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A theoretical model of the influence of detection-bandwidth properties on observed line shapes in laser
absorption spectroscopy is described. The model predicts artificial frequency shifts, extra broadenings, and line
asymmetries that must be taken into account in order to obtain accurate central frequencies and other spectroscopic
parameters. This reveals sources of systematic effects most probably underestimated, so far potentially affecting
spectroscopic measurements. This may impact many fields of research, from atmospheric and interstellar physics
to precision spectroscopic measurements devoted to metrological applications, tests of quantum electrodynamics,
or other fundamental laws of nature. Our theoretical model is validated by linear absorption experiments performed
on H2O and NH3 molecular lines recorded by precision laser spectroscopy in two distinct spectral regions, near-
and midinfrared. Possible means of recovering original line-shape parameters or experimental conditions under
which the detection bandwidth has a negligible impact, given a targeted accuracy, are proposed. Particular
emphasis is put on the detection-bandwidth adjustments required to use such high-quality molecular spectra for
a spectroscopic determination of the Boltzmann constant at the 1 ppm level of accuracy.
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I. INTRODUCTION

Spectroscopy, the study of the interaction between radiated
energy and matter, has played and is playing a crucial role in
many domains of science. One can think of the development of
quantum physics and the study of atomic structure. In physical
and analytical chemistry, atomic and molecular spectra are
used to detect, identify, and quantify key information. In
astronomy spectra observed with telescopes are used to
determine the chemical composition and physical properties
of astronomical objects.

In recent years, there has been a growing interest in highly
precise and accurate observations of the shape of molecular
spectral lines. Climate modeling and global change research
programs are setting unprecedented accuracy targets in gas-
sensing missions for atmospheric CO2 and other greenhouse
gases [1]. The desired uncertainty can only be reached by mak-
ing high-quality measurements of spectroscopic parameters
(including pressure broadening coefficients and line intensity
factors) using well-designed and characterized experiments
[2–5]. Similarly, the interpretation of spectra of astrophysical
and planetary interest needs a precise knowledge of line-shape
parameters and current databases require further improve-
ments [6,7]. The accurate observation of line profiles is also
crucial to the physics of collisions by testing theories modeling
the shape of atomic or molecular transitions perturbed by
collisions [8–12]. Highly accurate spectroscopy plays as
well a decisive role in precision measurements devoted to
metrological applications and tests of fundamental physics.
Spectroscopy of the constituents of atoms, atoms themselves,
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molecules, and simple exotic atoms (antihydrogen, muonic
atoms, etc.) is being used to test quantum electrodynamics,
to test fundamental symmetries (such as P , PT, CPT, matter-
antimatter, etc.), and to test postulates of quantum mechanics
(symmetrization postulate, wave-function collapse, etc.). It
is being used also to measure fundamental constants and
properties (fine structure constant, Rydberg constant, proton-
to-electron mass ratio, Boltzmann constant, etc.) and their
possible variation in time [13,14].

The present paper identifies a source of systematic effects
that may have been underestimated so far: it investigates the
possible inaccuracy in the experimental determination of line-
shape parameters—central frequency, various contributions
to the linewidth, line intensity, etc.—due to the unavoidably
limited bandwidth of the detection chain with which spectra
are recorded. To the best of our knowledge, the only published
work addressing this particular issue regarding the detection
bandwidth is Townes and Schawlow’s book where they present
a rule of thumb for circumventing it [15]. Given the un-
precedented sensitivity and precision of recent spectrometers,
a detailed study is becoming increasingly relevant. This is
the case, for instance, of the “fast-scan” technique where
frequency varies rapidly [16,17].

The present study was initially motivated by ongoing
experiments dedicated to Doppler broadening thermometry
(DBT), a relatively new technique used in our laboratories to
determine the Boltzmann constant (kB ) [18,19]. DBT consists
of retrieving the Doppler width from the accurate measurement
of the linear absorption profile of an atomic or a molecular tran-
sition in a gaseous sample at the thermodynamic equilibrium.
A determination of kB by DBT with a combined uncertainty
of 1 ppm, comparable to the best current uncertainty obtained
using acoustic methods, would make a significant contribution
to any new value of this constant determined by the Committee
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on Data for Science and Technology (CODATA). Furthermore,
having multiple independent measurements at these accuracies
opens the possibility of defining the kelvin by fixing kB, an
exciting prospect considering the upcoming redefinition of the
International System of Units (SI) [20–22]. One important
result of this work is to quantify the inaccuracy of the
spectroscopic determination of kB due to the limited detection
bandwidth.

This paper begins by describing in Sec. II a model showing
that a finite measurement bandwidth results in a distortion of
the line shape accompanied by a shift of the retrieved central
frequency. Section III validates this model by the analysis of
high-quality linear absorption molecular spectra recorded in
different spectral regions. Linear absorption is a particularly
interesting and challenging case as it puts at stake complex
profiles involving many inhomogeneous and homogeneous
contributions to shifts, broadenings, and narrowings of the
line. Section IV describes possible means of recovering the
original central frequency and line-shape parameters. Finally
Sec. V discusses the implications of these effects for precision
measurements of the Doppler width by DBT.

II. THEORETICAL MODEL

Two key cases are considered. First, we consider the effect
of the detection bandwidth on the recorded absorption signal
assuming a continuous sweep of the laser frequency. We then
extend this treatment to a frequency sweep consisting of a
series of discrete steps, as is the case in most spectrometers.

A. Impact of the detection bandwidth on recorded
absorption signals

Let us consider the case of an isolated line, the absorbance
A(ν) of which is small enough so that the Beer-Lambert law
can be considered in its linear form [sample transmittance
is given by 1 − A(ν)].1 In laser absorption spectroscopy, the
absorbance A(ν) is typically recorded as a function of the
laser frequency ν that evolves linearly with time t at a constant
sweep speed ν̇ = dν/dt (in Hz/s) (assumed positive unless
explicitly quoted). The detection chain can be viewed as a
low-pass filter, generally of either the first or the second order
with −6 or −12 dB/octave roll-off, respectively.

In case of the second-order filter, frequently considered
when using a lock-in detection, the time evolution of the
recorded signal D(t) is given by [24]

τ 2
D

d2D(t)

dt2
+ τD

Q

dD(t)

dt
+ D(t) = A(t), (1)

where τD is the filter time constant, Q the filter quality factor
which is usually less than 1 for useful low-pass filters, and
A(t) is the time evolution of the absorbance A(ν) under study.

