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Beyond the Born-Oppenheimer approximation with quantum Monte Carlo methods
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In this work we develop tools that enable the study of nonadiabatic effects with variational and diffusion
Monte Carlo methods. We introduce a highly accurate wave-function ansatz for electron-ion systems that can
involve a combination of both clamped ions and quantum nuclei. We explicitly calculate the ground-state energies
of H2, LiH, H2O, and FHF− using fixed-node quantum Monte Carlo with wave-function nodes that explicitly
depend on the ion positions. The obtained energies implicitly include the effects arising from quantum nuclei
and electron-nucleus coupling. We compare our results to the best theoretical and experimental results available
and find excellent agreement.
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I. INTRODUCTION

From a computational perspective, treating nuclei and
electrons simultaneously appears to require significantly more
effort than the pure electronic problem even though in principle
similar techniques can be applied to both types of simulations.
One of the great successes in developing wave functions to go
beyond the Born-Oppenheimer approximation was the intro-
duction of the explicitly correlated Gaussian (ECG) basis [1,2],
which allowed the prediction of ground-state energies, in-
cluding nonadiabatic effects. Presently, the ECG method is
limited to rather small system sizes and to only a few quantum
nuclei [1,3]. Other methods have also been introduced with
the promise of treating larger system sizes, such as nuclear-
electronic orbital (NEO) Hartree-Fock [4], path integral Monte
Carlo [5–7], explicitly correlated NEO Hartree-Fock [8–
10], and multicomponent density functional theory [11–16].
However, there is not yet a clear path to simulating large system
sizes with high accuracy. In this paper we develop tools for
use in nonadiabatic quantum Monte Carlo (QMC) simulations
to include the effects arising from quantum nuclei and the
coupling between the electrons and the nuclei. We show that
this approach is competitive in accuracy with the ECG method,
and it can be extended to significantly larger system sizes.

QMC methods have the capability to treat large system
sizes while maintaining highly accurate descriptions of the
electronic structure [17–25]. An important component of these
simulations is to generate a good starting wave function by
determining the key variational degrees of freedom and then
optimizing them in variational Monte Carlo (VMC). Our ap-
proach assumes that the electron-electron correlations require
the most variational degrees of freedom in the wave function,
and to capture these correlations hundreds of parameters are
introduced in the form of determinant coefficients. We show
that the electron-ion and ion-ion correlations can be treated
to sufficiently high accuracy with a smaller set of variational
parameters and that fixed-node diffusion Monte Carlo (FN-
DMC) can be used to capture the remaining correlation energy.
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The fixed-node approximation is used to simulate fermion
wave functions with QMC. It is based on the principle that a
ground-state energy can be determined exactly and efficiently
if the exact nodes of the ground-state wave function are known.
The nodes of a wave function are the regions of space in
which the wave function is equal to zero. This approximation
is widely used because even when only approximate nodes are
known, FN-DMC can be used to get a variational estimate
of the ground-state energy to high accuracy. Only a few
previous simulations of nonadiabatic Hamiltonians have been
performed with FN-DMC, and they mostly have been limited
to pure hydrogen systems [26–33]. Some of these calculations
are quite impressive as they involve the simulation of hundreds
of nuclei and electrons simultaneously. However, since the
simulations on solid hydrogen [27,28] there have only been
only a handful of nonadiabatic FN-DMC simulations, and
these have been limited to small hydrogen molecules.

