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We present a device-independent quantum cryptography protocol for continuous variables. Our scheme is based
on the Gottesman-Kitaev-Preskill encoding scheme whereby a qubit is embedded in the infinite-dimensional
space of a quantum harmonic oscillator. The application of discrete-variable device-independent quantum key
distribution to this encoding enables a continuous-variable analog. Since the security of this protocol is based
on discrete variables we inherit by default security against collective attacks and, under certain memoryless
assumptions, coherent attacks. We find that our protocol is valid over the same distances as its discrete-variable
counterpart, except that we are able to take advantage of high efficiency commercially available detectors where,
for the most part, only homodyne detection is required. This offers the prospect of closing the loopholes associated
with Bell inequalities.
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I. INTRODUCTION

Quantum key distribution (QKD) [1,2] is a method by
which two parties, Alice and Bob, may generate a shared
secret key over an insecure quantum channel monitored by
an eavesdropper, Eve. Any QKD protocol relies on several
assumptions, namely, any eavesdropper must obey the laws
of quantum mechanics; Alice and Bob have the freedom to
choose at least one of two measurement settings; and there is no
classical information leaking from Alice or Bob’s laboratories.
Most conventional QKD protocols further assume that Alice
and Bob have near perfect control of their measurement
devices as well as their state preparation. Device-independant
QKD [3–5] is a protocol that, remarkably, is free from
making these additional assumptions; Alice and Bob need no
knowledge of the inner workings of their devices nor even the
dimension of the space their quantum states reside in.

In this paper, we use the approach of combining the
encoding scheme of [6] with the results of [3,4] to create
a device-independent quantum cryptography protocol for
continuous variables (CVs). CV quantum information offers
higher efficiency detectors, cheap off-the-shelf components
and the experimentally accessible Gaussian resources. Fur-
thermore, by encoding the CV space of a harmonic oscillator
into a finite-dimensional code space we are able to take
advantage of results which have previously only been applied
to discrete-variable (DV) QKD.

The first proposals for continuous-variable QKD [7] relied
on “nonclassical” states of light such as squeezed states [8,9].
In fact, one of these protocols was proven unconditionally
secure [9]. As the field matured it was recognized that
such nonclassical states were not required and that the
more experimentally available class of coherent states were
sufficient [7,10].

Device-independent QKD provides a way by which two
parties may share a private key despite having no knowledge
of the inner workings of their respective devices. Conversely, in

*marshall@physics.utoronto.ca
†christian.weedbrook@gmail.com

conventional QKD protocols it is regularly assumed that both
parties have a high degree of control over both state preparation
as well as measurement. Although, recently relaxing the
condition of trusting the measurement device was achieved
[11,12]. The security in this device-independent approach
comes instead from the fact that the two parties are able to
violate a Bell inequality [13], which can remarkably be used
to put a bound on the amount of information that a potential
eavesdropper could, in principle, obtain.

Here we introduce a CV version of device-independent
QKD. Our protocol goes as follows. Alice first generates a Bell
state which has been created using an encoding based on the
Gottesman-Kitaev-Preskill scheme where a qubit is encoded
into an infinite dimensional space of a harmonic oscillator.
After this the protocol continues in a similar fashion where
she keeps one encoded qubit and sends the other qubit to Bob
over an insecure quantum channel. Hence, the results of DV
device-independent QKD can then be applied to the system
yielding the first implementation of device-independent QKD
for CVs.

It is known in the field of CV quantum information that
all Gaussian resources are insufficient for violating a Bell
inequality [14,15]. This means that one should already expect
non-Gaussian states or measurements as being a requirement
[16–20], despite the fact that they are typically more difficult
to produce in a laboratory. This highlights the challenges faced
when attempting to create a CV version of device-independent
QKD because most current CV-QKD protocols use Gaussian
states. Fortunately, if we use, for example, a single mode of
the electromagnetic field as our harmonic oscillator, we are
able to use CV resources, including high efficiency detectors
and off-the-shelf components. The major drawback of DV
device-independent QKD is that in order to close the detector
loophole one needs high efficiency detectors [21] which are
possible but not yet standard tools. The detector loophole issue
is often overcome by CV quantum information where we can
take advantage of such high detection efficiencies [16–20,22].

