
PHYSICAL REVIEW A 90, 042335 (2014)

Quantum communication with coherent states and linear optics

Juan Miguel Arrazola and Norbert Lütkenhaus
Institute for Quantum Computing and Department of Physics and Astronomy, University of Waterloo, 200 University Avenue West, Waterloo,

Ontario, Canada N2L 3G1
(Received 23 July 2014; published 29 October 2014)

We introduce a general mapping for encoding quantum communication protocols involving pure states of
multiple qubits, unitary transformations, and projective measurements into another set of protocols that employ a
coherent state of light in a linear combination of optical modes, linear-optics transformations, and measurements
with single-photon threshold detectors. This provides a general framework for transforming protocols in quantum
communication into a form in which they can be implemented with current technology. We explore the similarity
between properties of the original qubit protocols and the coherent-state protocols obtained from the mapping and
make use of the mapping to construct additional protocols in the context of quantum communication complexity
and quantum digital signatures. Our results have the potential of bringing a wide class of quantum communication
protocols closer to their experimental demonstration.
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I. INTRODUCTION

What information-processing tasks are unachievable in
a classical world but become possible when exploiting the
intrinsic quantum-mechanical properties of physical systems?
This question has been a driving force of numerous research
endeavors over the last few decades and remarkable progress
has been made in our understanding of the advantages that
quantum mechanics can provide, as well as in developing the
experimental platforms that will allow them to be realized
in practice [1–4]. An example is the field of quantum
communication [5], where quantum systems can be used, for
instance, to distribute secret keys [6,7] or reduce the amount
of communication required for joint computations [8–11].

In terms of experimental implementations, only quantum
key distribution (QKD) has been routinely demonstrated
and deployed over increasingly complex networks and large
distances [12,13]. This is possible largely due to the fact that,
fundamentally, QKD can be carried out with sequences of
independent signals and measurements [4]. Other tasks typi-
cally require sophisticated quantum states to be prepared and
transmitted as well as having complex operations performed on
them. Overall, there is a large set of quantum communication
protocols whose potential advantages currently escape the
grasp of available technology, with only a few proof-of-
principle implementations having been reported [14–16].

Confronted with these challenges we face two alternatives:
We can either strive to improve current technology or we
can flip the issue around and ask: Can protocols in quantum
communication be adapted to a form that makes them ready
to be deployed with available techniques? To adopt the
latter strategy is to push for a theoretical reformulation that
converts previously intractable protocols into a form that, while
conserving their relevant features, eliminates the obstacles
affecting their implementation. This is precisely the road that
has already been successfully followed for QKD.

In this work, we describe an abstract mapping that
converts quantum communication protocols that use pure
states of multiple qubits, unitary operations, and projective
measurements into another class of protocols that use only
a sequence of coherent states, linear-optics operations, and

measurements with single-photon threshold detectors. This
class of protocols requires a number of optical modes equal
to the dimension of the original states, but the total number of
photons can be chosen independently of the dimension and is
typically very small. The protocols obtained from the mapping
share important properties with the original ones, meaning
that they can also fulfill the goal that the original protocols
where intended to achieve. Overall, the mapping is suitable
for its application to quantum communication protocols that
originally require a moderate number of qubits, but are still
hard to implement with the usual methods.

In the remainder of this paper, we describe the mapping in
detail and discuss the various properties of the coherent-state
protocols. We proceed by examining how the mapping can
be applied to construct protocols in quantum communication
complexity and describe protocols for the hidden matching
problem and for quantum digital signatures, both of which can
be realized with technology that is within current reach.

II. COHERENT-STATE MAPPING

We consider a wide class of quantum communication pro-
tocols that require only three basic operations: the preparation
of pure states of a fixed dimension, unitary transformations
on these states, and projective measurements on a canonical
basis. The simplest form of a protocol in this class is one
in which Alice prepares a state |ψ〉 and sends it to Bob,
who then applies a unitary transformation UB to that state,
followed by a projective measurement on the canonical basis.
More complex protocols can be constructed by increasing the
number of these basic operations as well as the number of
parties. Even though these protocols generally involve states
of some arbitrary dimension d, it is common to think of them
as corresponding to a system of O(log2 d) qubits. Hence, we
refer to them as qubit protocols.

An exact implementation of such protocols can be achieved
without the use of actual physical qubits by instead considering
a single photon in a linear combination of optical modes. Any
pure state |ψ〉 = ∑d

k=1 λk|k〉, with
∑d

k=1 |λk|2 = 1, can be
equally thought of as the state of a single photon in a linear
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combination of d modes,

a
†
ψ |0〉 =

d∑
k=1

λk|1〉k, (1)

where a
†
ψ = ∑d

k=1 λkb
†
k for a collection of creation operators

{b1,b2, . . . ,bd} corresponding to d optical modes, and where
|1〉k is the state of a single photon in the kth mode.

In this picture, unitary operations correspond exactly to
linear-optics transformations [17], and measurements in the
canonical basis are equivalent to a photon-counting measure-
ment in each of the modes. Note that the quantum information
is encoded by photons residing in linear combinations of
modes.

