values depending on the
quantity being calculated.

Since we calculate fine-structure splittings by direct sub-
traction of ionization energies [Eq. (4)], it is important to
test the sensitivity of the differences �X(nF ) = X(nF7/2) −
X(nF5/2) to the numerical parameters defining the basis set
(and thereby optimize the basis set) for any given quantity
X of interest (e.g., E(2), E(3), CC correlation energies, etc.).
The relevant parameters include the cavity radius, the number
and distribution of B-spline knot points, and the degree k of
the B-spline polynomials. In this way, a reasonably reliable
estimate of basis-set numerical uncertainty can be made.

An important source of basis-set uncertainty is related
to the upper angular-momentum cutoff of states included
in the calculation. We proceed by initially truncating the
basis at some orbital angular momentum l0, including all
states with l � l0 in the calculation of any given quantity
Y (l0). The calculation is then repeated for l0 = 3,4, . . . ,lmax,
yielding a series of results Y (3),Y (4), . . . ,Y (lmax) which is then
extrapolated to lmax → ∞ (usually by fitting to polynomials
in 1/l0). We take lmax = 11 (o states) for E(2), E(3), E(4ch), and
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the corresponding Breit RMBPT contributions, and lmax = 7
(k states) in CC calculations. The lower lmax for CC work
was partly a compromise to limit computer time and memory,
but interestingly it turns out that the l0 series is more rapidly
convergent for CC fine-structure splittings than for �E(2),
�E(3), or �E(4ch). The third-order fine-structure splitting
�E(3) has a particularly slow l0 convergence, which can be
traced specifically to the diagram involving two bubbles [11].
The all-order sum of such bubble diagrams included in the CC
approach has a significantly improved high-l0 behavior.

In general, fine-structure splittings place greater demands
on the basis set than the individual n 2F7/2 or n 2F5/2 ionization
energies, requiring higher values of lmax and greater numbers N

of basis states in each angular-momentum channel to achieve a
given fractional accuracy. We optimized basis-set parameters
for fine-structure calculations. The numerical uncertainty is
dominated by that arising from the N truncation and the extrap-
olation to lmax → ∞, the latter typically being slightly smaller
than the former for fine-structure splittings (but much smaller
for ionization energies). Possible numerical uncertainty arising
from the radial grids used to store radial wave functions and
from the degree of convergence of iterative processes (e.g.,
in extracting CC energies or E(4ch)) is negligible. The final
numerical uncertainties in the CC calculations, quoted in the
result tables, are around 0.3% of the fine-structure splittings
and 0.01% of the ionization energies.

III. RESULTS AND DISCUSSION

A. Fine-structure splittings

Table I shows RMBPT calculations of the fine-structure
splittings. Each column of the table corresponds to the differ-
ence of the corresponding quantities for ionization energies,
�X(nF ) = X(nF7/2) − X(nF5/2), and the negative value of
the final total signifies that the n 2F7/2 levels are below the
n 2F5/2, in agreement with the observations for 2F states in
Rb (see Refs. [4,5], and references therein) but inverting the
(Dirac) ordering in hydrogen.

This inversion of the fine-structure levels is seen to be
present already at DF level, and can be understood in greater

detail as follows. The DF potential is the sum of direct and
exchange potentials, VDF = V dir

DF + V exch
DF , where V dir

DF is the
spherically symmetric classical electrostatic potential due to
the DF atomic core, and

〈i|V exch
DF |k〉 = −

∑
c

gicck. (18)

Thus, the valence DF eigenvalue separates into two terms,

εv = εdir
v + εexch

v ,

εdir
v = 〈v|hD − Z(r)/r + V dir

DF |v〉, (19)

εexch
v = 〈v|V exch

DF |v〉.
The direct potential V dir

DF is a scalar with no explicit depen-
dence on total angular momentum j ; the direct term above
contributes εdir(4f7/2) − εdir(4f5/2) = +0.049 μHa to the 4 2F

fine-structure splitting, which has the same sign and order of
magnitude as the Dirac fine-structure splitting of the 4f levels
in hydrogen, +0.035 μHa. However, the angular-momentum
structure of the exchange integrals in 〈v|V exch

DF |v〉 [Eq. (18)]
yields a strongly j -dependent term. We find an exchange fine-
structure splitting εexch(4f7/2) − εexch(4f5/2) = −0.191 μHa,
which thus inverts the fine-structure levels and gives the final
DF value of 0.049 − 0.191 = −0.142 μHa. The exchange
interaction of the valence f states is greatest with the 4p1/2

and 4p3/2 core states, which together contribute 98.5% of the
total exchange fine-structure splitting (see also the discussion
of fine-structure inversion in Refs. [1–3,37].)