This paper is structured as follows. In Sec. II we discuss
separately the necessary encoding scheme as well as the results
of DV device-independent QKD. In Sec. III we relate these
concepts to CV quantum information and discuss formally
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the kind of measurements that are necessary. Following this
we investigate the resources required in order to implement
the protocol in Sec. IV. Since we are only capable of making
approximations of the desired encoding in the real world, we
consider the effects of such approximations on the encoding
and resulting key rate in Sec. V. Finally, Sec. VI presents
some discussions and concluding comments as well as some
interesting open questions.

II. BACKGROUND

The premise of this paper is to propose a method of
implementing device-independent QKD with CV states. This
is accomplished by embedding a two-level Hilbert space into
the full infinite-dimensional space and then using results from
DV-QKD. Here we discuss the encoding scheme proposed by
Gottesman, Kitaev, and Preskill (GKP) in [6] as well as the
DV version of device-independent QKD.

A. GKP encoding

The GKP encoding [6] provides a method to encode a qubit
in the infinite-dimensional space of an oscillator in such a
way that one can protect against arbitrary, but small, shifts
in the canonical variables q and p as well as carrying out
fault-tolerant universal quantum computation on the encoded
space [6,23]. The stabilizer generators of a two-dimensional
Hilbert space in an infinite-dimensional Hilbert space with
canonical variables q,p are given by [9]

Sq = exp(2iq
√

π ), Sp = exp(−2ip
√

π). (1)

The stabilizers are simply shift operators for q,p, and if the
eigenvalues are Sq = Sp = 1 then the allowed values of q

and p are integer multiples of
√

π . Since the code words are
invariant under shifts by integer multiples of 2

√
π we can

define a basis for the encoded qubit as

|j̄L〉 ∝
∑
s∈Z

|(2s + j )
√

π〉q, (2)

for j = 0,1, and where the subscript q indicates the q (“posi-
tion”) basis. These states can be approximated optically using
Schrödinger cat states [24], or by a variety of other methods
[25–28]. Encoded Pauli gates are defined as Z̄ ≡ exp(iq

√
π )

and X̄ ≡ exp(−ip
√

π ); since these operators commute with
the stabilizers they also preserve the code subspace.

The set of Clifford operations on the encoded subspace
correspond to symplectic (or Gaussian) transformations on
the CV space of the oscillator; these operations can be
implemented in a fault-tolerant way [6]. To achieve universal
quantum computation we must be able to implement a non-
Clifford gate on the encoded subspace [29], for example, the
addition of a π/8 gate (T gate) to the Clifford group will make
for a universal set of gates. The T gate can be implemented
with a nonsymplectic transformation on the oscillator; this is
more experimentally difficult than symplectic transformations
and requires a non-Gaussian resource such as photon counting.
The physical resources required to implement these gates are
discussed in more detail in Sec. IV.

B. Device-independent quantum key distribution

The DV-QKD protocol [3,4] begins with Alice and Bob
sharing a quantum channel that emits pairs of entangled
particles. To consider the worse case scenario, we allow Eve
full control over the source [30] which, if she is honest,
emits the state |ψAB〉 = 1/

√
2(|00〉 + |11〉). But in general

she is free to create any arbitrary state ρABE which may be
entangled between not only Alice and Bob but herself as well.
To generate a secret key, Alice chooses a basis to measure in
from {A0,A1,A2} while Bob chooses a basis from {B1,B2} and
they get outcomes of ai,bj ∈ {+1,−1}, respectively [31]. After
all measurements are performed, if Alice had chosen measure-
ment A0 and Bob chosen measurement B1 they extract a single
bit of raw key corresponding to their measurement outcome.
Instead, if they had measurement settings corresponding to
{A0,B2}, their outcomes are completely uncorrelated and so
this case is discarded. For all other measurement settings Alice
and Bob use their results to violate the CHSH inequality [13]:

S = 〈a1b1〉 + 〈a1b2〉 + 〈a2b1〉 − 〈a2b2〉 � 2. (3)

The CHSH inequality puts a bound on the values of S
consistent with local hidden-variable theories in accordance
with Bell’s theorem [32,33]. Violation of this inequality by
quantum mechanics arises due to the fact that entanglement
can provide nonlocal correlations that cannot be produced
by shared randomness. If Alice and Bob share a nonlocal
correlation then, regardless of how this correlation came to
exist, Eve cannot have full knowledge of the correlation or
else she would be in possession of a local variable capable of
reproducing the correlations [4].

A set of measurements which give the desired behavior in
the above protocol and which maximize the violation of the
CHSH inequality are given by [31]

A0 = B1 = Z, A1 = 1/
√

2(Z + X),
(4)

B2 = X, A2 = 1/
√

2(Z − X).

For the moment, Z and X in the above expression (4) have
no relation to the encoded Pauli gates Z̄ and X̄; although we
will make this connection in Sec. III. The main result shown
by Acı́n et al. [4] is that the Holevo quantity between Eve and
Bob, after Alice and Bob have symmetrized their marginals,
is bounded as

χ (B1:E) � h

(
1 +

√
(S/2)2 − 1

2

)
, (5)

where χ (B1:E) = S(ρE) − 1
2

∑
b1=±1 S(ρE|b1) is the Holevo

quantity and h = −p log2 p − (1 − p) log2(1 − p) is the bi-
nary entropy. This provides a method which Alice and Bob
can use to keep Eve honest and bound her knowledge using
only their violation of the CHSH inequality.

III. CONTINUOUS-VARIABLE DEVICE
INDEPENDENCE PROTOCOL

The CV version of device-independent QKD begins with
Alice creating an encoded Bell state (see Fig. 1). This encoding
is based on the GKP encoding as given in Sec. II A. Once this
Bell state is created she keeps one qubit for herself and sends
the other entangled qubit to Bob over an insecure and lossy
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FIG. 1. (Color online) The layout of the proposed CV device-
independent QKD protocol. Alice makes use of an entangled source
S which emits an encoded Bell state |S〉 = |0̄0̄〉 + |1̄1̄〉, shown in the
figure as the wave function in the position representation, to keep
half of the pair for herself while sending the other half to Bob over a
lossy channel. Both parties randomly choose a change of basis gate,
Ai and Bj , before each making a homodyne measurement of the
q̂ quadrature with detectors DA and DB . There are many proposals
on how to create the initial encoded GKP states (see Sec. II A), and
the operations required to create the encoded Bell state as well as
implement the desired measurement are discussed in Sec. IV.

quantum channel. Apart form this initial encoding, the protocol
follows the same steps as in typical DV-QKD protocols [3,4].

A set of measurements which maximize the violation of the
CHSH inequality, for the encoded state,

|�+〉 = 1/
√

2(|0̄0̄〉 + |1̄1̄〉), (6)

consist of measurements A1,A2,B1,B2, as defined in Sec. II B,
which act on the encoded subspace. We can destructively
measure the observables Z̄ and X̄ by performing a suitable
homodyne measurement of the q̂ or p̂ quadrature, respectively.
By measuring the q̂ quadrature we expect that the only
outcomes possible will be integer multiples of

√
π ; even

multiples corresponding to a |0̄〉 state and odd multiples
corresponding to |1̄〉. Imperfections in the measurement and
the encoded state will result in other measured values, but we
can apply classical error correction and adjust the value to the
nearest k

√
π for an integer k. The outcome of the measurement

Z̄ is then given by (−1)k . We can measure the other three
observables by first applying a change of basis gate which
takes us to the Z̄ basis, and in this way we need only consider
homodyne measurements of the q̂ quadrature.