From a practical perspective, the issue with implementing
qubit protocols in terms of a single photon in a linear
combination of modes is that the experimental preparation
of these states presents daunting challenges. Instead, we
are interested in an adaptation of this formulation of qubit
protocols into another that is more readily implementable in
practice. As discussed in Ref. [18], as an alternative to a single
photon we can consider a single coherent state in a linear
combination of modes. In that case, instead of the state of
Eq. (1), we have

Daψ
(α)|0〉 =

d⊗
k=1

|α λk〉k, (2)

where Daψ
(α) = exp(αa

†
ψ − α∗aψ ) is the displacement op-

erator. Once again, the quantum information is encoded in
the mode structure, but we have a coherent state instead of
the single photon of Eq. (1) as the quantum state of light.
Remarkably, this state is equivalent to a sequence of coherent
states over d optical modes.

With this idea in mind, we now outline a method for
converting qubit protocols into another class of protocols that,
although seemingly disparate, actually retain the essential
properties of the original ones. We call these coherent-state
protocols since they can be implemented by using only
coherent states of light and linear-optics operations. The recipe
for constructing coherent-state protocols is specified by the
following rules:

Coherent-state mapping
(1) The original Hilbert space H of dimension d with

canonical basis {|1〉,|2〉, . . . ,|d〉} is mapped to a set of d

orthogonal optical modes with corresponding annihilation
operators {b1,b2, . . . ,bd}:

|k〉 −→ bk. (3)

(2) A state |ψ〉 = ∑d
k=1 λk|k〉 is mapped to a coherent state

with parameter α in the mode aψ = ∑d
k=1 λkbk:

|ψ〉 −→ |α,ψ〉 :=
d⊗

k=1

|α λk〉k,

where |α λk〉k is a coherent state with parameter α λk in the kth
mode. The value of the amplitude α can be chosen freely as a
parameter of the mapping, independently of the dimension d,
but remains fixed.

(3) A unitary operation U acting on a state in H is mapped
into a linear-optics transformation corresponding to the same
unitary operator U acting on the modes {b1,b2, . . . ,bd}. Thus,
the transformation of a state is linked to a transformation of
the modes as

|ψ ′〉 = U |ψ〉 −→ bk =
∑

l

Uklb
′
l . (4)

This linear-optics network has the effect of transforming the
coherent state |α,ψ〉 = ⊗d

k=1 |α λk〉k to the state

|α,ψ ′〉 =
d⊗

k=1

|α λ′
k〉k, (5)

where λ′
k = ∑

l Uklλl . This is the same state obtained from
applying the mapping directly to the output state |ψ ′〉 of the
original protocol.

(4) A projective measurement in the canonical basis
{|1〉,|2〉, . . . ,|d〉} is mapped into a two-outcome measurement
in each of the modes with single-photon threshold detectors:

{|1〉〈1|,|2〉〈2|, . . . ,|d〉〈d|} −→
{

d⊗
k=1

Fk
c

}
, (6)

where c = “click,” or “no click,” Fk
no click = |0〉〈0| is a projec-

tion onto the vacuum, Fk
click = ∑∞

n=1 |n〉k〈n|k , and |n〉k is a
state with n photons in the kth mode. As such, an outcome
in a coherent-state protocol corresponds to a pattern of clicks
across the modes.

Since any qubit protocol can be constructed from the basic
operations of state preparation, unitary transformations, and
projective measurements, the above instructions are sufficient
to construct the coherent-state version of any qubit protocol.
However, as there are 2d possible outcomes compared to the
d possible outcomes of the qubit protocol, the interpretation
of the outcomes in the coherent-state protocol is not imme-
diately provided by the mapping. Nevertheless, as will be
discussed later, the statistics closely resemble those of the
original protocol and they can be thought of as arising from
several independent runs of the original qubit protocol. As
an illustration, a simple qubit protocol and its coherent-state
counterpart are depicted in Fig. 1.

An immediate appealing property of coherent-state proto-
cols is that their implementation faces much smaller obstacles
than their qubit counterparts. Indeed, the fundamental chal-
lenge of a quantum-optical implementation of qubit protocols
lies in the difficulty of generating entangled states of many
qubits and performing global unitary transformations on them.
On the other hand, coherent-state protocols face significantly
less daunting obstacles. The experimental generation of
coherent states is a commonplace task and the construction
of linear-optical circuits can, in principle, be realized with
simple devices such as beam splitters and phase shifters [17],
although experimental challenges may remain depending on
the required unitary operation. Moreover, the platforms for
linear-optics experiments continue to improve at a fast rate,
most notably with the development of integrated optics [19].

As we have mentioned already, an advantage of coherent-
state protocols is that they employ a coherent state in a
linear combination of modes, which is equivalent to a tensor
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FIG. 1. (Color online) In a simple qubit protocol, Alice prepares
a state |ψ〉 = ∑d

k=1 λk|k〉 of log2 d qubits by applying a unitary
transformation Uψ on an inital state |0̄〉 := |0〉⊗ log2 d . She sends the
state to Bob, who applies a unitary transformation UB and measures
the resulting state in the computational basis. In the equivalent
coherent-state protocol, the initial state corresponds to a coherent
state in a single mode and the vacuum on the others. The state
|α,ψx〉 = ⊗d

k=1 |α λk〉k is prepared by applying the transformation
Uψ to the optical modes. This state is sent to Bob, who applies the
transformation UB and consequently measures each mode for the
presence of photons with threshold single-photon detectors.

product of individual coherent states across the various modes.
However, qubit protocols usually require high amounts of en-
tanglement. This seems to indicate that the “quantumness” of
the original qubit protocol has been lost through the mapping.
Nevertheless, it is important to realize that this is not the case,
as coherent-state protocols showcase a truly quantum property:
nonorthogonality. Given two states |α,ψ〉 = ⊗d

k=1 |α λk〉k
and |α,ϕ〉 = ⊗d

k=1 |α νk〉k , with d 	 |α|2, the amplitude of
the individual coherent states will typically satisfy |α λk| ∼
| α√

d
| � 1. Therefore, the inner product of the individual states

obeys

|〈α νk|α λk〉|2 = e−|α(λk−νk )|2 ≈ 1, (7)

and so the individual states are typically highly nonorthogonal.
In fact, it can be useful to intuitively think of the coherent-
state mapping as an exchange between entanglement and
nonorthogonality, since an implementation of qubit protocols
with actual physical qubits usually requires entanglement
among the qubits.