1In order to avoid any coherent transient problem due to rapid
passage, which is beyond the scope of this paper [23], collisional
relaxation is assumed large enough so that A(ν) actually corresponds
to the steady-state regime at the frequency ν. Modifications of the
laser frequency at the scale of one relaxation time constant must be
smaller than the collisional linewidth, i.e., ν̇ � 2π�ν2

coll.

Equation (1) can be rewritten in terms of laser frequency as

Q2ν2
D

d2D(ν)

dν2
+ νD

dD(ν)

dν
+ D(ν) = A(ν), (2)

where νD = τDν̇/Q is a “frequency constant”, a characteristic
parameter of experimental recording conditions, and D(ν) is
the signal recorded at the laser frequency ν.

In order to avoid unwanted signal deformations, the time
constant τD , and therefore |νD|, has to be chosen to be small
enough with respect to the time interval required to record
the whole line profile [15]. In this case, by analogy with
signal processing theory [24,25], an approximated solution of
Eq. (2) is a detected signal D(ν) that reproduces the expected
absorbance signal A(ν) with a slight frequency lag given
approximately by the frequency constant νD .

In order to get a better insight into the actual recorded signal,
a more accurate solution can be obtained from a development
of D(ν) in powers of νD and written as

D(ν) = A(ν − νD) +
∞∑

k=1

(νD)kαk(ν), (3)

where αk(ν) are trial functions and A(ν − νD) can be expressed
as a function of A(ν) derivatives:

A(ν − νD) = A(ν) +
∞∑

�=1

(−νD)�

�!

d�A(ν)

dν�
. (4)

By using Eqs. (3) and (4) and comparing identical powers
of νD , Eq. (2) leads to a set of coupled differential equations
linking αk(ν) functions and their first and second derivatives
to A(ν) derivatives. After simple calculations, one obtains

D(ν) = A(ν − νD) + (1/2 − Q2)(νD)2 d2A(ν)

dν2

−(5/6 − 2Q2)(νD)3 d3A(ν)

dν3
+ · · · . (5)

To the lowest order, the recorded line is thus simply
shifted (to higher or lower frequencies depending on whether
the laser frequency is increasing or decreasing) without any
deformation. It is worth noting that this shift, given by the
frequency constant νD , is independent of the actual line shape.
The second term depends on the second derivative of A(ν). In
case of a symmetric line shape, this term reaches a negative
minimum value at the line-center frequency ν0 and is nearly
zero in the vicinity of the two frequencies corresponding to half
maximum. This entails a reduction of the line amplitude and
thus a modification of the line shape resulting in an asymmetry
and a modified linewidth. However, it is interesting to note
that this term vanishes for Q = √

1/2, a condition which is
fulfilled in the case of the so-called Butterworth filter [24].
Unfortunately, it seems that for many lock-in amplifiers [26],
the −12 dB/octave roll-off is obtained with two identical
successive first-order filters, where Q = 1/2 instead. The third
term depends on the third derivative of A(ν), an odd function
when the line shape is symmetric, so this term contributes also
to an apparent line-shape asymmetry. Subsequent terms of
Eq. (5) are generally small and contribute to more complex
line-shape distortions. In conclusion, in the case of a second-
order low-pass filter, we expect an impact on the linewidth as
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well as a distorted line shape which leads to an apparent shift
on the line-center frequency.

This description can be extended to the case of a first-order
filter. It is easily shown that previous equations also hold by
setting Q = 0, except the frequency constant νD is given by
νD = τDν̇, where τD is the first-order filter time constant.

B. Impact of the detection bandwidth on recorded dipole
moment correlation function

By moving to the time domain by Fourier transform, the
signal D(ν) can be replaced by its Fourier transform D̃(τ ):

D̃(τ ) =
∫ +∞

−∞
D(ν) exp(+2πiντ )dν. (6)

A similar equation holds for the Fourier transform of the
absorbance A(ν) which can be interpreted as proportional to
the correlation function �(τ ) of the dipole moment induced
in the gaseous medium after a laser excitation starting at time
τ = 0 [12,27,28]. For the second-order filter case, Eq. (2)
becomes [24]:2

D̃(τ ) ∝ G̃(τ )�(τ ), (7)

where G̃(τ ) can be seen as the complex linear “gain” of the
system given by

G̃(τ ) = 1

1 − 2πiνDτ − (2πQνDτ )2 . (8)

Equation (7) tells us that the detection system properties can
be taken into account by simply multiplying the correlation
function �(τ ), by the gain G̃(τ ) of the system, thus leading to
the following expression:

D̃(τ ) ∝ �(τ )

1 − 2πiνDτ − (2πQνDτ )2
, (9)

that can be included in the spectrometer instrumental function
in the line-shape modeling.

It is worth noting that this result is exact, quite an interesting
property for fitting purposes by comparison with the frequency
domain solution given by Eq. (5) development. Moreover,
�(τ ) has an analytical form for a number of line profiles such as
Voigt, Galatry, speed-dependent Voigt, and speed-dependent
Galatry models [12,28–31], including the case of frequency
modulated spectral profiles [32]. Of course, the result is
not restricted to the second-order low-pass filters (or to the
first-order ones by setting Q = 0), and can be generalized to
more complicated detection schemes.

Furthermore, this result can be extended to optically thick
media for which the Beer-Lambert law cannot be replaced
by its linear approximation. In this latter case, the sample
transmittance T (ν) will be given by T (ν) = exp[−A(ν)] and
its Fourier transform 	̃(τ ) [33]. Then, the sample detected
transmission will be proportional to the Fourier transform of
G̃(τ )	̃(τ ).

2Note that, in contrast to usual signal treatment theory, frequency
and time domains are exchanged, ν and τ (the latter not to be confused
with time t) being conjugate variables.

C. Application to the Voigt profile

As an illustrative example, let us consider the Voigt profile
in more detail. The corresponding dipole correlation function
is [12,31]

�Voigt(τ ) ∝ exp[2π (iν0 − �νcoll)τ − (π�νDopτ )2], (10)

where ν0 is the line-center frequency, �νcoll the collisional
width [half-width at half maximum (HWHM) of the
Lorentzian contribution to the profile], and �νDop the Doppler
width (half-width at 1/e of the maximum of the Gaussian
contribution to the profile). By using the Taylor expansion of
ln[G̃(τ )] along with Eq. (10), the Fourier transform D̃Voigt(τ )
of the detected signal D(ν) becomes

D̃Voigt(τ ) ∝ exp
{
2π [i(ν0 + νD) − �νcoll]τ

− [
�ν2

Dop + (2 − 4Q2)ν2
D

]
(πτ )2

− i(1/3 − Q2)(2πνDτ )3 + · · · }. (11)

For small values of the time τ , this asymptotic expansion in
terms of τ facilitates useful interpretations, while remaining
in good agreement with results from Eq. (5).