We assume in this section that we are able to implement
Clifford gates as well as π/8 gates on our encoded space and
also that we can carry out homodyne measurements on the
CV space; the resources required to do this are discussed in
Sec. IV. From here onwards we drop the over-bar notation to
denote encoded operations; all gates are to be understood as
acting on the encoded space while symplectic transformations
are understood to be in relation to the oscillator.

It is readily seen that we can measure in the X basis
by using the change of basis gate H , and one can easily
verify that H †XH = Z. Since the Hadamard gate H is in
the Clifford group we can implement an encoded H by
carrying out symplectic transformations on the full CV space.
Unfortunately, it is not possible to change from the A1 or A2

basis to the Z basis by using only Clifford gates, which means
that we will need to go beyond symplectic transformations in
the CV space. This can be readily seen by recognizing that
A1 = H ; suppose there existed a Clifford gate C such that
C†HC = Z. This would imply that CZC† = H and so C is
not a Clifford gate by definition.

The required change of basis gates can be calculated as

IB1I = Z, H †B2H = Z,
(7)

α†A1α = Z, β†A2β = Z,

where α = PHT HP , β = ZPHT HP , and T is an encoded
π/8 gate. It is important to note that while the latter two gates
are not Clifford gates, they can be decomposed exactly as
a composition of Clifford gates with only one non-Clifford
T gate. Furthermore, it is possible to shift the problem of
implementing a T gate to a state preparation problem, and since
preparation can be done “offline” we require only Gaussian
operations and one auxiliary state to carry out our CV device-
independent QKD.

IV. REQUIRED RESOURCES

In order for Alice and Bob to implement the necessary
measurements they must be able to perform gates on the
encoded states as well as homodyne detection on one quadra-
ture. The necessary set of gates include H,P,T (no need
for Z, since Z = P 2). The first two gates correspond to
Clifford operations while the last one is a non-Clifford gate.
The set of Clifford gates on the encoded states correspond
to symplectic transformations on the CV space, given as
[6] H : (q,p) → (p,−q), P : (q,p) → (q,p − q), and CNOT :
(q1,p1,q2,p2) → (q1,p1 − p2,q1 + q2,p2). To create the Bell
state one requires only the symplectic transformations associ-
ated with H and CNOT, as well as encoded |0〉 states, thus this
is not an experimentally demanding operation.

In order to implement an encoded π/8 gate we need a non-
symplectic transformation which requires a non-Gaussian re-
source. The addition of photon counting to Gaussian resources
is sufficient to carry out nonsymplectic transformations. In
particular, one is able to create either a π/8 state or a cubic
phase state which can then be used to implement a T gate on
the encoded space [6,34]. Fortunately, one can generate these
states offline and use them as required throughout the protocol,
effectively shifting the issues of non-Gaussian operations to
state preparation. In this way, one needs only to have a
supply of non-Gaussian states and be capable of performing
symplectic transformations (including homodyne detection)
in order to implement the QKD protocol. In the case of an
optical mode, the set of symplectic transformations can be
achieved with linear optics (phase shifters and beam splitters)
and squeezing operations (nonlinear crystals).

Fortunately, Alice and Bob do not need to choose a
measurement basis, which is used to check for a CHSH
violation, very often; the probability of choosing between the
possible options need not be uniform, although this would
work as well. If we suppose that Alice and Bob share N

quantum states, it is enough to use ∼√
N pairs to check

for a CHSH violation, so long as the measurements are
causally independent [35]. This condition would be satisfied
for memoryless devices, or devices which could have internal
memory reliably cleared after every run. One protocol [35]
also provides security against coherent attacks, which is
the most general form attack. Since we have chosen the
measurement basis corresponding to generating a key as Z,
this means that in the limit of large N almost all of the
time we need only perform Gaussian operations. Hence, we
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need only perform non-Clifford operations a small fraction
of the time, in order to estimate the CHSH violation and
thus keep the eavesdropper honest. Many other such DV
device-independent QKD protocols exist and offer different
key rates with different underlying assumptions [36–38], but
typically one still requires the ability to make measurements
in a set of four bases which violates the CHSH inequality.