In coherent-state protocols, the average photon number
|α|2 is a parameter that can be chosen independently of
the dimension of the states of the original qubit protocol.
This is to be put in contrast with any quantum protocol that
encodes a qubit in the degrees of freedom of a photon, which
inevitably requires a number of photons that scales with the
dimension of the states. Hence, coherent-state protocols offer
an intrinsic saving in the number of photons required for their
implementation. The drawback, of course, is that the required
number of optical modes is equal to the dimension of the

states in the original protocol. This implies that the mapping
will lead to practical protocols only if the dimension of the
original states is comparable to the number of modes that can
be efficiently manipulated with existing technologies.

Fortunately, current laser sources can operate with clock
rates of at least 1 GHz [20], permitting the generation of a
very large number of modes per second. This makes it possible
in practice to apply the mapping to quantum communication
protocols involving states of a moderate number of qubits.
As we discuss in Secs. III and IV, there are many qubit
protocols to which we can apply the mapping that require only
a modest number of qubits but still currently escape the grasp
of direct implementations. From a theoretical perspective, the
relationship between these two types of protocol may provide
an insight into the trade-offs between different resources in
quantum communication, as well as into the interplay between
entanglement and nonorthogonality in quantum mechanics.

Now that we have specified how to construct coherent-state
protocols, our goal is to understand their properties. We
pay special attention to their resemblance to qubit protocols,
but also concentrate on understanding the features that may
provide an advantage over their qubit counterparts or find
applications in quantum communication.

Transmitted information. We are often interested in quanti-
fying the amount of transmitted information, i.e., the amount
of communication, that takes place in a quantum protocol.
Informally, this is done by counting the number of qubits that
are employed. But what happens if a protocol uses physical
systems that are manifestly not qubits? In that case, we quantify
the transmitted information in terms of the smallest number
of qubits that would be required, in principle, to replicate the
performance of the protocol. More precisely, if a quantum
protocol uses states in a Hilbert space of dimension d, this
space can be associated with a system of O(log2 d) qubits.
Therefore, the amount of communication C in a quantum
protocol is generally given by

C = log2[dim(H)], (8)

where H is the smallest Hilbert space containing all states of
the protocol, which can be significantly smaller than the entire
Hilbert space associated with the physical systems. Moreover,
Holevo’s theorem [21] guarantees that no more than O(log2 d)
classical bits of information could be transmitted, on average,
by a quantum protocol that uses states in a Hilbert space of
dimension d.

By quantifying the amount of communication carefully, we
gain a better understanding of the different physical resources
that are required to transmit a certain amount of information.
For example, the fact that the same amount of information can
be transmitted by a single photon in n optical modes, at most
n photons in a single mode, or log2 n qubits is understood
because the smallest Hilbert space containing all possible
states in each of the three cases has the same dimension.

Quantifying the amount of transmitted information in
qubit protocols is straightforward. For coherent-state protocols
obtained from the mapping, even though the actual Hilbert
space associated with all possible signal states is large (distinct
coherent states are linearly independent), they effectively
occupy a small Hilbert space, as is expressed in the following
theorem:
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Theorem 1 [22]. For any state |ψ〉 in a Hilbert space of
dimension d and for any ε > 0, there exists a Hilbert space
Hα of dimension dα such that

〈α,ψ |PHα
|α,ψ〉 � 1 − ε,

log2 dα = O(log2 d),

and where PHα
is the projector onto Hα .

Proof. For a given � > 0, we choose Hα to be the subspace
spanned by the set of Fock states {|n1〉 ⊗ |n2〉 ⊗ · · · ⊗ |nd〉}
over d modes whose total photon number n = ∑d

k=1 nk

satisfies |n − |α|2| � �. In other words, this is the space of
states whose total photon number is close to |α|2.

The dimension of the Hilbert space spanned by states of
n photons is equal to the number of distinct ways in which n

photons can be distributed into the d different modes. Since
the photons are indistinguishable, this quantity is given by the
binomial factor (n + d − 1

d − 1 ) [23]. In the case of Hα , there are 2�

different possible values of n, the largest being n = |α|2 + �.
Thus, the dimension dα of this subspace satisfies

dα � 2�

(|α|2 + � + d − 1

d − 1

)
, (9)

which gives

log2 dα � log2

[
2�

(|α|2 + � + d − 1

d − 1

)]

� (|α|2 + �) log2[(|α|2 + � + d − 1)] + log2(2�),

(10)

which is O(log2 d) for any fixed α and �.
Now notice that the number 〈α,ψ |PHα

|α,ψ〉 is equal to the
probability of performing a photon-number measurement on
|α,ψ〉 and obtaining a value n satisfying |n − |α|2| � �. Since
any coherent state |α,ψ〉 has a Poissonian photon-number
distribution with mean |α|2, independently of |ψ〉, we can use
the properties of this distribution to calculate the probability
that the measured number of photons lies within the desired
range. This probability satisfies [24]