Although the ordering of the n 2F7/2 and n 2F5/2 levels
is correct at DF level, the DF fine-structure values are still
about 25% discrepant with experiment (for all principal
quantum numbers n = 4–16), which must be accounted for by
higher-order correlation effects. The majority of the correlation
effect is picked up by the second-order RMBPT term �E(2)

in Table I, which reduces the fractional discrepancy � with
experiment to about 7%, as shown in Fig. 2. Here and later we
define � = (Etheory − Eexpt.)/Eexpt.. A further improvement to
a discrepancy of about 2.5% is then found at the correlation
level �E(2) + �E(3) + �E(4ch). Note, however, the slow and
irregular convergence of order-by-order RMBPT seen in

TABLE I. RMBPT calculations of the fine-structure splittings of the n 2F states. Notation: DF, Dirac-Fock value; �E(m), contribution of
mth-order RMBPT with Coulomb interaction (see text); Transverse, sum of Breit contributions and retardation (from Table II); Total (4ch),
sum of all previous contributions. Estimated numerical uncertainties are given in parentheses. Units: 10−6 a.u. (μHa).

n DF �E(2) �E(3) �E(4ch) Transverse Total (4ch)

4 −0.142 44 0.021 87(9) −0.003 70(13) 0.010 33(4) 0.000 50(2) −0.113 45(16)
5 −0.127 39 0.017 81(7) −0.003 34(12) 0.008 64(3) 0.000 54(2) −0.103 73(14)
6 −0.092 56 0.012 66(5) −0.002 49(9) 0.006 20(2) 0.000 42(1) −0.075 78(10)
7 −0.065 80 0.008 96(4) −0.001 81(6) 0.004 39(2) 0.000 30(1) −0.053 96(8)
8 −0.047 43 0.006 46(3) −0.001 33(5) 0.003 16(1) 0.000 22(1) −0.038 92(5)
9 −0.034 96 0.004 77(2) −0.000 99(3) 0.002 32(1) 0.000 16 −0.028 69(4)
10 −0.026 35 0.003 60(1) −0.000 75(3) 0.001 75(1) 0.000 12 −0.021 63(3)
11 −0.020 28 0.002 78(1) −0.000 58(2) 0.001 34(1) 0.000 10 −0.016 65(2)
12 −0.015 91 0.002 19(1) −0.000 46(2) 0.001 05 0.000 07 −0.013 06(2)
13 −0.012 69 0.001 75(1) −0.000 37(1) 0.000 84 0.000 06 −0.010 41(2)
14 −0.010 27 0.001 42(1) −0.000 30(1) 0.000 68 0.000 05 −0.008 43(1)
15 −0.008 42 0.001 16 −0.000 25(1) 0.000 56 0.000 04 −0.006 91(1)
16 −0.006 99 0.000 97 −0.000 21(1) 0.000 46 0.000 03 −0.005 74(1)
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FIG. 2. (Color online) Fractional discrepancy with experiment of
theoretical n 2F fine-structure splittings calculated at various levels:
second-order RMBPT (empty squares), second-order plus third-order
plus chained fourth-order RMBPT (empty circles), CCSD (full
squares), and CCSDTSD (full circles).

Table I: �E(4ch) is about 50% of �E(2) and about three times
larger than �E(3). In view of this, the 2.5% level of discrepancy
found is perhaps slightly fortuitous.

The RMBPT contributions discussed so far assume a pure
Coulomb interaction (3) among electrons. Since the fine-
structure splitting is an inherently relativistic effect, it might be
expected that transverse-photon exchange (magnetic interac-
tions) among the atomic electrons should play a relatively im-
portant role in correlation effects. The transverse-photon term
included in Table I is broken down into individual contributions
in Table II. The lowest-order Breit fine-structure contribution,
derived from the Breit-Coulomb DF eigenvalue modifications
εB
v (14), is about −1.5% of the fine-structure splittings.

Higher-order Breit correlation effects are also important, the
Breit correlation terms �B(2) + �B(3) + �B(4ch) (15)–(17)
contributing about +1% of the fine-structure splittings, and
partially compensating the lowest-order effect, so that overall
the Breit contribution is about −0.5% of the fine-structure
splitting. We also include in Table II the contribution of

retardation at DF level (see Sec. II A), which is a small effect
of order −0.1% of the fine-structure splittings.

The slow and irregular convergence of RMBPT noted above
motivates use of the more complete all-order treatment of
correlation effects provided by CC methods. The results of
our CC calculations are summarized in Tables III and IV and
in Fig. 2. The relativistic EA-EOM-CCSD approach, which
sums single and double excitations to all orders, is seen to
give a discrepancy with experiment of about 4%. Adding
valence triples, which is the most computationally demanding
step in this work and leads to the most complete approach
considered, the EA-EOM-CCSDTSD approach, then improves
the discrepancy with experiment to better than 0.5% in most
cases (see Fig. 3).