The imaginary and real parts of the τ term show that the
absorption-line center ν0 is frequency shifted by νD whereas
the collisional broadening �νcoll remains unaffected.

On the other hand, the τ 2 term is responsible for a
modification of the line shape, where the Gaussian contribution
�νGauss to the Voigt profile appears to be different from the
pure Doppler width, according to the following expression:

�νGauss =
√

�ν2
Dop + (2 − 4Q2)ν2

D. (12)

Finally, the τ 3 term is imaginary and thus leads to a line
asymmetry. Note that the area of the recorded line remains
unaffected since D̃(τ = 0) ∝ �(τ = 0) = 1 [24].

At this point, it is useful to introduce some typical values
and orders of magnitude to facilitate the discussion about
the motivations of our work. Among spectroscopists, a rule
of thumb is that the detection time constant τD should be
at least 20 times smaller than the duration required for
recording the line shape over one half-width [15], thereby
constraining the detection frequency constant νD . For low-
pressure experiments, namely in the Doppler regime, this
condition leads to |νD| ≈ �νDop/10 in case of the usual
−12 dB/octave roll-off of a second-order filter with Q = 1/2.
This means that the recorded line center will be shifted by about
a tenth of the Doppler width, a value which could be far from
being negligible considering the accuracy and signal-to-noise
ratio achieved with modern laser-based spectrometers.

Under the same operation conditions, the apparent Doppler
width will be slightly increased, by about 5 × 10−3. Such a
value, actually negligible for common spectroscopic studies,
must be considered very carefully in the case of the exper-
iments to measure the Boltzmann constant via the Doppler
width [34–36], where a 1 ppm combined uncertainty is being
targeted. In the case of a second-order filter with the usual
quality factor Q = 1/2 [26], this requirement leads to a
|νD/�νDop| ratio as small as 1/700 that requires a very small τD

time constant and/or low-frequency speed ν̇. In this respect, it
is worth noting the advantage of implementing a second-order
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Butterworth filter in a lock-in amplifier: its specific Q value
(
√

1/2) leads to first order to a Gaussian width which is
unaffected by the value of the frequency constant νD and equal
to the Doppler width �νDop [see Eq. (12)].

Note in passing that the theoretical model proposed here
can also be applied to line shapes relevant for sub-Doppler
(saturated or two-photon absorption) spectroscopy widely used
in frequency metrology and high-resolution spectroscopy of
molecules, atoms, or ions. In these cases, only the homoge-
neous (Lorentzian) profile needs to be considered.

D. Step-by-step frequency sweeping mode analysis

So far, we have considered a continuous tuning of the
laser frequency. However, for many spectrometers, typical
experimental conditions correspond to a frequency ν swept
step by step via a frequency synthesizer, each frequency step
�ν having a time duration �t , thus leading to an average
frequency sweep speed given by ν̇ = �ν/�t . As the laser
frequency changes, taking the value νn at time tn, the sample
absorbance A(t) should consist of a sequence of steps, each
of them being A(t) = A(νn) for tn � t < tn + �t . After
detection, A(t) is treated by the amplifier acting as a low-pass
filter [Eq. (1)], leading to the signal D(t) which is sampled at
time tn + �t (just before a new frequency change), the delay
�t allowing for filter integration.

This step-by-step frequency sweeping and sampling mode
was modeled by numerically integrating Eq. (2). This allowed
artificial line shapes D(ν) to be generated. For simplicity, the
gas absorbance A(ν) was taken to be a Gaussian line shape.
In order to measure the distortion caused by the detection
system, the “distorted” D(ν) line shapes were fitted using a
Gaussian profile. The fit parameters, the central frequency νfit,
the Gaussian width �νGauss, and the line amplitude were then
compared to their “true” values with which the original A(ν)
profile was generated.

FIG. 1. Influence of frequency sweeping conditions on the
line frequency determination (second-order filter with Q = 1/2).
Frequency deviations (νfit − ν0)/�νDop are plotted versus frequency
constant νD/�νDop for various frequency steps �ν/�νDop (ranging
from 0.001 up to 0.1 and quoted closed to corresponding full curves).
Results corresponding to some τD/�t ratios are drawn in dotted lines
and specified by symbols: (�) 0.2; (•) 0.35; (�) 1.0. The thick line
refers to continuous frequency sweeping model.

TABLE I. aν values [see Eq. (13)] computed for various time
constant to step duration ratios τD/�ν and for various detection
filters.

Filter

Second order
Second order Q = √

1/2
τD/�t First order Q = 1/2 (Butterworth)

0 0 0 0
0.1 0.001 0.002 –
0.2 0.036 0.098 –
0.5 0.31 0.52 0.32
1.0 0.58 0.75 0.65
2.0 0.77 0.88 0.83
5.0 0.90 0.95 0.93
� 1 1 1

Figure 1 shows the deviation of the center frequency from
its original value (νfit − ν0), as a function of the frequency
constant νD , for a Q = 1/2 second-order filter. Both axes have
been scaled to the Doppler width. Full curves refer to various
frequency steps �ν and dotted lines (specified by symbols) to
different values of τD/�t . Similar behaviors were obtained for
other filters (first order and second order with Q = √

1/2) and
it is found that the frequency deviations can be written as

νfit = ν0 + aννD, (13)

where aν is a parameter depending on the considered filter
(first order, second order with Q = √

1/2 or Q = 1/2) and
on τD/�t ratio. Corresponding aν values are collected in
Table I. Limiting cases are easily understood, aν tending
towards zero for small τD/�t values and towards 1 for large
τD/�t values. This latter case corresponds to the continuous
frequency sweeping operation model which always represents
an upper limit for the frequency deviations (see Fig. 1, thick
line). The frequency deviation increases with νD , whatever the
value of the τD/�t ratio is, and for a given frequency step
value �ν, the smaller is τD/�t the smaller are the frequency
deviations. This means that, for each �t, a sufficient time
interval is left for a perfect signal integration before sampling.

Since for the width, the effects of having a step-by-step
spectrometer operation are more complicated, corresponding
discussion is postponed to Sec. V.

These models will now be compared to several experiments
done at the Laser Physics Laboratory (LPL) of Villettaneuse
and at the Molecules and Precision Measurement Laboratory
(MPML) of Caserta.