II. WAVE FUNCTIONS FOR ELECTRONS AND NUCLEI

The adaptation of wave functions generated with typical
quantum chemistry codes for use in nonadiabatic simulations
is not straightforward. In particular, the single-particle orbitals
are dependent on the positions of the clamped nuclei, and it
is not evident how to modify the single-particle orbitals in a
consistent manner. We use the terminology “clamped nuclei”
when referring to simulations in which the ion positions
are fixed in space, and “quantum nuclei” when referring to
nonadiabatic simulations in which the nuclei are included
in the quantum wave function. Several strategies can be
implemented to use quantum chemistry wave functions in
FN-DMC calculations, which are applicable to a wide range of
problems having a combination of clamped ions and quantum
nuclei. We consider three different wave function forms that
are progressively more accurate as follows:

�(r,R) = eJ (r,R)φ(R)
∑

i

α∗
i Di(r), (1)

�(r,R) = eJ (r,R)φ(R)
∑

i

α∗
i Di(r,R

∗), (2)
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�(r,R) = eJ (r,R)φ(R)
∑

i

αiDi(r,R), (3)

where r refers to the coordinates of all the electrons and R

to those of all the nuclei. J (r,R) is the Jastrow term which
involves variational parameters that correlate the quantum
particles and additionally enforce cusp conditions in the wave
function. φ(R) is the nuclear part of the wave function. The
final terms correspond to determinants D and the correspond-
ing coefficients α. The ∗ denotes how these terms are evaluated,
as will be discussed.

The nuclear part of the wave function is chosen to be a
simple product of Gaussian functions over each nucleus pair

φ(R) ∝
∏

i

i < j

e−aij (|Ri−Rj |−bij )2
, (4)

where a and b are optimizable parameters. In our calculations
aij has only a single optimized value a, and for bij we use the
Born-Oppenheimer equilibrium distance between the species
involved.

The terms in these wave functions involve very specific
calculations that are performed and optimized in both quan-
tum chemistry codes and quantum Monte Carlo codes. The
determinant terms, α∗

i Di(r), α∗
i Di(r,R∗), and αiDi(r,R) differ

based on how we optimize the determinant coefficients α and
how we parametrize the evaluation of the determinants based
on the ion coordinates R.

The wave function in Eq. (1) is the least accurate of the
three wave functions and has a fixed determinant regardless of
where the ions are. The term α∗ indicates that the determinant
coefficients have been optimized at the equilibrium geometry.
Both the ionic part of the wave function (φ) and the Jastrow
depend on the ion positions, which is important as the Jastrow
maintains the cusps between all the quantum particles. This
form of the wave function has previously been used for
large-scale simulations of metallic hydrogen [26–28]. The
problem with this type of wave function is that the accuracy is
limited by the electronic nodes, which do not depend on the ion
positions. This may be a good approximation for condensed
matter systems, but in general the determinant should depend
on the ionic coordinates.

The wave function in Eq. (2) fixes many of the problems
of the previous wave function. The α∗ indicates that the
determinant part of the wave function is optimized for the
equilibrium ion positions, as in the previous wave function,
but the term R∗ signifies that the determinant depends on
the position of the ions through the basis set. Basis sets in
molecular calculations are generally constructed from local
orbitals centered around the atoms. In these calculations a
single-particle orbital is written as θ (r) = ∑

ji γj (r − Ri),
where i is an index for an ionic center, and j is an index for a
basis set element. In this form, wave functions depending on
the ion positions are straightforward to create and optimize, but
difficulties may arise with the possible directional dependence
of the single-body orbitals, such as in covalent bonds. This
can be addressed with directionally dependent Jastrows, but
we go further than this, as will be discussed. This form of the
wave function is similar to the wave function used in Ref. [26]
for the molecular hydrogen phases. They are not quite the

same, however, as the electronic orbitals and ionic orbitals
were centered around fixed positions and thus the electronic
orbitals did not explicitly track the ion positions. A few of
the simulations did have the electrons track the centers of the
hydrogen molecules as they changed position.

Equation (3) represents what we expect to be the best
wave function considered here since it has explicit dependence
on the ion positions for the single particle orbitals and the
determinant coefficients. Essentially this amounts to recal-
culating a wave function from scratch each time the ion
positions are changed. This would significantly increase the
computational cost of these simulations as well as cause many
technical challenges.