In the EA-EOM-CCSDTSD approach just discussed, we
iterate the valence triples to self-consistency, but a less
computationally demanding approach is to evaluate them per-
turbatively (or noniteratively), as discussed in Sec. II A. If we
evaluate perturbatively just the expensive TD term (giving the
effect of triple excitations on double excitations) and continue
to include TS iteratively, we find a final discrepancy with
experiment of about 1.7%. Thus, the iteration to convergence
of the TD term is significant, giving a contribution of about
−1.5% of the fine-structure splittings. In fact, the term TD

alone is quite large, about −10% of fine-structure splittings
(TD tends to cancel partially with TS so that valence triples
overall are about a −4% effect). Thus, it is not really surprising
that iterations of TD produce shifts in the results at the 1% level.

B. Ionization energies

While the experiments of Brandenberger et al. [4,5] are
primarily concerned with fine-structure splittings, it is also
possible to infer the ionization energies of the n 2F states from
their data, for comparison with our theoretical predictions.
Ionization energies turn out to be a much less sensitive test of
correlation and relativistic effects than fine-structure splittings.

The experiment [4,5] involves a three-step excitation:
(i) from the upper ground-state hyperfine level to a 5P3/2

hyperfine level with a laser of wavelength λair
1 = 780.03 nm

TABLE II. Contributions to fine-structure splittings of the n 2F states from transverse-photon exchange. Notation: BC-DF, value at
Breit-Coulomb DF level, from εB

v in Eq. (14); �B (m), contributions from mth-order RMBPT, Eqs. (15)–(17); Retardation, total retardation
contribution; Total, sum of all previous terms. Estimated numerical uncertainties are given in parentheses. Units: 10−6 a.u. (μHa).

n BC-DF �B (2) �B (3) �B (4ch) Retardation Total

4 0.001 87 −0.001 21(2) −0.000 09(1) −0.000 23 0.000 15 0.000 50(2)
5 0.001 52 −0.000 89(2) −0.000 04 −0.000 18 0.000 12 0.000 54(2)
6 0.001 08 −0.000 60(1) −0.000 02 −0.000 13 0.000 09 0.000 42(1)
7 0.000 76 −0.000 42(1) −0.000 01 −0.000 09 0.000 06 0.000 30(1)
8 0.000 54 −0.000 29(1) −0.000 01 −0.000 06 0.000 04 0.000 22(1)
9 0.000 40 −0.000 21 0.000 00 −0.000 05 0.000 03 0.000 16
10 0.000 30 −0.000 16 0.000 00 −0.000 04 0.000 02 0.000 12
11 0.000 23 −0.000 12 0.000 00 −0.000 03 0.000 02 0.000 10
12 0.000 18 −0.000 10 0.000 00 −0.000 02 0.000 01 0.000 07
13 0.000 14 −0.000 08 0.000 00 −0.000 02 0.000 01 0.000 06
14 0.000 12 −0.000 06 0.000 00 −0.000 01 0.000 01 0.000 05
15 0.000 09 −0.000 05 0.000 00 −0.000 01 0.000 01 0.000 04
16 0.000 08 −0.000 04 0.000 00 −0.000 01 0.000 01 0.000 03
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TABLE III. Coupled-cluster calculations of the fine-structure splittings of the n 2F states. Notation: DF, Dirac-Fock value; CCSD, correlation
energy at singles and doubles level; CCSDTSD, correlation energy including also valence triples; Transverse, sum of Breit contributions and
retardation (from Table II); Total CCSD or CCSDTSD, sum of DF value, Transverse, and corresponding CC correlation energy. Estimated
numerical uncertainties are given in parentheses. Units: 10−6 a.u. (μHa).