P (|n − |α|2| � �) � 2e−|α|2
(

e|α|2
|α|2 + �

)|α|2+�

, (11)

which can be made equal to any ε > 0 by choosing �

accordingly while keeping α fixed. �
Therefore, the fact that the mean photon number |α|2 is

fixed in coherent-state protocols leads to the states involved
effectively occupying a Hilbert space of dimension that is
comparable to that of the original one. This implies that the
asymptotic behavior of the amount of transmitted information
is the same for both classes of protocols. Moreover, the
effectively unused sections of the entire Hilbert space can
still be used, in principle, for other purposes such as the
transmission of additional classical or quantum information
through multiplexing schemes. A method for achieving this in
practice is a line for future research.

It is important to note that this correspondence in the
transmitted information is not exactly mirrored in terms of the
expenditure of physical resources. A coherent-state protocol
obtained from the mapping employs d modes but a number

of photons that is tunable and independent of this dimension.
This is to be put in contrast with any quantum protocol that
encodes a qubit in the degrees of freedom of a photon, which
employs O(log2 d) optical modes and O(log2 d) photons.

Outcome probabilities. In qubit protocols, the probability
of obtaining an outcome k upon a measurement of a state
|ψ〉 = ∑d

k=1 λk|k〉 is given by

pk = |〈k|ψ〉|2 = |λk|2, (12)

with
∑d

k=1 pk = 1. For coherent-state protocols, the situation
is different since we are performing independent measure-
ments on each of the modes. In this case, the individual detector
clicks are not mutually exclusive: We can have many clicks
across the various modes, or even no clicks at all.

Nevertheless, for the state |α,ψ〉, the probability distribu-
tion of the number of photons in each mode is equivalent to the
one obtained from many repetitions of a measurement on the
single-photon state |ψ〉 = α

†
ψ |0〉 of Eq. (1), where the number

of repetitions is drawn from a Poisson distribution with mean
μ = |α|2.

To see this, first note that the state |α,ψ〉 can be written as

|α,ψ〉 = Daψ
(α)|0〉 = e−|α|2

∞∑
n=0

αn

√
n!

|n〉aψ
. (13)

The state of n photons in mode αψ is itself given by

|n〉aψ
= 1√

n!
(α†

ψ )n|0〉 = 1√
n!

(
d∑

k=1

λkb
†
k

)n

|0〉. (14)

For this state, the probability of obtaining n1,n2, . . . ,nd

photons in each of the modes b1,b2, . . . ,bd , with
∑

k nk = n,
is given by

Pr(n1, . . . ,nd ) = n!

n1! · · · nd !
|λ1|2n1 · · · |λd |2nd , (15)

which, from the multinomial theorem, is exactly equal to
that obtained from n measurements of the single-photon state
|ψ〉 = α

†
ψ |0〉. Since the number of photons n in the state |α,ψ〉

is Poissonian distributed with mean μ = |α|2, this proves the
claim.

Whenever possible, we will not use photon-number-
resolving detectors in protocols obtained from coherent-state
mapping, but threshold detectors that give clicks or no clicks.
Note that while the statistics of photon counts is directly
derived from the Poissonian distribution of repetitions of the
single-photon protocol, this does not hold for the statistics of
clicks of the threshold detectors.

However, for most states, the coefficients λk will typically
be very small, so that the mean number of photons |α λk|2 will
also be small provided α is not too large. Then it is unlikely that
more than one photon will be present in each mode, and the
number-resolving properties of the detectors are not necessary.

For example, with threshold detectors, the probability of
obtaining a click on the kth mode after a measurement of a
state |α,ψ〉 = ⊗d

k=1 |α λk〉k is given by

pα,k = 1 − exp(−|α λk|2), (16)
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which for |α λk| � 1 gives

pα,k ≈ |α λk|2. (17)

If we choose |α|2 = 1, we recover a behavior very similar to
that of the qubit protocol: Only one click is expected to occur
and it does so with a probability that is essentially identical to
that of the original protocol.

In any case, the multiple-photon property of a coherent-
state protocol constitutes a potential advantage over its qubit
counterpart. The expected number of clicks can be controlled
by modifying α appropriately, and a larger number of clicks
will give rise to more information gained per measurement.

State overlap. All of the physically relevant information of
a set of quantum states {|ψ1〉,|ψ2〉, . . . ,|ψN 〉} is contained in
its Gram matrix, which is defined as

Gi,j = 〈ψi |ψj 〉. (18)

Thus, for quantum communication protocols defined over a
set of possible signal states, it is natural to ask how the overlap
between states behaves under a coherent-state mapping. The
answer is provided by the following observation.