In this work we focus on the wave function in Eq. (2),
which is efficient and accurate, and captures the main physics
of interest. To be more explicit, the wave-function generation
is done as follows with GAMESS [34] and in a modified version
of QMCPACK [35,36].

(1) Calculate a wave function in GAMESS for the clamped
nuclei system of interest at the equilibrium geometry.

(2) In the case of multideterminant wave functions, retain
all the determinants with an initial coefficient larger than ε,
e.g., 0.0001.

(3) Use an electron-ion cusp correction for the single-
particle orbitals.

(4) Optimize the α parameters and the Jastrow parameters
simultaneously with the clamped nuclei Hamiltonian. We
optimize one-body, two-body, and three-body Jastrow terms
for electron-electron and electron-ion coordinates.

(5) Optimize the ionic variational parameters in φ with the
full electron-ion Hamiltonian.

III. DRAGGED NODE APPROXIMATION

It is useful to compare the different nodal structures in
the wave functions given by Eqs. (2) and (3). In Eq. (3), the
nodes are defined by the determinant that is calculated at each
position in space, but in Eq. (2), we use the determinant defined
at the equilibrium geometry, and then drag those nodes around
through the basis set dependence. We call this the dragged node
approximation, which is completely variational when used in
VMC and FN-DMC. In this work the ions obey Boltzmann
statistics, which is exact for all the systems considered here.
A determinant can be introduced for ionic orbitals when the
statistics of the ions is important.

IV. SINGLE-PARTICLE ORBITALS AND
RELATIVE COORDINATES

The largest system we consider here is FHF−. This is a
linear molecule in which we fix the fluorine positions and treat
the electrons and hydrogen nucleus quantum mechanically. We
use the form of Eq. (2), without modification, as the fixed F
ions localize the hydrogen ion between them. Additionally, we
also consider LiH and H2, which are rotationally symmetric
systems for the ions. Direct use of the clamped nuclei wave
functions causes an artificial increase in energy as several
of the single-particle orbitals are oriented along the initial
bonding axis. To attain the highest accuracy possible, the
wave functions need to be modified to track the ions as they
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rotate around each other. This can be addressed by explicitly
symmetrizing the electronic wave function with respect to the
ionic rotations.

There are a few ways of modifying a QMC code for this
purpose, without making a new wave function call for the
different rotational configurations of the ions. One solution
is to sample ionic configurations as normal, and then rotate
the whole system such that the ions lie along the direction in
which the single-particle orbitals were generated. We can use
this procedure for the wave function in Eq. (2), as our Jastrow
and ionic orbitals are generated in relative coordinates. For
two atom systems we do this as follows.

(1) Apply a shift S, such that the first ion is shifted into its
position of the clamped nuclei calculation.

(2) Apply a rotation U to rotate the second ion along the
original axis of the clamped nuclei calculation.

(3) Shift and rotate all the electrons by S and U.
(4) Evaluate the wave-function amplitude, gradient, and

Laplacian in the new coordinates.
(5) Apply the inverse rotation and the inverse shift to the

electron and ion coordinates using U−1 and S−1.
(6) Apply the inverse rotation to the gradient using U−1.
Analytic gradients and Laplacians can be used for the

electronic part of the wave function, but we use finite
differences to calculate the ionic terms.

V. RESULTS FOR H2

The ground state for the hydrogen molecule is achieved
exactly using DMC. This is because the electrons and ions
have spin degrees of freedom such that the exact solution is
a nodeless wave function. The best QMC results to date were
simulated by Chen and Anderson to quite high accuracy [29].
In this case the quality of the trial wave function only affects the
convergence speed. Therefore our interest in the H2 molecule
is to demonstrate properties of the variance of the energy and
the accuracy that can be achieved with our wave-function
ansatz of Eq. (2). In Table I we report our results for the
symmetric Hartree-Fock wave function (HF), the symmetric
full-CI wave function (CI), and a nonrotationally symmetric

TABLE I. Nonadiabatic ground-state energies of H2: symmetric
Hartree-Fock (HF), symmetric full-CI (CI), and nonrotationally
symmetric full-CI (CI-nr) refer to the trial wave function. The
FN-DMC-full/CI results are our best results. The term “fixed”
indicates fixed nuclei results and “full” stands for quantum nuclei
results. Energies are given in atomic units with one σ error estimate
in parentheses.