Total Total
n DF CCSD CCSDTSD Transverse CCSD CCSDTSD

4 −0.142 44 0.025 97(21) 0.031 21(34) 0.000 50(2) −0.115 97(21) −0.110 73(34)
5 −0.127 39 0.021 14(17) 0.025 45(28) 0.000 54(2) −0.105 70(17) −0.101 39(28)
6 −0.092 56 0.015 01(12) 0.018 06(20) 0.000 42(1) −0.077 14(12) −0.074 09(20)
7 −0.065 80 0.010 58(8) 0.012 73(14) 0.000 30(1) −0.054 92(8) −0.052 76(14)
8 −0.047 43 0.007 62(6) 0.009 16(10) 0.000 22(1) −0.039 59(6) −0.038 05(10)
9 −0.034 96 0.005 62(4) 0.006 75(7) 0.000 16 −0.029 17(5) −0.028 04(7)
10 −0.026 35 0.004 24(3) 0.005 09(6) 0.000 12 −0.021 99(3) −0.021 13(6)
11 −0.020 28 0.003 26(3) 0.003 92(4) 0.000 10 −0.016 93(3) −0.016 27(4)
12 −0.015 91 0.002 56(2) 0.003 07(3) 0.000 07 −0.013 28(2) −0.012 76(3)
13 −0.012 69 0.002 04(2) 0.002 45(3) 0.000 06 −0.010 59(2) −0.010 18(3)
14 −0.010 27 0.001 65(1) 0.001 98(2) 0.000 05 −0.008 57(1) −0.008 24(2)
15 −0.008 42 0.001 35(1) 0.001 63(2) 0.000 04 −0.007 03(1) −0.006 76(2)
16 −0.006 99 0.001 12(1) 0.001 35(1) 0.000 03 −0.005 84(1) −0.005 61(1)

(in air); (ii) then to a 4D5/2 hyperfine level with a wavelength
λair

2 = 1528.99 nm; and (iii) finally to the n 2F7/2 or n 2F5/2

levels with a wavelength λair
3 depending on principal quantum

number n. The ionization energy −E(nF ) of the final n 2F

state of 87Rb can then be inferred as

−E(nF ) = E0(5S) − �Ehfs(5S)

−hc

(
1

λ1
+ 1

λ2
+ 1

λ3

)
, (20)

where E0(5S) = 4.177 127 06(10) eV is the ionization energy
of the ground 5S state (lower hyperfine level), �Ehfs(5S) =
6834.68 MHz is the ground-state hyperfine splitting (data from
Ref. [38]), and λ1, λ2, and λ3 are the above wavelengths in
vacuum. We convert the air wavelengths to vacuum using
the tabulation of Ref. [39], finding λ1 = 780.237 nm and
λ2 = 1529.404 nm. The final values of E(nF ) obtained for

each n are summarized in Table V. Nominal experimental
uncertainties are assigned to each ionization energy by
assuming an uncertainty of 0.01 nm (1 in the last quoted
digit) in each of λair

1 , λair
2 , and λair

3 ; these nominal uncertainties
are around 2 μHa, which is 20–400 times larger than the
fine-structure splittings, so for the purpose of this section there
is no distinction between the n 2F7/2 and n 2F5/2 levels.

Table VI summarizes the RMBPT calculations of the
ionization energies, and Table VII the CC calculations (see
also Ref. [21] for n � 10). Unlike the case with fine-structure
splittings, relativistic contributions to ionization energies in
neutral Rb are small. The lowest-order Breit contribution (at
Breit-Coulomb DF level) is about 100–1000 times smaller
than the nominal experimental errors (depending on n), so we
omit transverse-photon contributions throughout. Moreover,
we see from Table VII that the ionization energy in lowest

TABLE IV. Comparison of theoretical fine-structure splittings of n 2F states with experiment. Notation: DF, Dirac-Fock value; Total (2),
second-order RMBPT (sum of DF, �E(2), and Transverse in Table I); Total (4ch), RMBPT up to chained fourth-order terms (final column in
Table I); Total CCSD or CCSDTSD, coupled-cluster values from Table III; Expt., experimental fine-structure splittings from Refs. [4] and [5].
Estimated numerical uncertainties (in theoretical values) are given in parentheses. Units: 10−6 a.u. (μHa).

Total Total Total Total
n DF (2) (4ch) CCSD CCSDTSD Expt.

4 −0.142 44 −0.120 07(9) −0.113 45(16) −0.115 97(21) −0.110 73(34) −0.110 75(8)
5 −0.127 39 −0.109 03(7) −0.103 73(14) −0.105 70(17) −0.101 39(28) −0.101 75(6)
6 −0.092 56 −0.079 49(5) −0.075 78(10) −0.077 14(12) −0.074 09(20) −0.074 03(3)
7 −0.065 80 −0.056 54(4) −0.053 96(8) −0.054 92(8) −0.052 76(14) −0.052 75(3)
8 −0.047 43 −0.040 75(3) −0.038 92(5) −0.039 59(6) −0.038 05(10) −0.038 04(3)
9 −0.034 96 −0.030 02(2) −0.028 69(4) −0.029 17(5) −0.028 04(7) −0.028 04(5)
10 −0.026 35 −0.022 62(1) −0.021 63(3) −0.021 99(3) −0.021 13(6) −0.021 06(3)
11 −0.020 28 −0.017 41(1) −0.016 65(2) −0.016 93(3) −0.016 27(4) −0.016 28(3)
12 −0.015 91 −0.013 65(1) −0.013 06(2) −0.013 28(2) −0.012 76(3) −0.012 77(5)
13 −0.012 69 −0.010 88(1) −0.010 41(2) −0.010 59(2) −0.010 18(3) −0.010 18(3)
14 −0.010 27 −0.008 81(1) −0.008 43(1) −0.008 57(1) −0.008 24(2) −0.008 21(5)
15 −0.008 42 −0.007 22 −0.006 91(1) −0.007 03(1) −0.006 76(2) −0.006 70(3)
16 −0.006 99 −0.005 99 −0.005 74(1) −0.005 84(1) −0.005 61(1) −0.005 53(3)
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FIG. 3. (Color online) Fractional discrepancy with experiment
of theoretical n 2F fine-structure splittings calculated at CCSDTSD