Observation 1. Let |ψ〉 = ∑
k λk|k〉 and |ϕ〉 = ∑

k νk|k〉 be
two arbitrary states with overlap 〈ψ |ϕ〉 = δ. Then the overlap
of their coherent-state versions satisfies

δα := 〈ψ,α|ϕ,α〉 = exp[|α|2(δ − 1)]. (19)

Proof. The overlap of the coherent-state versions is given by

〈ψ,α|ϕ,α〉 =
∏
k

〈α λk|α νk〉

=
∏
k

exp

[
−|α|2

2
(|λk|2 + |νk|2 − 2λ∗

kνk)

]

= exp

[
−|α|2

2

∑
k

(|λk|2 + |νk|2 − 2λ∗
kνk)

]

= exp
[|α|2(〈ψ |ϕ〉 − 1)

]
= exp[|α|2(δ − 1)],

where we have used the relations
∑

k |λk|2 = ∑
k |νk|2 = 1

and 〈ψ |ϕ〉 = ∑
k λ∗

kνk . �
Once again, there is an added richness in coherent-state

protocols, since the overlaps may be adapted by varying the
value of the parameter α. For example, in many quantum
communication protocols, all overlaps between pairs of states
are real numbers, and consequently so are those of their
coherent-state versions. In that case, the parameter α can be
chosen to increase or decrease the overlap, or to match the
exact overlap for a given pair of states. This is illustrated in
Fig. 2.

Now that we have outlined the properties of coherent-state
protocols, we continue by describing how these techniques
can be applied in the construction of protocols in quantum
communication complexity and quantum digital signatures.

III. QUANTUM COMMUNICATION COMPLEXITY

Communication complexity is the study of the amount
of communication that is required to perform distributed
information-processing tasks. This corresponds to the scenario
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FIG. 2. (Color online) Overlaps of states in coherent-state proto-
cols for different values of the mean photon number |α|2 and choice
of real values of δ (implying real values of δα). For |α|2 < 1, the
overlap δα is larger than the original overlap δ. For |α|2 ≈ 1, both
the original and coherent-state overlaps are close to each other when
δ is close to 1 and when |α|2 is large, δα can be made smaller than
almost any value of the original overlap. In fact, in the limit α → ∞,
any two states become orthogonal, while in the limit α → 0 any two
states are mapped to the vacuum and thus have unit overlap. Finally,
for any δ �= 0 there exists a value of α such that δ = δα .

in which two parties Alice and Bob respectively receive inputs
x ∈ {0,1}n and y ∈ {0,1}n and their goal is to collaboratively
compute the value of a Boolean function f (x,y) with as little
communication as possible [25]. Although they can always do
this by communicating their entire input, the pertinent question
in communication complexity concerns the minimum amount
of communication that is really needed. Likewise, quantum
communication complexity studies the case where the parties
are allowed to employ quantum resources such as quantum
channels and shared entanglement [2,26]. Remarkably, it has
been proven that there exist various problems for which
the use of quantum resources offers exponential savings
in communication compared to their classical counterparts
[8–11,27]. In this section, our goal is to employ the mapping
to construct protocols that can be implemented using only
coherent states and linear optics.

We focus on the bounded-error model in which Alice and
Bob have randomness at their disposal and need to determine
the value of the function f (x,y) only with probability greater
than or equal to 1 − ε (with ε < 1

2 ) even for the worst-case
values of x and y. They can send quantum states to each
other, apply unitary transformations on these states, and
make measurements in the same way as in the quantum
communication protocols discussed before. Since they are
interested only in learning the value of the function, their
final measurement can always be thought of as a projective
measurement onto two orthogonal subspaces H0 and H1,
corresponding to f (x,y) = 0 and f (x,y) = 1, respectively.

In a coherent-state version of this model, the crucial
difference lies in the measurement stage, where the subspaces
H0 and H1 are mapped onto sets of modes S0 and S1, where
many clicks can occur. In this case, in order to decide between
both values of f (x,y), the strategy is to count the number of
clicks that occur in each set of modes. If there are more clicks
in the set S0 than in the set S1, the output of the protocol
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is f (x,y) = 0, and vice versa. In this way we map the large
number of possible click patterns in the coherent-state protocol
to the two outcomes of interest.

We now provide conditions such that, if the original
protocol had success probability larger than 1 − ε, its coherent-
state version will also have success probability larger than
1 − ε. Let Cb be the random variable corresponding to the
number of clicks observed in the set of modes Sb, with
b = 0,1. The distribution of Cb is known as a Poisson-binomial
distribution and its expectation value is given by

E(Cb) =
∑
k∈Sb

pα,k := μb. (20)

This distribution can be difficult to work with in its exact
form, so it is usual to approximate it by a Poisson distribution
with the same mean. This approximation can be made precise
through the following result:

Theorem 2 [28]. Let Cb be a Poisson-binomial random
variable with mean μb. Similarly, let Lb be a Poisson random
variable with the same mean μb. Then, for any set A, it holds
that

| Pr(Cb ∈ A) − Pr(Lb ∈ A)| � min
(
1,μ−1

b

)
τb, (21)

where τb := ∑
k∈Sb

(pα,k)2 and pα,k is the probability of
obtaining a click on the kth mode.

We can use this fact to show that, under certain conditions,
a coherent-state version of a bounded-error qubit protocol also
gives the correct value of the function with bounded error.

Theorem 3. Let a qubit protocol for communication com-
plexity have a probability of success Ps � 1 − ε. Then the
corresponding coherent-state protocol has a probability of
success Pα > 1 − ε if there exists a mean photon number
μ = |α|2 such that

2e−Psμ(2ePsμ)μ/2 + max
μ0,μ1

{
min

(
1,μ−1

b

)}
τ � ε, (22)

where μb is the expected number of clicks in the set of modes
Sb and τ = ∑

k(pα,k)2.
Proof. Without loss of generality, we take f (x,y) = 0 to

correspond to the correct value of the function. We can bound
the success probability as

Pα = Pr(C0 > C1) � Pr

(
C0 >

μ

2

)
Pr

(
C1 <

μ

2

)

=
[

1 − Pr

(
C0 <

μ

2

)][
1 − Pr

(
C1 >

μ

2

)]
.