III. DESIGN FEATURES OF EXPERIMENTAL SETUPS

A. Laser Physics Laboratory spectrometer

A set of experiments were done on the saQ(6,3) rovibra-
tional line of the ν2 vibrational mode of 14NH3 recorded
at temperature T ≈ 273.15 K with the LPL’s spectrometer
operating in the 10-µm range, detailed elsewhere [37,38]. We
simply recall that the frequency was controlled step-by-step
and that the signal was amplitude modulated at 40 kHz via
a microwave-infrared frequency mixer and demodulated by a
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lock-in amplifier (Stanford Research model SR-830) operating
in the −12 dB/octave roll-off mode (note that for the current
study, line-shape broadening due to amplitude modulation
is negligible [35]). As explained in Ref. [26], the lock-in
amplifier output is a second-order system that consists of two
successive identical first-order filters, so our theoretical model
is applied with Q = 1/2.

Line shapes were recorded at various pressures P (ranging
from 0.4 to 4.2 Torr) and using various detection conditions
(frequency speeds |ν̇| ranging from 5 to 90 MHz/s and
indicated amplifier time constants τD from 30 ms to 3 s), so that
|νD| could be varied from 0.3 up to 350 MHz (i.e., from 6 ×
10−3 up to 7 Doppler widths) and τD/�t varied from 0.3 to 60.

B. Molecules and Precision Measurement
Laboratory spectrometer

Experiments were also done with the MPML’s 1.39-μm
dual-laser spectrometer. The apparatus has been already
described in detail elsewhere [10,36]. For the aims of the
present study, the intensity of the probe laser was modulated
by using a chopper at a frequency of about 2 kHz. Hence,
phase-sensitive detection was performed by using a lock-in
amplifier (Ametek, model 5209). This amplifier was also
operating in the −12 dB/octave roll-off mode. From an analysis
of rise times given in Ref. [39], it was concluded that the output
filter could be considered as being a second-order one with
Q = 1/2.

Measurements were performed on the 441 → 440 line of
the H2

18O ν1 + ν3 band at the constant temperature T of
about 296 K. Line shapes were recorded at a fixed pressure
P (of about 3.6 Torr, from a 97% 18O-enriched water sample)
and using various detection conditions (frequency speeds ν̇

ranging from 10 to 85 MHz/s and indicated amplifier time
constants τD from 0.01 to 3 s), so that νD could be varied
from 0.5 MHz up to 500 MHz (i.e., from 1.4 × 10−3 up to 1.4
Doppler widths) and τD/�t varied from 0.3 to 85.

The large signal-to-noise ratios, which were achieved in
this experiment, enabled us to analyze the deviations from the
Voigt profile and their influence on spectroscopic parameters
(see Sec. IV C).

C. A representative example: Calibration of the detection
system frequency constant

Line shapes of ammonia were recorded with the LPL’s
spectrometer, under identical thermodynamic conditions, with
a |ν̇| = 21.8 MHz/s sweeping rate and a lock-in amplifier
set to a 3 s time constant. This is 1.3 times longer than
the time required for sweeping one Doppler half-width
(�49.9 MHz). Such conditions correspond to a frequency
constant |νD| = τD|ν̇|/Q = 130 MHz (about 2.6 Doppler
widths). τD/�t was chosen to be large (equal to 44) in
order to approach the continuous frequency sweeping mode.
The recorded absorption signals are shown in Fig. 2. The
signals were recorded in both sweep directions, once with
increasing and once with decreasing frequencies (shown in
the upper and lower panels, respectively). These parameters
were chosen specifically to enhance deformations due to the
detection system. As a result, the line shapes appear to be

FIG. 2. Transmission of the saQ(6,3) rovibrational line of the ν2

vibrational mode of 14NH3 recorded for increasing (upper panel)
and decreasing (lower panel) frequencies (see text for details).
(a) Recorded line; (b) unmagnified residuals from a Voigt profile fit
taking the detection system properties into account (�νcol = 13.60(8)
and 12.56(7) MHz, respectively, achieved signal-to-noise ratios �480
and 550, respectively). Frequency scale (in MHz) is shifted by
28.953 600 THz; temperature = 273.15 K; pressure �1 Torr; cell
length = 4.5 cm; frequency step |�ν| = 1.5 MHz; step duration
�t = 68.8 ms; indicated lock-in time constant τD = 3 s.

strongly asymmetric, exhibiting a sharp leading edge and a soft
tail. They also show maximum absorption at frequencies that
differ from the true center by about 90 MHz in each direction,
corresponding to a shift of the order of νD . However, it is
interesting to note the mean value of these two frequencies is in
agreement with the frequency obtained by saturated absorption
techniques [37].

Both records have been fitted, taking the detection proper-
ties into account via an extension of Eq. (9) using a simple
Voigt profile including the Beer-Lambert law (see Secs. II B
and II C). In these fits, the central frequency νfit, the collisional
broadening �νcol, the line area, and the baseline (level and
slope) were adjusted, while fixing the Doppler broadening at
its theoretical value for T � 273.15 K. Residuals reported
in Fig. 2 show that both recorded line shapes are very
well reproduced, leading to νfit frequencies that differ by
0.33(6) MHz, less than 0.2% of the 180 MHz frequency
difference of maximum absorption pikes.

It is important to note that this residual difference can be
exactly canceled by setting the lock-in time constant to τD =
2.993 s instead of the nominal 3 s. The resulting measured
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central frequency is 28.953 694 15(5) THz, in agreement (to
within 2 standard deviations) with the value obtained by sat-
urated absorption techniques, ν0 = 28.953 693 9(1)THz [37].
This shows the importance of an accurate measurement of the
lock-in time constant τD . This is especially clear from Eqs. (5)
or (11) which show that retrieved central frequencies depend
linearly on τD via νD . Thus, for calibration purposes, we must
consider several measurements made at a fixed time constant
τD with different (�νi , �ti) sweeping conditions. Defining
νi

fit as the measured central frequency for an experiment i,
the τD value was adjusted in order to minimize the quantity∑

i (νi
fit − ν0)2. This measures the true time constant of the

lock-in detection τD , which agrees with the nominal values
to within 10% or less for large τD and 20% for the smallest
ones. These values were then considered for further analysis
(Secs. IV and V). Note that in this investigation, the Q

value remains fixed to 1/2, as Q and τD values are strongly
correlated via the definition of the frequency constant νD .