level. Error bars indicate the experimental uncertainty. Note that the
calculation is also subject to theoretical uncertainty (not shown),
including numerical basis-set truncation uncertainties of order 0.3%
(see text).

order, DF level, is already quite accurate, ranging from about
0.6% discrepant with experiment for n = 4 to about 1–2
experimental standard deviations discrepant for n = 15 and
16. Accordingly, the lower n levels provide the most stringent
test of the many-body theory.

From Table VI we see that the E(2) correlation level
agrees quite well with experiment, although this is largely
fortuitous, as shown by the fact that at the E(2) + E(3) + E(4ch)

correlation level there is a small systematic discrepancy with
experiment (for the lower n values). This discrepancy is
removed at CCSD and CCSDTSD level, where good agreement
is found with experiment for all n = 4–16 at the level of
experimental and numerical uncertainty. Note that the valence
triples contribution, given by the difference of the CCSDTSD

TABLE V. Experimental ionization energies −E(nF ) of the n 2F

states of 87Rb. Wavelengths λ3 (see text) in air are taken from
Refs. [4] and [5] and converted to vacuum using the tabulation in
Ref. [39]. Nominal experimental uncertainties (see text) are included
in parentheses in the last column.

λ3 (air) λ3 (vac) E(nF )
n (nm) (nm) (a.u.)

4 1344.28 1344.65 −0.031 432(2)
5 1007.53 1007.81 −0.020 107(2)
6 886.85 887.09 −0.013 955(2)
7 827.14 827.37 −0.010 247(2)
8 792.53 792.75 −0.007 842(2)
9 770.44 770.65 −0.006 194(2)
10 755.38 755.59 −0.005 015(2)
11 744.62 744.83 −0.004 144(2)
12 736.64 736.84 −0.003 481(2)
13 730.54 730.74 −0.002 965(2)
14 725.78 725.98 −0.002 556(2)
15 721.99 722.19 −0.002 226(2)
16 718.90 719.10 −0.001 955(2)

and CCSD columns in Table VII, is barely significant for any
n at the level of these uncertainties.

C. Smaller effects

We consider in this section several smaller effects that are
small or negligible, and have been omitted from the main
tabulations in the previous sections. First, the finite nuclear
mass (nuclear recoil) leads to corrections Emass to ionization
energies E of order Emass ≈ −(me/Mnuc)E ≈ −6 × 10−6E.
Calculations at DF level confirm that nuclear recoil modifies
the fine-structure splittings at a similar fractional level, and
is thus completely negligible at the level of experimental
uncertainty.

A small field-theoretic term, retardation, was included in
Table II and found to enter at about −0.1% of the fine-structure
splittings. This suggests that it would be interesting to check
the order of magnitude of the radiative self-energy (SE)
and vacuum polarization (VP) contributions, which are other
field-theoretic effects. We estimated these effects using the
method of Ref. [40]. Since f electrons have a very small
probability density at small r (in the region of order one
Compton wavelength around the nucleus that is important for
the SE and VP), the lowest-order valence SE and VP turn
out to be negligible. However, the dominant contribution to
SE and VP is instead found to arise from the core-relaxation
term, a many-body term giving the change in the (much
larger) core SE and VP as the valence electron changes
during a transition, here nf5/2 to nf7/2. As was discussed in
Sec. III A in connection with the inversion of the fine-structure
splittings, the dominant j -dependent core-valence interaction
is the exchange interaction (18), the contribution of the 4p core
states being the largest. Similarly, we find that the dominant
SE and VP contribution to the fine-structure splittings is
the exchange-interaction core-relaxation term [40] arising
from the 4p core electrons (mostly 4p1/2). Unfortunately,
the method of Ref. [40] was adapted to highly charged
ions, not neutral atoms, and the values obtained here are
rather sensitive to the choice of core potential and other
parameters. Nevertheless, the results suggest that the total SE
and VP contribution could be of the same order of magnitude,
or slightly smaller, than retardation, entering at the level
of �0.1% of the fine-structure splittings. In general, more
research is required on methods of calculating these radiative
corrections in neutral atoms with more than a few electrons.