From Theorem 2 we can also write

Pr

(
C0 <

μ

2

)
� Pr

(
L0 <

μ

2

)
+ min

(
1,μ−1

0

)
τ0

� e−μ0

(
2eμ0

μ

)μ/2

+ min
(
1,μ−1

0

)
τ0,

where we have bounded the Poisson distribution as in Eq. (11).
Similarly we have

Pr

(
C1 >

μ

2

)
� e−μ1

(
2eμ1

μ

)μ/2

+ min
(
1,μ−1

1

)
τ1.

Putting these together we get

Pα �
[

1 − e−μ0

(
2eμ0

μ

)μ/2

− min
(
1,μ−1

0

)
τ0

]

×
[

1 − e−μ1

(
2eμ1

μ

)μ/2

− min
(
1,μ−1

1

)
τ1

]

> 1 − e−μ0

(
2eμ0

μ

)μ/2

− e−μ1

(
2eμ1

μ

)μ/2

− min
(
1,μ−1

0

)
τ0 − min

(
1,μ−1

1

)
τ1

� 1 − e−Psμ(2ePsμ)μ/2 − e−(1−Ps )μ[2e(1 − Ps)μ]μ/2

− max
μ0,μ1

{
min

(
1,μ−1

b

)}
τ,

where τ = τ0 + τ1 = ∑
k(pα,k)2 and we have used the fact that

Psμ =
∑
k∈S0

|α|2pk >
∑
k∈S0

(
1 − e−|α|2pk

) = μ0 (23)

and similarly (1 − Ps)μ > μ1. Whenever Ps > 1/2, it holds
that e−PsμPs > e−(1−Ps )μ(1 − Ps) so we can finally write

Pα > 1 − 2e−Psμ(2ePsμ)μ/2 − max
μ0,μ1

{
min

(
1,μ−1

b

)}
τ. (24)

From this expression it is clear that whenever condition (22)
holds, Pα > 1 − ε as desired. �

Notice that the quantity 2e−Psμ(2ePsμ)μ/2 can be made
arbitrarily small for any Ps > 1 − ε by choosing a large
enough value of μ = |α|2. However, large values of μ result
in higher values of the individual click probabilities {pα,k},
and consequently larger values of τ = ∑

k(pα,k)2, making it
harder for the quantity maxμ0,μ1{min(1,μ−1

b )}τ to be small.
Therefore, condition (22) will be satisfied only when the
original probabilities {pi} are very small, as this results in
a small τ even when μ is large. Of course, whenever the
communicated states lie in a Hilbert space of large dimension,
we expect the outcome probabilities to be small and the
coherent-state protocol to function adequately.

We are interested in applying the coherent-state mapping
to known protocols in quantum communication complexity. In
fact, this has already been demonstrated in Ref. [22], where,
essentially, a coherent-state mapping was used to construct a
protocol for quantum fingerprinting. We now discuss how the
mapping can be used to construct a protocol for the hidden
matching problem.

The hidden matching problem. In this communication
complexity problem, Alice receives an n-bit string x ∈ {0,1}n
as input, with n an even number. Bob receives a matching
M = {(i1,j1),(i2,j2), . . . ,(in/2,jn/2)} on the set of numbers
{1,2, . . . ,n}, i.e., a partition into n/2 pairs. Only one-way
communication from Alice to Bob is permitted and the goal
is for Bob to output at least one element of the matching (i,j )
and a corresponding bit value v such that v = xi ⊕ xj , where
xi is the ith bit of the string x.

It has been shown that in the bounded-error model, any
classical protocol requires �(

√
n) bits of communication

[11]. It was also shown in Ref. [11] that there exists an
efficient quantum protocol that uses only Olog2 n qubits of
communication and outputs a correct answer with certainty. In
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this protocol, Alice prepares the state

|x〉 = 1√
n

n∑
i=1

(−1)xi |i〉 (25)

and sends it to Bob, who measures it in the basis{
1√
2

(|i〉 ± |j 〉)
}
, (26)

with (i,j ) ∈ M . Since these states form a complete basis,
one of these outcomes will always occur, and it will always
correspond to the correct value since 1√

2
(|i〉 + |j 〉) occurs

only if xi ⊕ xj = 0, and similarly 1√
2
(|i〉 − |j 〉) occurs only

if xi ⊕ xj = 1. This allows Bob to give a correct output after
performing his measurement. Note that Bob’s measurement
basis is constructed from the canonical basis by applying
a Hadamard transformation to the subspaces {|i〉,|j 〉}, with
(i,j ) ∈ M .

To construct a coherent-state protocol for the hidden
matching problem, we just have to apply the rules of the
mapping.

Hidden matching protocol

(1) Alice prepares the state

|α,x〉 =
n⊗

i=1

∣∣∣∣(−1)xi
α√
n

〉
(27)

according to her input x and sends it to Bob.
(2) Bob permutes the modes according to the matching M

and interferes all pairs of modes {bi,bj }, with (i,j ) ∈ M , in a
balanced beam splitter. The detectors in the output ports of the
beam splitters are labeled “0” and “1.”

(3) If detector v = 0,1 clicks, corresponding to the modes
(bi,bj ), Bob outputs v and (i,j ).