V. GAUSSIAN FINITE-SQUEEZING EFFECTS

In practice, the encoded GKP states will not consist of delta
peaks at

√
π intervals, but instead the peaks will have some

finite width and they will be modulated by a larger envelope
to ensure the state is of finite energy. One way to produce an
ideal GKP state is to prepare a momentum eigenstate |p =
0〉, and then measure the value of q(mod 2

√
π ); although in

practice one would probably create this state through other
means [24–28]. Since the position is completely undetermined
for a momentum eigenstate all values of q are equally likely,
and this measurement will project out a state that differs from
a Z eigenstate by a shift of q which can then be corrected.

If instead of an unphysical momentum eigenstate, which
corresponds to infinite squeezing, we can consider a finitely
squeezed state given by ψsq(p) = π−1/4κ−1/2 exp(− 1

2p2/κ2)
[39], where κ = e−r for squeezing parameter r ∈ [0,∞). In
the position representation this state is given by ψsq (q) =
π−1/4κ1/2 exp(− 1

2q2κ2). An ideal homodyne measurement
of q is a projection-valued measure (PVM) with projectors
corresponding to position eigenstates Px = |x〉〈x|, or infinitely
squeezed states in position. If we allow the homodyne
measurement to have a Gaussian acceptance of width 
,
we replace the PVM with a positive-operator valued measure
(POVM) which consists of an ideal homodyne measurement
convolved with a Gaussian window. This leads to POVM
elements given by

�x = (2π
2)−1/2
∫ ∞

−∞
dye− 1

2 (x−y)2/
2 |y〉〈y|. (8)

An ideal measurement of q(mod 2
√

π ) is described by the
PVM with elements P ′

x = ∑∞
s=−∞ Px−2s

√
π for x ∈ [0,2

√
π),

and if we let Px → �x we obtain the result for a homodyne
detector with a Gaussian acceptance. Without loss of generality
suppose we obtain a result corresponding to �0, then the state
will be transformed to

ψ0̄(q) ∝
∑
s=Z

e− 1
2 q2κ2

ψ ′
sq(q + 2s

√
π ), (9)

where ψ ′
sq is a squeezed vacuum state in position with width 
.

If we obtain a result other than �0 we can simply apply a shift
to correct the state. This is of the same type of approximate
code word proposed in the GKP paper [6]. Notice that our
initial squeezing determines the size of the overall envelope,
width κ−1, while the precision of our homodyne measurement
determines the width of the individual peaks.

If we further approximate by replacing exp(− 1
2q2κ2) →

exp(− 1
2 (2s

√
π )2κ2) in the summation above, which

corresponds to scaling each peak by a constant factor, we
find

|ψ0̄(q)|2 = 2κ



√

π

∞∑
s=−∞

e−4πκ2s2
e−(q−2s

√
π )2/
2

. (10)

We can correct for shifts in the position which are less than√
π/2, and thus bound the error by adding up the contribution

from all of the tails further than
√

π/2 from their respective
peak. Assuming that κ

√
π � 1 the probability of error is

bounded as Pe < 2
2/(κπ ) exp (− 1
4π/
2) [9].

The errors from incorrectly identifying an encoded state
will determine the amount by which one is able to violate the
CHSH inequality. Consider one term in the CHSH quantity S.
The correlator is defined as 〈aibj 〉 = P (a = b|ij ) − P (a =
b|ij ) for outcomes a,b and measurement choices i,j . If we
assume that our gates are perfect then all errors will come from
incorrectly identifying an encoded state. We can calculate the
value of S after error correction by computing the expectation
values of the various measurements. This value is plotted in
Fig. 2, and it can be seen that we start to violate the CHSH
inequality for parameters 
 = κ corresponding to squeezing
greater than 5 dB. This shows that the value of the CHSH
quantity is scaled according to the error rate, assuming perfect
gates.