To conclude, this experiment gives strong support to
the above theoretical model and shows that an accurate
characterization of the amplifier output filter is required. In
particular, the time constant τD must be very well known.

IV. MOLECULAR RESONANCE FREQUENCY AND
LINE-SHAPE PARAMETERS RECOVERY

In this section we describe possible means of recovering
the original central frequency and line-shape parameters of
molecular transitions. Spectra have been recorded with LPL’s
or MPML’s spectrometers for which frequency sweeps consist
of a series of discrete steps. Depending on experimental
conditions (τD/�t ratio values) either the step-by-step fre-
quency sweeping mode (Sec. II D) or the continuous frequency
sweeping mode approximation has been used (Sec. II B). As no
analytical line shape is presently available for the step-by-step
model, line-shape fitting procedure has been performed in the
frame of the continuous frequency sweeping mode approxima-
tion [Eq. (7)], whereas some consequences of the step-by-step
frequency sweeping mode have been analyzed using numerical
simulations [numerical integration of Eq. (2); see Sec. II D].

A. Resonance frequency measurement

Several spectra of water vapor were recorded with the
MPML’s spectrometer in the same thermodynamic conditions,
using frequency step �ν = 3 MHz, for increasing values of the
frequency constant νD . According to Sec. II D, and considering
chosen τD/�t values (from 0.3 to 85), the frequency step
influence could not be strictly neglected (0.25 < aν < 1.0).
In a first approximation, spectra have been fitted by using
Eq. (9) in order to test resonance frequency recovery in the
frame of the continuous frequency sweeping mode approxi-
mation. This was done adopting the suitable profile, a speed-
dependent Galatry profile, with fixed collisional broadening
�νcol, pressure-induced frequency line shift, velocity exponent
m, and the diffusion parameter βGal from Refs. [10,36],
the Doppler broadening being fixed at its theoretical value
(357.05 MHz). In these fits, the central frequency νfit, the
line area, and the baseline (level and slope) were adjusted. In
Fig. 3 the retrieved line-center frequencies were plotted as a

FIG. 3. Absorption frequency of the 7199.103 cm−1 line of
H2

18O retrieved from a speed-dependent Galatry profile. Fitted
central frequencies νfit, shifted by 215.823 500 THz, are plotted
against the frequency constant νD (see text for details): (•) uncorrected
values, (◦) values corrected for detection system properties; (mixed
line) linear approximation; (dashed line) empirical model; (full line)
weighted mean value of corrected data. Error bars (3 standard
deviations) are smaller than symbols.

function of the frequency constant νD . If detection properties
are neglected, one observes a shift of νfit proportional to νD

for the lower νD values, as expected from Eqs. (5) or (11). For
νD values larger than about half the Doppler width, the line
asymmetry becomes significant, which explains the observed
nonlinearity. From the retrieved values, this deviation can
be well modeled using the empirical expression νfit = ν0 +
νD[1 − 0.125(νD/�νDop)2]. By contrast, when considering
detection properties via Eq. (9), retrieved frequencies νfit

become independent of νD , even for νD values up to 1.3 �νDop.
Their weighted mean value amounts to 215.823 688 2(6) THz,
which is in agreement within 2 × 10−8 with the expected
value ν0 = 215.823 684(3) THz, as provided by the HITRAN
database [6]. As mentioned, considering the τD/�t values, the
frequency step influence is not strictly negligible. Nevertheless
the continuous frequency sweeping approximation demon-
strates a strong improvement on frequency measurement
accuracy even for large νD values. This is simply explained
by the fact that the frequency shifts in the real operating mode
of the spectrometer (step-by-step sweep) and the continuous
frequency sweeping mode approximation remain nearly in-
distinguishable at the present uncertainty level [(1 − aν)νD

is small, whatever νD is]. For the sake of completeness,
numerical simulations have been performed to compare the
retrieved frequency in the continuous approximation and in the
step-by-step numerical analysis. For the present experimental
conditions, we conclude that the continuous approximation
entails an underestimation of the retrieved frequency of 1.2
MHz (∼6 × 10−9 of the expected frequency), about 2 standard
deviations or less than 1/200 of the Doppler width.

To analyze in detail the influence of the frequency constant
in step-by-step frequency sweeping mode, complementary
experiments have been performed at LPL on ammonia, with
fixed values of lock-in time constant (indicated value τD =
30 ms) and step duration (�t = 74.5 ms) leading to τD/�t ≈
0.4. Frequency steps �ν, in the 0.5–4 MHz range, were
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FIG. 4. Influence of the step-by-step mode on the retrieved
frequency νfit. The frequency of the saQ(6,3) rovibrational line
of the ν2 vibrational mode of 14NH3 has been fitted using the
Voigt profile (see text): (•) lock-in time constant τD and frequency
step �ν influences neglected; (+) continuous frequency sweeping
approximation; (◦) step-by-step frequency sweeping considered
with τD = 36 ms; (straight line) weighted mean value of retrieved
frequencies. Fitted frequency scale is shifted by 28.953 600 THz;
step duration �t = 74.5 ms; indicated lock-in detection time constant
τD = 30 ms; temperature = 273.15 K; pressure �1 Torr; cell
length = 4.5 cm. For clarity, error bars are 3 standard deviations.

positive or negative depending on whether laser frequency
was increasing or decreasing, respectively. Although such
conditions (0.4 < |νD | < 3.3 MHz) complies with the Ref. [15]
rule, |νD|/�νDop < 1/10, recorded lines are frequency shifted,
but without any significant line-shape distortion. All line
fits were done with the usual Voigt profile, the collisional
broadening being fixed at the value expected at the sample
pressure, the pressure-induced line shift being neglected [40].
Corresponding results are summarized in Fig. 4.

In a first step, line fits were done neglecting influences
of lock-in time constant as well as frequency step. Retrieved
frequencies νfit (plotted as •) are actually positively (nega-
tively) shifted according as the laser frequency is increasing
(decreasing). If the influence of the time constant τD is
considered via Eq. (11), that is, assuming a linear evolution
of the laser frequency, shifts of retrieved frequencies (plotted
as +) are inverted. This feature cannot be explained only by a
calibration error in τD (a factor of about 2 would be required)
and suggests the influence of the step-by-step spectrometer
operation. Thus, retrieved frequencies νfit have been corrected
following numerical simulations (Sec. II D) and using Eq. (13).
It was found that for τD = 36 ms, a value 20% larger than the
30 ms indicated one and leading to aν = 0.52, these corrected
values (plotted as ◦) become independent of �ν steps. The
horizontal full line displays the weighted average of these
values, 28.953 694 09(8) THz, a result in agreement with
the frequency obtained by saturated absorption techniques,
28.953 693 9(1) THz [37]. Moreover, it is worth mentioning
that the standard deviations of the set of measurements
(0.08 MHz) is comparable to individual νfit uncertainty
resulting from line fits (between 0.04 and 0.11 MHz). This
corresponds to a reproducibility of frequency measurements
better than 10−8 in relative value, which demonstrates the
accuracy that can be actually achieved with signal-to-noise

ratios about 200 when the spectrometer apparatus function is
properly taken into account.