In the first experimental paper [4], some measurements
of fine-structure splittings were made in 85Rb as well as
87Rb, but the differences found (the isotope effect) were not
statistically significant at the level of experimental uncertainty.
As we have seen above, the mass isotope effect (change
in nuclear-recoil contribution) is negligible. Calculations at
DF level show that the field isotope effect (due to the change
in nuclear mean-square charge radius) enters at the level of
10−6 of the fine-structure splittings, and is therefore also
negligible. A third possible source of isotope effect is the
hyperfine interaction. The three-step laser excitation procedure
selects a subset of possible hyperfine transitions [4,5], and if
the final line profile is slightly asymmetric, the line “center”
could implicitly contain a first-order hyperfine contribution.
However, we find (at CCSD level) that the hyperfine constants
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TABLE VI. RMBPT calculations of the ionization energies of the n 2F states. Notation: DF, Dirac-Fock value εv; E(m), contribution of
mth-order RMBPT with Coulomb interaction (see text); Total (2), second-order RMBPT (sum of DF and E(2)); Total (4ch), RMBPT up to
chained fourth-order terms (sum of DF, E(2), E(3), and E(4ch)). The values given correspond to the negative of the ionization energy. Estimated
numerical uncertainties are given in parentheses. Units: a.u. (Ha).

n εv (DF) E(2) E(3) E(4ch) Total (2) Total (4ch)

4 −0.031 257 −0.000 173(1) 0.000 017(1) −0.000 006 −0.031 431(1) −0.031 420(1)
5 −0.020 006 −0.000 098 0.000 011(1) −0.000 004 −0.020 104(1) −0.020 097(1)
6 −0.013 893 −0.000 061 0.000 007 −0.000 003 −0.013 954 −0.013 950
7 −0.010 207 −0.000 040 0.000 005 −0.000 002 −0.010 247 −0.010 244
8 −0.007 815 −0.000 027 0.000 003 −0.000 001 −0.007 842 −0.007 840
9 −0.006 174 −0.000 019 0.000 002 −0.000 001 −0.006 194 −0.006 193
10 −0.005 001 −0.000 014 0.000 002 −0.000 001 −0.005 016 −0.005 015
11 −0.004 133 −0.000 011 0.000 001 −0.000 001 −0.004 144 −0.004 143
12 −0.003 473 −0.000 008 0.000 001 0.000 000 −0.003 481 −0.003 481
13 −0.002 959 −0.000 007 0.000 001 0.000 000 −0.002 966 −0.002 965
14 −0.002 551 −0.000 005 0.000 001 0.000 000 −0.002 557 −0.002 556
15 −0.002 223 −0.000 004 0.000 001 0.000 000 −0.002 227 −0.002 227
16 −0.001 953 −0.000 004 0.000 000 0.000 000 −0.001 957 −0.001 957

of the 4F and 5F levels (where this effect would be most
significant) are of order 0.1 MHz or smaller (see also Ref. [21]),
and the hyperfine splittings in these levels are thus comparable
to or smaller than the experimental uncertainty in the position
of the line center (∼0.4 MHz). These results are consistent with
the experimental observation of no significant isotope effect,
as well as with the highly symmetric observed line shape and
the failure to observe hyperfine splittings.

D. Scaling properties of fine-structure splittings

A striking property of the fine-structure results in Figs. 2
and 3 is that the fractional discrepancy with experiment at any
given correlation level (DF, E(2), etc.) is largely independent of
principal quantum number n. Closer inspection of Tables I–III
reveals that, for each correlation term �X (such as �E(2),
�E(3), etc.), the ratio �X/�εDF is nearly independent of n,

where �εDF is the DF-level result. For example, one finds that
for all n = 6–16,

−0.1383 � �E(2)/�εDF � −0.1361, (21)

with �E(2)/�εDF = −0.1535 (for n = 4) and −0.1398 (for
n = 5) deviating slightly from the pattern. Since �εDF itself
differs from experiment �Eexpt. by a nearly constant fraction,
one finds also that �E(2)/�Eexpt. is nearly independent of n.

These scaling properties can be understood by observing
that at short range (of the order of the atomic core radius,
or slightly larger), the radial wave functions of the valence
f states have nearly the same shape (independent of n) and
differ to a good approximation only by a normalization factor.
To see this, we show large (upper Dirac component) radial
wave functions for nf5/2 DF valence states in Fig. 4. One
sees that the main peak in the wave function moves outward
as expected as n increases (the radius of a Bohr orbit is

TABLE VII. Coupled-cluster calculations of the ionization energies of the n 2F states. Notation: DF, Dirac-Fock value εv; CCSD, correlation
energy with singles and doubles; CCSDTSD, correlation energy including also valence triples; Total CCSD or CCSDTSD, sum of DF value and
corresponding CC correlation energy; Expt., experimental ionization energies from Table V. The values given correspond to the negative of
the ionization energy. Estimated numerical uncertainties (in theoretical values) are given in parentheses. Units: a.u. (Ha).