HF CI-nr CI

VMC-fixed −1.1360(1) −1.1742(1)
variance-fixed 0.147 0.016
FN-DMC-fixed −1.17448(2)

VMC-full −1.1197(1) −0.751(1) −1.1617(1)
variance-full 0.15 0.864 0.021

FN-DMC-full −1.1639(2) −1.163(1) −1.16401(5)
variance-full 0.122 0.111 0.021

Comparisons Our Work ECG
−1.16401(5) −1.16402503084 [38]

TABLE II. Nonadiabatic ground-state energies of LiH: The VMC
for the CASSCF-nr takes a long time to converge, as the ions slowly
rotate around each other. The energy appears to be less than −8.0,
with a variance larger than 0.5, which we indicate in the table. See
the caption of Table I and text for more details.

HF CASSCF-nr CASSCF

VMC-fixed −8.06434 −8.0691(2)
variance-fixed 0.035 0.013
FN-DMC-fixed −8.07045(2)

VMC-full −8.0596(1) −8.0< −8.0648(2)
variance-full 0.036 0.5> 0.015
FN-DMC-full −8.0655(2) −8.0646(3) −8.06628(2)
variance-full 0.036 0.022 0.015

Comparisons Our Work ECG Experiment
−8.06628(2) −8.0664371 [42] −8.0674 [39,40]

full-CI wave function (CI-nr). The terms Hartree-Fock and
CI refer to how we generate the starting single-particle
orbitals and determinant coefficients in GAMESS. For the
CI wave functions [and also for the complete active space
self-consistent field method (CASSCF) wave functions in
Table II], the determinant coefficients are reoptimized, along
with a Jastrow and variational parameters for the ionic orbitals.
We use the Atomic Natural Orbital basis sets for all of our
calculations [37].

The VMC energy for our best wave function, i.e.,
−1.1617(1), is only 2 mHa higher than the exact result, which
not only demonstrates the high quality of our wave-function
ansatz, but in comparison to the HF and CI-nr results, this
shows the importance of both treating the electron correlations
to high accuracy and rotationally symmetrizing the wave
function.

VI. RESULTS FOR LIH

Our results for LiH are demonstrative of what can be
achieved with our techniques in comparison to other methods,
and we report an energy that is about 0.1 mHa higher than the
best ECG estimate for the nonadiabatic ground-state energy
of LiH, as shown in Table II. Our final result is approximately
1 mHa higher than the experimental estimate [39] following the
analysis of Scheu, Kinghorn, and Adamowicz [40]. However,
predictions made in a recent thermochemistry benchmarking
study [41] suggest better agreement, although the error bars
are on the order of 0.5 mHa, which are too large to make any
definite conclusions. The most striking and systematic results
come from strong convergence of the ECG results with basis
set size [1,42]. These results appear to be converged well below
0.1 mHa, and this would imply the fixed-node approximation
for our wave function ansatz yields an error of only 0.1 mHa.

The origin of our fixed-node error may come directly
from the clamped nuclei optimization of the determinant
coefficients. The energy of our clamped nuclei FN-DMC
simulation is roughly 0.1 mHa higher than the best ECG result
with clamped nuclei we get −8.07045(2) and the ECG value
is −8.070553(5). Therefore improving the electronic nodes
further within our current ansatz would likely increase our
accuracy below 0.1 mHa. This is feasible within our approach,
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as we are not close to the limit of number of determinants we
can optimize.