The artificial frequency shifts discussed in this section
are commonly canceled by recording two scans of opposite
frequency sweep direction, expected to produce two spectra
with opposite shifts about the true resonance value. The latter
can therefore be safely recovered. However, this procedure re-
quires a fine control of all experimental parameters during the
time needed to record two spectra and a perfect control of the
symmetry of the opposite frequency sweeps. The theoretical
model described here enables the relaxation of those stringent
constraints. Another frequently used trick to get rid of laser
frequency drifts consists in randomizing the time ordering of
the discrete frequencies used to record a spectrum [41] (instead
of performing a monotonous step-by-step sweep). However,
note that this procedure induces a larger νD mean value,
increased by about the number of discrete frequencies used.
The resulting effect on the measured resonance frequency
could certainly be accurately evaluated with an extension of
our model, and taken into account in the uncertainty budget.
Finally, we note that the detection-bandwidth difficulties can
be avoided by locking the laser frequency to the line center and
measuring it relative to some standard, a technique allowing
for very high accuracy. This approach requires a modulation
of the laser frequency, with heterodyne detection (either at the
first or at the third harmonic), so as to produce a dispersive
signal when scanning the resonance. This profile is distorted
as well, depending on the selected frequency constant. In spite
of that, no effect is expected on the frequency measurement,
when locking the laser to the center of the dispersive signal,
as the laser scan is reduced to zero.

B. Collisional broadening measurements

The effects of the detection bandwidth on collisional
broadening measurements were analyzed by performing ex-
periments on ammonia using the LPL’s spectrometer. Fixing
the pressure, a series of scans in both sweep directions were
recorded at different frequency constants |νD | ranging from 0.1
up to nearly 150 MHz. These line shapes were fitted to the Voigt
model, with adjustable central frequency, collisional width,
line area, and baseline while fixing the Doppler width at its
theoretical value (a usual procedure in collisional broadening
measurements). Each dataset was fitted twice: once using a
normal Voigt profile, once accounting for the deformations due
to the detection bandwidth via Eq. (7) (assuming a continuous
laser frequency operation). Figure 5 shows the measured
collisional width as a function of the logarithm of |νD|.

If detection properties are taken into account via Eq. (7)
(square symbols), retrieved collisional widths are independent
of the frequency constant νD , as expected. The standard
deviation derived from the fits (about 0.5%–1.5%) are also
independent of νD . If the detection finite bandwidth is ignored
(circles), for largest |νD| values the extracted collisional (i.e.,
Lorentz) widths �νLorentz depart strongly from the expected
�νcol value. Such a divergence, which does not appear
explicitly in lowest-order terms of Eq. (11), is in fact artificially
introduced when fixing the Doppler linewidth in the fitting
procedure. From the experimental results of Fig. 5 which cor-
respond to the Doppler regime (�νcol � �νDop), this deviation
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FIG. 5. Collisional broadening of the saQ(6,3) rovibrational line
of the ν2 vibrational mode of 14NH3 plotted against the absolute
frequency constant (log plot). Spectra were recorded at temperature
�273.15 K and pressure �1 Torr, for both increasing (open symbols)
and decreasing (full symbols) frequencies; fits to a Voigt profile were
performed, either by neglecting actual detection properties, circle
symbols, or by correcting for them, square symbols (error bars are
3 standard deviations). Dotted line corresponds to theoretical model
(see text for details). Weighted mean value from corrected data is
〈�νcol〉 = 13.59(32) MHz.

can be modeled as �νLorentz = �νcol

√
1 + 3(νD/�νDop)2 . For

|νD|/�νDop = 1/10, the corresponding relative broadening is
about 1.5%. This means that unless we explicitly account for
deformations due to the detection bandwidth, the Ref. [15]
condition is slightly insufficient in accounting for typical
requirements in collisional broadening measurements [42].
Note that increasing and decreasing frequency experiments
lead to identical results.

The line-area behavior was also analyzed using the same ex-
perimental data. Within the Ref. [15] condition, |νD|/�νDop <

1/10, the systematic effect induced by the detection bandwidth
on line-area determination remains smaller than 0.7%.

C. Line-shape analysis

An accurate line-shape analysis was performed on water
vapor with MPML’s spectrometer. Figure 6 displays a spec-
trum obtained with the sweeping rate ν̇ = +32.6 MHz/s, and
the indicated time constant τD = 3 s, which corresponds to the
detection frequency constant νD = 196 MHz, about half the
Doppler width. In such conditions, the half-width recording
duration �νDop/ν̇ is about 3.7 times larger than the time
constant τD , to be compared to 20, the recommended minimum
value [15]. By comparison with the true line center ν0, the
maximum absorption is shifted by about +180 MHz, nearly
half the Doppler width. However, the recorded line looks
nearly undistorted at first glance.

Several line fits were performed taking account of the
Beer-Lambert law. The central absorption frequency νfit, the
collisional linewidth �νcol, and the line area, as well as
the parameters of the linear baseline were adjusted whereas
�νDop remained fixed at its theoretical value. A fit to the
Voigt model but neglecting actual detection properties leads
to asymmetric residuals (curve b). Moreover, the retrieved

FIG. 6. Transmission of the 7199.103 cm−1 line of H2
18O

recorded for increasing frequency (see text for details). (a) recorded
line. Residuals (magnified by 10): (b) Voigt profile not corrected for
detection system properties, �νcol = 93.3(5) MHz; (c) corrected Voigt
profile, �νcol = 41.7(2) MHz; (d) corrected speed-dependent Galatry
profile, �νcol = 49.73(12) MHz, achieved signal-to-noise ratio
�4 500. Frequency scale (in MHz) is shifted by 215.823 500 THz;
temperature = 296.0730(4) K; pressure �3.6 Torr; cell length
�30 cm; frequency step = 3 MHz; step duration = 92 ms; indicated
lock-in time constant τD = 3 s.

collisional broadening �νcol = 93.3(5) MHz is about twice as
large as the expected value [10].