Total Total
n εv (DF) CCSD CCSDTSD CCSD CCSDTSD Expt.

4 −0.031 257 −0.000 173(2) −0.000 172(2) −0.031 431(2) −0.031 429(2) −0.031 432(2)
5 −0.020 006 −0.000 098(1) −0.000 101(1) −0.020 104(1) −0.020 107(1) −0.020 107(2)
6 −0.013 893 −0.000 060(1) −0.000 064(1) −0.013 954(1) −0.013 957(1) −0.013 955(2)
7 −0.010 207 −0.000 039 −0.000 042 −0.010 246 −0.010 249 −0.010 247(2)
8 −0.007 815 −0.000 027 −0.000 029 −0.007 841 −0.007 843 −0.007 842(2)
9 −0.006 174 −0.000 019 −0.000 021 −0.006 194 −0.006 195 −0.006 194(2)
10 −0.005 001 −0.000 014 −0.000 015 −0.005 015 −0.005 016 −0.005 015(2)
11 −0.004 133 −0.000 011 −0.000 012 −0.004 144 −0.004 145 −0.004 144(2)
12 −0.003 473 −0.000 008 −0.000 009 −0.003 481 −0.003 482 −0.003 481(2)
13 −0.002 959 −0.000 007 −0.000 007 −0.002 966 −0.002 966 −0.002 965(2)
14 −0.002 551 −0.000 005 −0.000 006 −0.002 557 −0.002 557 −0.002 556(2)
15 −0.002 223 −0.000 004 −0.000 005 −0.002 227 −0.002 227 −0.002 226(2)
16 −0.001 953 −0.000 004 −0.000 004 −0.001 957 −0.001 957 −0.001 955(2)
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FIG. 4. (Color online) Large radial functions (upper Dirac com-
ponent) of the 4f5/2, 5f5/2, 6f5/2, and 16f5/2 valence states. The
radius of the atomic core is about 3.5a0.

proportional to n2). But the first peak (maximum or minimum)
at small r , which occurs at rpeak ≈ 16a0 for n = 4, moves
inward slightly as n increases, reaching an asymptotic value
as n → ∞ of rpeak ≈ 10a0. This asymptotic peak position is
that for the state at the ionization threshold with energy zero,
and is reached already for n � 6. For r � 10a0 we can thus
write

gnf (r) ≈ Anf g∞f (r), (22)

where gnf (r) is the radial wave function and Anf is a
normalization factor. The radial charge density of the atomic
core drops to zero for r � 3.5a0, so Eq. (22) is valid inside the
atomic core and somewhat beyond.

Now, in general, terms in MBPT for the valence ionization
energy (and other atomic properties) can be represented as
DF valence expectation values of effective operators [8]. If
such an effective operator X̂ is of predominantly short range,
concentrated inside the atomic core or just outside, from
Eq. (22) we would have

〈nf |X̂|nf 〉 ≈ A2
nf 〈∞f |X̂|∞f 〉. (23)

We illustrate this property for the second-order ionization
energy E(2), the dominant contribution to correlation, which is
given by the valence expectation value of the second-order
many-body self-energy operator �(2) (6). In Fig. 5(a) we
show plots of the large radial components of the states
|φn〉 = �(2)|nf5/2〉 for various n. The states |φn〉 are peaked at
r ≈ 3.2a0, close to the edge of the atomic core, implying that
�(2) has a predominantly short range (the long-range part of
�(2), giving polarization or dispersion interactions, here plays
a reduced role). If we now scale the states |φn〉 so that the main
peak value is unity, as in Fig. 5(b), we confirm that the shape of
the radial functions of |φn〉 is nearly independent of n, which
together with Eq. (22) then implies Eq. (23) for X̂ = �(2).
Some deviation in |φn〉 occurs for n = 4 and n = 5 in the
region r � 10a0, where the 4f and 5f radial wave functions
differ somewhat from the asymptotic form (see Fig. 4).