The quantum bit error rate (QBER) [2] is defined as Q =
P (a = b|01) = 2Pe(1 − Pe) since we are only extracting a
key for the cases where Alice does measurement A0 and Bob
does measurement B1. This corresponds to either Alice or Bob
incorrectly identifying the state while the other party does not
make an error. The secret-key rate r , under collective attacks,
with one-way classical postprocessing from Bob to Alice, is
lower bounded by the Devetak-Winter rate [4,40],

r � rDW = I (A0:B1) − χ (B1:E), (11)

where I (A0:B1) = 1 − h(Q) is the mutual information be-
tween Alice and Bob (h being the binary entropy), and
χ (B1:E) is the Holevo quantity.

In Fig. 2, we plot both the QBER and the key rate r . Notice
that the extractable key rate remains zero even for values of
S slightly larger than two. The key rate grows rapidly for
squeezing beyond 6 dB, for example, a squeezing of 10 dB
yields a key rate of ≈98%. Note that the well-known critical
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FIG. 2. (Color online) The extractable secret-key rate is plotted
as a function of the squeezing for the symmetric case 
 = κ , where

 is the width of the individual peaks and κ−1 is the width of the
Gaussian envelope in the GKP encoding. Note that currently the
maximal amount of single-mode squeezing achieved is 12.7 dB
[41,42]. The shaded region indicates a violation of the CHSH
inequality. The QBER is plotted in units where 0 corresponds to
no error and 0.5 corresponds to Alice and Bob guessing randomly.
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QBER of 11% for BB84 [43] as well as 7.1% for DV device-
independent QKD [4] are higher than the ≈3.5% critical
QBER for this proposal. This is due to the fact that one requires
a suitable enough approximation to a GKP encoded state in
order to have a high enough violation of the CHSH inequality,
and by doing so one immediately achieves a corresponding
low probability of error Pe. Typically one desires a high
critical QBER as it generally tolerates more imperfections
in the protocol. However, in this case the difficulty arises from
the need to violate the CHSH inequality and if one is able to do
so then one already obtains a small QBER. Intuitively, as the
width of the individual peaks 
 in the encoded state become
larger, and equivalently the QBER, the overall state resembles
a Gaussian state and thus cannot violate the CHSH inequality.

VI. DISCUSSION OF LOSS, COMPARISON TO DISCRETE
VARIABLES AND CONCLUSION

By harnessing the results of discrete-variable QKD, with a
qubit encoding in a harmonic oscillator, we provided the first
device-independent QKD protocol for continuous variables.
This protocol derived its security from the ability to violate
a Bell inequality and, remarkably, does not require Alice or
Bob to know the inner workings of their devices. We showed
how both the CHSH violation and the resulting extractable key
rate depended on the quality of the approximate code words.
We also showed that, in terms non-Gaussian resources, we
required a modest one T gate for each of ∼√

N of N total Bell
pairs. Thankfully, from an experimental point of view, what
this means is that only Gaussian operations (e.g., homodyne
detection) are needed most of the time.

It should be noted that our encoding scheme is exper-
imentally challenging. However, it is still practical, with
many proposals already existing [24–28]. It is hoped that
our paper will further motivate experimental advances using
such encodings. Given the technological challenges, distances
in our scheme will be limited (although not fundamentally).
However, it should be noted that such limitations are also
faced by the discrete-variable version of device-independent
QKD, which is currently limited to a few kilometers. This
is because it requires a detection efficiency of approximately
95% to achieve a key rate on the order of 10−10 per pulse [44].