The ratio τD/�t has been chosen to be large enough
(equal to 32) so that the continuous frequency sweeping mode
approximation is valid. It has been applied by fitting line shapes
using Eq. (9). Accounting for detection properties leads to a
much better result (curve c), but still having the well-known
W structure in the residuals, which is characteristic of a
line narrowing effect [12]. According to [10], this departure
from the Voigt profile results mainly from the dependence
of collisional broadening on molecular speeds with a small
contribution of the Dicke effect via velocity-changing colli-
sions. So, a nearly perfect result (curve d) has been obtained
using the symmetric version of the speed-dependent Galatry
profile. In this fit, the diffusion parameter was fixed (βGal =
0.4 MHz/Torr [10]) whereas speed-dependent effects were
taken into account via the hypergeometric model [10] in
which the collisional broadening and corresponding velocity
exponent were adjusted, leading to �νcol = 49.73(12) MHz
and m = 0.64(1). These values, even being obtained from
a single recording, performed with quite unusual detection
properties, are reasonably good. In particular, the m value is
close to the 0.5 value given in Ref. [36].

V. DOPPLER BROADENING THERMOMETRY

One of the motivations of the present work is to further
gain in the capability to make precision spectroscopic mea-
surements devoted to metrological applications. In this section
a particular emphasis is put on an accurate spectroscopic
determination of the Boltzmann constant by DBT. In proof-of-
principle experiments performed on NH3 and CO2 molecules,
kB was determined with a combined uncertainty of 190 and
160 parts per million (ppm), respectively [43,44]. At the time,
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the spectral analysis was performed using simplified models
such as Gaussian and Voigt profiles. In the last few years, an
ambitious goal was set to reach a target uncertainty of 1 ppm,
needed for the new definition of the kelvin unit [20–22]. The
required technical improvements and upgrades of the spec-
trometers have been accompanied by an increasingly refined
interpolation of the experimental profiles [45–48]. Particularly,
great attention is being paid to the role of speed-dependent
effects [40,49]. Also, other molecules and atoms such as Rb,
H2

18O, or C2H2 are now probed [34,50,51]. Finally, there are
significant efforts to produce a complete uncertainty budget,
which includes the understanding and possible reduction of
sources of systematical deviations [35,36].

Since the target uncertainty is in the 1 ppm range, a
reliable quantification of the finite bandwidth contribution to
the uncertainty budget is necessary. This is obtained through
both experiments and numerical simulations based on the
theoretical model of Sec. II.

A. Doppler width measurements

In order to confirm theoretical predictions of Sec. II, the
set of measurements recorded with MPML’s spectrometer
and analyzed in Sec. IV A has been once more fitted
considering the continuous frequency sweeping model (a
suitable approximation for this particular set of data; see
Sec. IV A) and using the speed-dependent Galatry profile.
Unlike previous analyses, the Doppler width is now considered
as a free parameter, and collisional broadening �νcol, pressure-
induced shift, velocity exponent m, and the diffusion parameter
βGal, as fixed parameters. Note first that we draw the same
broad conclusions as those outlined in Sec. IV A for the
central absorption frequency νfit. Concerning Doppler width
measurements, the results are summarized in Fig. 7 where
the retrieved Gaussian widths �νGauss are plotted against the
logarithm of the frequency constants νD . When neglecting the
influence of detection properties, the Gaussian widths, �νGauss,

FIG. 7. Doppler width of the 7199.103 cm−1 line of H2
18O

retrieved from a speed-dependent Galatry profile. Fitted Gaussian
widths �νGauss are plotted versus the frequency constant νD (log plot):
(•) uncorrected values; (◦) corrected values for the detection system
properties (see text for details). Approximate theoretical uncorrected
values: dotted line. Weighted mean value of corrected data (full line):
〈�νGauss〉 = 359.1(15) MHz. Error bars are 3 standard deviations.

look weakly affected by the frequency constant up to 30 MHz,
a tenth of the Doppler width. The retrieved Gaussian widths
can be compared to the results predicted by Eq. (12). This
approximate theory, valid for small νD values, is in agreement
with observations up to νD of about 100 MHz, i.e., 1/3 the
Doppler width (see the dotted curve of Fig. 7). Above this
value, the extracted values deviate due to line asymmetries.

By contrast, if the detection properties are taken into
account in the line fitting procedure, the retrieved Doppler
widths are clearly independent on νD , even for the largest
values of the frequency constant. In this case, a weighted
mean leads to 359.1(15) MHz, in agreement to within 6 ×
10−3 with the expected Doppler width, a good result for
such unusual detection conditions for time constant and/or
frequency sweeping rate. Once again the continuous frequency
sweeping approximation demonstrates a strong improvements
of linewidth measurement accuracy.

Note that experiments at LPL (Sec. IV B) also lead to similar
conclusions, namely that the retrieved Gaussian width is in
agreement to within less than 1% with the expected Doppler
width when detection properties are considered via Eq. (9).

B. Application to the Boltzmann constant determination

As mentioned before, the primary motivation for this paper
was to model the detection systems in DBT experiments for
measuring the Boltzmann constant. So far, we have shown
that the finite bandwidth of a detection system can cause
distortions to the measured line shapes, and we have introduced
a model to account for these effects. Therefore, one possible
approach for the spectroscopic determination of kB from
here onwards would be to include this model in the spectral
analysis. This would make the fitting procedure even more
complicated than it is presently [35,36]. Furthermore, very
precise measurements of the filter characteristics would be
required, without which the final uncertainty would increase
significantly. We therefore propose a simpler alternative: to
operate in a region of the parameters’ space where the
model indicates that the effects are negligible. The pur-
pose of this section is to determine this favorable region
of the parameters’ space. We note in advance that there will
be competing interests: the level of signal deformation and the
signal-to-noise ratio that both increase with νD .