The protocol is illustrated in Fig. 3. Note that the linear-
optical equivalent of a Hadamard gate is a balanced beam
splitter, which explains the form of Bob’s measurement in
step 2. Additionally, if the incoming states to the input ports

FIG. 3. (Color online) An example of an implementation of a
coherent-state protocol for the hidden matching problem. Alice
receives a string of six bits and Bob receives the matching
(1,6),(2,5),(3,4). Alice encodes her input values in the phases of
six coherent states in different modes and sends them to Bob. His
measurement consists of a circuit in which the modes are permuted
in accordance with the matching and then interefere pairwise in three
balanced beam splitters. Bob can output a correct solution to the
problem based on the detectors that click.

of the beam splitter are∣∣∣∣(−1)xi
α√
n

〉
⊗

∣∣∣∣(−1)xj
α√
n

〉
, (28)

the output states will be∣∣∣∣[1 + (−1)xi⊕xj ]
α√
n

〉
⊗

∣∣∣∣[1 − (−1)xi⊕xj ]
α√
n

〉
. (29)

For each possible value of xi ⊕ xj , one of the output
states will be a vacuum while the other is a coherent state
with nonzero amplitude. Therefore, we can associate a value
v = 0,1 with each of the output detectors so that whenever
a click occurs, the correct value of xi ⊕ xj can be inferred
with certainty. Even if there are many clicks, they will always
correspond to a correct value.

The only issue that can arise is that no clicks occur and the
probability that this happens is given by

Pno click = e−|α|2 , (30)

which can be made arbitrarily small by choosing α appro-
priately. Moreover, Theorem 1 guarantees that the amount of
information that is transmitted in the coherent-state protocol
is Olog2 n and an exponential separation in communication
complexity is maintained.

Having explored the application of the coherent-state
mapping to the realm of quantum communication complexity,
we now study how it can be useful in the context of quantum
digital signatures.

IV. QUANTUM DIGITAL SIGNATURES

Quantum digital signatures (QDSs) were first proposed in
Ref. [29] as a method of guaranteeing the authenticity and
integrity of a classic message with unconditional security
based only on fundamental principles of quantum mechanics.
Recently, other protocols for QDSs have been proposed that,
notably, use sequences of coherent states and linear-optics
transformations [30–33]. In this section, we apply the mapping
to construct an additional QDS protocol that can be realized
using sequences of coherent states and simple linear-optics
transformations. In addition to this, we use the mapping to
establish a connection between the protocol of Ref. [29]
and those of Refs. [30–32] and also to better understand the
properties of these latter protocols.

We begin by briefly describing a simplified version of the
QDS protocol of Ref. [29]. Alice holds a pair of classical bit
strings {k0,k1} known as private keys, which she will later use
to sign a single bit b. The protocol makes use of an encoding
of classical bit strings into quantum states k �→ |fk〉 which
is known to all recipients. For instance, the encoding could
correspond to the states [8]

|fk〉 = 1√
n

n∑
i=1

(−1)kb,i |i〉, (31)

where kb,i is the ith bit of the private key kb.
In the distribution stage of the protocol, Alice sends each

recipient Bob and Charlie two copies of the quantum states
corresponding to her private keys and bit value, i.e., she sends
(0,|fk0〉,|fk0〉) and (1,|fk1〉,|fk1〉) to each one. Upon receiving
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the quantum states from Alice, and for each value of b, the
recipients perform a swap test [8,29,34] on each pair of states
to test whether they are different. The swap test is a comparison
test of two states: If the states are the same, they always pass the
test, and if they are different, they fail the test with probability
(1 + |δ|2)/2, where δ is the overlap of the states. Once this is
done, one of the recipients, for example Bob, forwards one of
the copies to Charlie, who also performs a swap test on his
state and the forwarded state in order to check that they do not
differ. If any of the swap tests fail, the protocol is aborted.

In the messaging stage, Alice signs a single bit by publicly
announcing the message (b,kb). Each recipient independently
performs the map kb �→ |fkb

〉 and checks, using another swap
test, that the resulting state coincides with the one sent by
Alice during the distribution stage. Intuitively, security against
forging arises from the fact that only an exponentially smaller
number of bits can be learned from a measurement of the states
|fkb

〉 compared to the number of encoded bits, and security
against repudiation is obtained from the swap tests which
prevent Alice from sending differing states to each recipient.

This protocol is difficult to implement, since it requires
the preparation and transmission of complex quantum states,
performing challenging operations on the states, and storing
them in a quantum memory until the messaging stage. Instead,
we can apply the coherent-state mapping to build a protocol
that is much simpler to implement.

First consider the states of Eq. (31) that are used as public
keys. Applying the mapping we obtain the states

∣∣α,fkb

〉 =
m⊗

i=1

∣∣∣∣(−1)kb,i
α√
n

〉
i

. (32)

When the recipients receive the states, they need to ensure
that both copies are equal. Originally, they achieved this
by performing a swap test. However, using coherent states,
there is a simpler alternative: They can pass a single state
through a balanced beam splitter, creating copies of the original
state, albeit with reduced amplitude. Similarly, even though
we could apply the mapping to the operation corresponding
to the swap tests between recipients, we can alternatively
perform a simpler equality test as was outlined in Ref. [22]
for the case of quantum fingerprinting. This test needs only
the interference of the individual coherent states in a balanced
beam splitter, and the measurement statistics are analogous
to the outcome probabilities of a swap test. Furthermore,
as is described in Ref. [30], in a coherent-state protocol it
suffices to perform unambiguous state discrimination [35]
of the individual coherent states and store the unambiguous
outcomes in a classical memory. This classical data can then be
used to verify the authenticity of the signed message. Overall,
the QDS protocol is specified as follows:

QDS protocol

(1) Alice selects two n-bit strings k0,k1 uniformly at random
and sends each of Bob and Charlie a copy of the states,

∣∣α,fkb

〉 =
m⊗

i=1

∣∣∣∣(−1)kb,i
α√
n

〉
i

.