VII. RESULTS FOR H2O AND FHF−

We test two larger systems to demonstrate the scalability
of FN-DMC in treating more interesting systems. We use
only a Hartree-Fock starting point for the electronic part of
the wave function and make no attempt to calculate the best
energies for H2O or FHF−, although it is possible that our
energies might currently be the most accurate. For the water
molecule we treat all three ions as quantum particles. We are
not symmetrizing the wave function as the hydrogen ions rotate
around the oxygen ion. This will constrain the full rotations of
the hydrogen atoms and increase the kinetic energy slightly, as
was discussed previously. For our previous results of LiH and
H2, this caused an error of 1 mHa relative to our symmetric
wave functions.

Using a single determinant H2O wave function with the
fixed-node approximation gives an error of about 10 mHa
relative to the exact value [43]. However, here we are mainly
interested in the energy difference between the clamped
nuclei and the nonadiabatic cases, which gives an estimate
for the zero-point energy (including the effects arising from
the electron-nucleus coupling). For the clamped nuclei case
we obtain −76.4221(6) Ha for the total energy, and for
the nonadiabatic case we obtain −76.4012(14) Ha. This
yields an energy difference of 0.0209(20) Ha, which is in
good agreement with the best zero-point energy estimate of
0.0211 Ha [41] for the water molecule. More detailed analysis
of the water molecule and hydrogen bonding is a subject of a
later paper with a more accurate trial wave function.

For the case of the bihalide ion FHF− we treat the proton
as a quantum nucleus, but we fix the fluorine nuclei, as they
are significantly heavier. This also enables us to determine a
potential energy surface in terms of the distance between the
fluorine atoms, including the coupling of the electrons and
the proton. Fitting our FN-DMC results at various different
fluorine distances to a Morse potential [44], we obtain for
the internuclear F-F distance the value R0 = 2.3037(41)Å,
which coincides with the experimental nonadiabatic estimate
of 2.304 Å [45,46]. The other Morse parameters are D0 =
200.3470(6) Ha and α = 0.0330(12)Å−1.

VIII. DISCUSSION

Chemically significant nonadiabatic applications are typi-
cally much larger than can currently be treated with ECG and
full CI methods [26,47,48]. The results in this work demon-
strate that FN-DMC has great potential for simulating nonadia-
batic systems, as it is both fast and accurate. Additionally QMC
can complement the ECG method in benchmarking, especially
since the ECG method loses accuracy for larger molecules. The

accuracies within the fixed-node approximation can be further
increased to some extent for all the systems considered here,
without incurring significant increases in the computational
cost. For example, the clamped nuclei LiH results took under
100 cpu hours to calculate, and the nonadiabatic calculations
were done in under 1000 cpu hours.

As for applications, we are able to consider system sizes
well beyond the largest ECG calculations, including systems
with more than two quantum nuclei. The bottleneck with
FN-DMC calculations for nonadiabatic systems is less about
computer time and more about devising forms for the wave
functions [49,50], especially for highly nonadiabatic systems.
A strategic combination of the wave functions in Eqs. (2)
and (3) is likely to produce excellent VMC results for
nonadiabatic systems, and FN-DMC is capable of treating
such systems even without significantly improving the wave
functions used in this work. Moreover, it is quite possible that
other techniques such as NEO and ECG can be combined with
our QMC approach to produce even more accurate results, and
subtle details about our wave functions can be explored with
techniques recently developed for use in QMC [51–54].

IX. CONCLUSION

In this paper we have demonstrated that FN-DMC is
comparable to the best methods that can be applied to calculate
nonadiabatic ground-state energies, and we have shown highly
accurate results on four different systems. Our procedure takes
advantage of standard quantum chemistry methods to create
wave functions for these non-Born-Oppenheimer simulations.
These techniques provide the framework for using FN-DMC in
future studies of nonadiabatic molecular and condensed matter
systems.
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