We conduct numerical simulations, similar to those
outlined in Sec. II D for the determination of the line center
except this time, we concern ourselves with the width. We
generate fake distorted Gaussian line shapes, which we fit
using a pure Gaussian function. Note that the use of a Gaussian
profile is valid, as collisional broadening is minimal under
usual operating conditions for kB determination. We then
plot the deviation of the measured width from its true value
(�νGauss − �νDop) as a function of νD , the frequency constant.
This is shown in Fig. 8 for the second-order filter cases Q: 1/2
and

√
1/2, the roll-off being −12 dB/octave. Once again, all

values have been normalized to the nominal Doppler width.
Note the target error tolerance, highlighted by a horizontal
line at the 1 ppm level so our final kB measurements must be
made in conditions where the deviation is below this line. The
results of numerical simulations are shown together with the
analytical result assuming a continuous frequency sweep.
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FIG. 8. Influence of frequency sweeping conditions on the
Doppler broadening determination [second-order filters with Q =
1/2 and

√
1/2 (Butterworth case)]. Relative broadening deviations

are plotted versus frequency constant νD/�νDop. Frequency step
�ν/�νDop = 0.003 (thick line) and 0.01 (thin line) are drawn. For
convenience, some τD/�t ratios are specified by symbols: (◦) 0.1;
(�) 0.35; (•) 1.0; (♦) 3.5; (�) 10. Thin and thick dotted lines refer
to continuous frequency sweeping models (Q = 1/2 and

√
1/2,

respectively). The 1 ppm target is depicted by the horizontal solid
line.

First consider the Q = 1/2 case. For the continuous
frequency sweeping model, the relative deviations of the re-
trieved Doppler width, given by (�νGauss − �νDop)/�νDop ≈
0.5(νD/�νDop)2 as derived from Eq. (12), are drawn as a
thin dotted line. We see that the target accuracy of 1 ppm
will be reached if νD/�νDop is smaller than ≈1.5 × 10−3.
The associated numerical simulations show a more interesting
result, which depends strongly on the frequency step �ν and
on the ratio τD/�t . Therefore, curves corresponding to two �ν

values have been drawn. As expected, in case of large τD/�t

ratios, the model is well approximated by the continuous
frequency sweep. However, if this ratio gets smaller than
about 0.35, the deviation from the Doppler width is strongly
reduced. Although this may seem promising, this happens
because the time constant τD is short, implying a reduction
in the signal-to-noise ratio. Nevertheless, ignoring this last
difficulty and from examination of Fig. 8, we conclude that for
a Q = 1/2 filter, deviations are reduced to an acceptable level,
for example, with a frequency constant νD about 700 smaller
than �νDop, and frequency steps �ν as small as 1/330 of the
Doppler width �νDop, which implies a ratio τD/�t smaller
than 0.25. Note that in the first-order filter case (−6 dB/octave
roll-off), numerical simulations lead to the same kind of
requirements, if νD is chosen about 1000 smaller than �νDop.

The analytical model for the Butterworth second-order
filter with a −12 dB/octave roll-off and Q = √

1/2 is also
shown in Fig. 8 as a bold dashed line. This case is clearly
more attractive because Eq. (12) predicts a Gaussian width
which is independent of νD to lowest order. As a matter of
fact, for the continuous frequency sweeping case, numerical
simulations show this width can be modeled as (�νGauss −
�νDop)/�νDop ≈ 1.5 (νD/�νDop)4, a fourth-order polynomial

dependence instead of the second-order dependence of the
previous cases. By contrast with the Q = 1/2 second-order
filter, the continuous frequency sweeping model appears to be
a lower limit: decreasing the τD/�t ratios no longer reduces
the observed deviations. A stronger reduction is only obtained
by reducing the step size. Nonetheless, the 1 ppm target is
reached with a �ν about 330 times smaller than �νDop but
the τD/�t ratio can be as large as 3.5, more than one order of
magnitude larger than in the case of the Q = 1/2 second-order
filter. This demonstrates the advantage of a Butterworth filter
as it would allow the use of much larger time constants τD

or sweep speeds. This implies that for a fixed acquisition
time, the experiment would yield better signal-to-noise ratio,
and so reduced experimental uncertainty, using a Butterworth
filter.

It is worth noting that the recent measurement of kB at the
MPML [50] was carried out under very favorable conditions,
using a first-order low-pass filter so that νD was about 2 kHz
(namely, five orders of magnitude smaller than the Doppler
width), while the ratio τD/�t was set to ≈1.6 × 10−3. These
conditions make it possible to neglect the detection-bandwidth
effect in the uncertainty budget [50]. On the other hand, this
contribution is larger than 10 ppm in the determination of kB

reported in Refs. [37,47], νD/�νDop being about 7 × 10−3

and the ratio τD/�t being set to ≈0.35. This source of
inaccuracy not considered at that time remains below the
reported combined standard uncertainty of 50 ppm [13].
Nevertheless, for this project, the acquisition conditions will
have to be reconsidered in order to reduce the impact of
the limited detection bandwidth to below 1 ppm for future
measurements.

Note that the method mentioned in Sec. IV A, consisting
in randomizing the time ordering of frequencies to get rid of
frequency drifts, is particularly detrimental when measuring a
linewidth and thus kB, as it induces a much larger νD mean
value and in turn a larger impact on the recorded width, and
especially the Doppler width.

VI. CONCLUSION

Precision measurements in laser spectroscopy require high
signal-to-noise ratio, on the one hand, and high spectral
fidelity, on the other. A reduced detection bandwidth may have
significant consequences on the observed line shape, adding
asymmetries, shifting its central frequency, or broadening the
line. A theoretical model has been proposed for a careful
analysis of these effects. In the case of a continuous evolution
of the laser frequency, the line shape can be set in a
quasianalytical form that allows one to consider the influence
of the detection bandwidth, thus avoiding possible systematical
deviations in the retrieved parameters. Numerical simulations
performed in the case of a step-by-step frequency scan lead
to an empirical expression for the correction to be applied
to the center frequency retrieved from a fit of a distorted
profile.

The model has been severely and accurately validated by
applying it to the analysis of high-quality molecular spectra.
The impact of the detection bandwidth could be quantified
for various line-shape parameters: central frequency, Doppler
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broadening, collisional broadening, the dependence of the lat-
ter on molecular speeds, and the Dicke narrowing contribution.

The dedection-bandwidth-induced line-shape distortion
and the resulting inaccuracy in the measured parameters
may impact many fields of research, from atmospheric and
interstellar physics to precision spectroscopic measurements
devoted to metrological applications, tests of quantum electro-
dynamics, or other fundamental laws of nature. As an example,
emphasis has been put on the repercussions on the precise
determination of the Boltzmann constant by the Doppler
broadening thermometry. Our study allows us to work out the
optimum experimental conditions (integration time, frequency
scan rate, type of filter, and frequency step) required to reach
the targeted uncertainty of 1 ppm level of accuracy. The present

study could easily be extended to other precision spectroscopic
measurements in order to quantify and possibly reduce the
resulting inaccuracy potentially affecting such experiments.
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