Now, the fine-structure splitting at DF level is calculated
as a difference of DF eigenvalues, �εDF = ε7/2 − ε5/2. But
this difference can, in principle, also be written as a valence
expectation value of an effective operator corresponding to
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FIG. 5. (Color online) (a) Large Dirac radial function of the states
|φn〉 formed when the second-order many-body self-energy operator
�(2) acts on the 4f5/2, 5f5/2, 6f5/2, and 16f5/2 valence states. (b) The
same states as in (a), but rescaled so that the value at the peak is unity.
The radius of the atomic core is about 3.5a0.

terms in a nonrelativistic reduction of the DF equations. To the
extent that this effective operator also has predominantly short
range, as is to be expected, the normalization factor A2

nf will
cancel when one takes the ratio �E(2)/�εDF, thus explaining
why these ratios are observed to be nearly independent of n

(at least for n � 6) as in Eq. (21).
It was pointed out by Brandenberger et al. [4,5] that their

measured fine-structure splittings did not scale with n either
as 1/n3, the Dirac hydrogenic scaling, or as 1/(n − δ)3,
where δ is the quantum defect (and that, in any case,
the ordering of the n 2F7/2 and n 2F5/2 levels was inverted
relative to hydrogen). As we have seen, the main reason
for the inversion can be traced to the core-valence exchange
interaction, which changes both the sign and the order of
magnitude of the lowest-order fine-structure splitting, and
further corrections of order 25% then arise from higher-order
correlation. After including all these effects in our calculations,
we recover the n dependence observed experimentally to high
precision.

IV. CONCLUSIONS

We have presented relativistic many-body calculations of
the fine-structure splittings of the 2F Rydberg states of Rb
at various correlation levels. The most complete treatment
considered was CCSDTSD, which includes singles, doubles,
and valence triples to all orders in a coupled-cluster framework.
From the point of view of configuration interaction, this
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approach also includes the dominant quadruple excitations,
which arise from disconnected products of double excitations.
While it is possible to make a reasonably reliable estimate of
purely numerical uncertainty (which we found to be about
0.3% of the fine-structure splittings), it is much harder to
estimate the uncertainty arising from omitted higher-order
correlation effects, here the core triple excitations (excitation
of three electrons from the core) and connected quadruple
excitations. Unfortunately, there are no rigorous bounds on
omitted terms in this sort of calculation.

Starting from a Dirac-Fock calculation, which gave dis-
crepancies of about 25% with experiment for the fine-
structure splittings, we found that singles and doubles (CCSD)
gave about a −20% correlation effect, and valence triples
(CCSDTSD) a further −4% correlation effect (see Fig. 2).
Based on the apparent degree of convergence in these results,
it is not unreasonable to suppose that connected quadruples
could enter at the 1% level. Also, the effect of core excita-
tions is generally suppressed in alkali-metal atoms (see, for
example, Ref. [11]), so one would expect core triples to be
suppressed relative to valence triples, possibly also to the
1% level. Since our final CCSDTSD fine-structure splittings
agree with experiment for the most part to better than 0.5%
(see Fig. 3), the overall level of agreement between theory
and experiment therefore seems perfectly satisfactory. (It is
possible that the level of agreement found for CCSDTSD is
in fact partly fortuitous, in the sense that omitted correlation
effects are slightly larger but tend to cancel.) The largest
discrepancies at CCSDTSD level are for the highest n = 15 and
16 Rydberg states measured, which are 1%–1.5% discrepant
with experiment, but this is only 2–2.5 experimental standard
deviations in those measurements.

The trend of the discrepancies as a function of n may be
significant. We note that the small deviations of the points
for the n = 5, 10, 14, 15, and 16 Rydberg states observed at

CCSDTSD level in Fig. 3 are also seen to occur in a similar
pattern at other correlation levels E(2), E(2) + E(3) + E(4ch),
and CCSD in Fig. 2. But, once again, the discrepancies
are small compared to possible theoretical uncertainty from
omitted correlation effects, so this is not clear.

Our calculations show that the fine-structure splittings are
very sensitive to correlation effects: triple excitations with
CC methods, which is currently the state of the art, enter at
the 4% level. By comparison, triples enter at the 0.02% level
in the 2F -state ionization energies, which have a much more
rapidly convergent MBPT. Relativistic many-body effects also
are enhanced: the Breit interaction enters at the 0.5%–1.0%
level in fine-structure splittings, but only at the level of
one part in 106 in the ionization energies. Field-theoretic
effects such as retardation and the radiative self-energy and
vacuum polarization are also enhanced, and are expected to
enter the fine-structure splittings at the 0.1% level, which is
comparable to the experimental uncertainty at small n (e.g.,
0.07% experimental uncertainty for n = 4). Unfortunately, in
order to isolate these field-theoretic terms in the calculation, it
would first be necessary to improve the treatment of correlation
effects to a level significantly better than the 1% level currently
achieved with CCSDTSD, for example, by including valence
quadruples and core triples in some approximation. It is
clear that the 2F -state fine-structure splittings, even in a
neutral medium-Z element such as Rb, provide a stringent
test of present-day methods in relativistic atomic many-body
theory.
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