She sends a copy of each to both Bob and Charlie.

(2) Each recipient passes the states through a balanced beam
splitter, obtaining two copies of the states | α√

2
,fkb

〉.
(3) Using the first copy of their state, Bob and Charlie

perform an unambiguous state discrimination of the individual
coherent states | + α√

2n
〉,| − α√

2n
〉 and store the unambiguous

outcomes in a classical memory.
(4) One of the recipients sends his second copy to the other

and both of these second copies are interfered in a balanced
beam splitter, whose output ports are labeled “equal” and “not
Equal.” If more than a certain fraction f of clicks are observed
in the NEQ detector, the protocol is aborted.

(5) To sign a message, Alice publicly reveals (b,kb) and
sends it to one of the recipients, Bob for example. Bob accepts
the message as valid if the number of mismatches between his
unambiguous outcomes and Alice’s revealed key is below a
certain fraction sa > 0.

(6) To forward the message to Charlie, Bob sends him
Alice’s message. Charlie verifies the validity of the message
if the number of mismatches between his unambiguous
outcomes and Alice’s revealed key is below a certain fraction
sv > sa .

Overall, the QDS protocol we have constructed through
the coherent-state mapping can be implemented with the use
of sequences of coherent states and beam splitters only, as
illustrated in Fig. 4.

It is important to note that we are not providing a full
security proof for this protocol, since this is usually a
demanding and lengthy task, and the security statements can be
complicated functions of the many protocol parameters. Our
main goal in this section is to illustrate the usefulness of the
mapping to construct and understand quantum communication
protocols. Nevertheless, we expect that a full security proof can
be constructed from the results of Refs. [29,30].

FIG. 4. (Color online) A protocol for QDSs. Bob and Charlie
receive a train of pulses from Alice, which they split into two copies
of smaller amplitude, keeping one copy for themselves and interfering
the other in a balanced beam splitter in Bob’s laboratory. They
perform unambiguous state discrimination of the states |+α/

√
2n〉

and |−α/
√

2n〉 by interfering their kept signals with a local oscillator
(LO). Whenever it is unambiguously revealed that the incoming
state could not have been |+α/

√
2n〉 or |−α/

√
2n〉, the information

is stored in a classical memory. Simultaneously, Bob and Charlie
compare their received pulses by interfering their signals and they
record the number of “not equal” (NEQ) outcomes. If they exceed a
certain fraction of all clicks, the protocol is aborted.
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The coherent-state mapping can also be used to understand
existing QDS protocols. For example, in the protocol of
Ref. [30], the public-key states are also of the form of Eq. (32).
This implies that they can be equally thought of as arising from
an application of the coherent-state mapping to the qubit states
of Eq. (31). Furthermore, we note that the protocol of Ref. [30]
has already been experimentally demonstrated [32], showing
that these protocols can indeed be readily implemented.

The mapping also helps us to understand why these QDS
protocols do not require a quantum memory. In a qubit protocol
for QDS, only log2 n bits of information of the private key can
be obtained from a measurement on the states of Eq. (31). On
the other hand, as discussed in Sec. II, by choosing the value
of α appropriately, we can effectively choose the amount of
information about the private keys that can be obtained. This
permits the protocol to enter the statistical domain, in which
enough classical information can be gathered in order to verify
the authenticity of a message, but not enough information is
available to successfully forge a message.

V. CONCLUSIONS

We have outlined a general framework for encoding quan-
tum communication protocols involving pure states, unitary
transformations, and projective measurements into another
set of protocols that employs a coherent state of light in a
linear combination of modes, linear-optics transformations,
and measurements with single-photon threshold detectors.
This provides a general method for mapping protocols in
quantum communication into a form in which they can be
implemented with current technology.

The advantages of the coherent-state protocols obtained
from the mapping come at the price of a number of optical

modes that is equal to the dimension of the original states in
the qubit protocol. For practical purposes, this implies that
they are suited for protocols that originally do not require
a very large number of qubits. But as we have seen, there
exists a regime in which the mapping leads to practical
protocols whose implementation was previously inaccessible.
As such, we expect that our results will pave the way for the
experimental demonstration of a wide range of protocols in
quantum communication.

From a theoretical perspective, the coherent-state mapping
can be thought of as a tool for understanding fundamen-
tal aspects about quantum communication and information.
For example, the mapping provides us with a connection
between two intrinsically quantum properties: entanglement
and nonorthogonality. Additionally, the mapping can also be
applied in reverse: to obtain qubit protocols from coherent-
state protocols. This provides a connection between the
interferometry of coherent states with single-photon detectors,
and abstract quantum communication protocols using qubits.
Besides being of fundamental interest, this may serve as
a theoretical test bed for proving results regarding qubit
protocols, in the same way that many other dualities have
been useful in both physics and mathematics.
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