Interestingly, one can also consider the distances over
which our continuous-variable protocol will perform well. We
do this by calculating the Wigner function of an approximate
encoded state and then send it through an amplitude damping
channel. We numerically find that, for example, at 2.3 km, with
0.2 dB/km loss, we get a key rate of 0.35 bits/state. This
is comparable to discrete-variable device-independent QKD
where such schemes are limited to only a few kilometers
[44]. Furthermore, we note that the distance of our protocol
can also be improved by using distillers as was shown for
discrete-variable states [45] or by the application of heralded
amplifiers [46].

The encoding itself is fault tolerant in the sense that a
small shift in q or p will not significantly impact measurement
results. As such, the protocol will generally perform well when
noise in the channel is weak, i.e., results in only small shifts
in q or p [9]. In the case of loss this condition corresponds

to transmission distances small compared to a characteristic
damping constant [6].

It is an interesting open question whether one can devise
a device-independent continuous-variable QKD protocol with
more readily accessible states. One possible avenue to explore
is lifting the requirement of a CHSH inequality violation by
considering a protocol where only one party trusts their device.
This one-sided device-independent QKD requires one to vio-
late only an EPR-steering inequality [22,47], which amounts
to Alice and Bob checking that they have entanglement and
ruling out local hidden state models [48]. This notion has
recently been explored for both coherent and squeezed states
for a variety of different setups [49].
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APPENDIX

Here we justify the use of several results in the paper.
In Sec. V we identified the approximate encoded state
ψ0̄(q) that would result when a finitely squeezed state
ψsq (p) = π−1/4κ−1/2 exp(− 1

2p2/κ2) was measured with a
POVM [Eq. (8)] subject to q mod 2

√
π . Supposing that we

find an outcome corresponding to �0, we have

|ψ0̄〉 ∝
∞∑

s=−∞
(2π
2)−1/2

∫ ∞

−∞
dye− 1

2 (2s
√

π+q)2/
2

×π−1/4κ1/2e− 1
2 q2κ2

δ(q − y),

∝
∞∑

s=−∞
e− 1

2 q2κ2
e− 1

2 (2s
√

π+q)2/
2
,

∝
∞∑

s=−∞
e− 1

2 q2κ2
ψ ′

sq (q + 2s
√

π ). (A1)

Thus we recover the fact that this measurement projects the
state onto a superposition of squeezed states in q̂ with a spacing
of 2

√
π and width of 
 weighted by an overall Gaussian

envelope of width κ−1.
In Sec. V we stated that the value ofS, with error correction,

can be calculated by finding the appropriate expectation values.
Consider the box function,

�(x) =
{

1 if |x| � 1/2
0 if |x| > 1/2 . (A2)

To calculate the value of Tr(|m〉〈n|Z), with m,n ∈ {0,1}, for an
element of the density matrix, we simply perform the integral,∫ ∞

−∞
ψm(q)Z(q)ψn(q)dq, (A3)

where Z(q) = 2{∑s∈Z �[(q − 2s
√

π )/
√

π ] − 1/2} is +1
(−1) for q closer to an even (odd) multiple of

√
π (see Fig. 3).

Calculating a trace involving X is similar to q being replaced
by p and using the corresponding Fourier transforms of the
wave functions, while the other two necessary measurements,

α =
(−i cos π

8 −i sin π
8−i sin π

8 i cos π
8

)
, (A4)
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4 Π 2 Π 0 2 Π 4 Π
q

FIG. 3. (Color online) The wave function for an encoded |0̄〉 state
(solid) with 
,κ corresponding to 6 dB squeezing. The regions where
Z(q) is positive is enclosed by the dashed plot.

β =
(−i cos π

8 −i sin π
8

i sin π
8 −i cos π

8

)
, (A5)

can be decomposed into a sum of Z,X and calculated using
the linearity of the trace function.

To study the effect of transmission on our protocol one can
work within the Wigner function formalism. In this framework
the amplitude damping channel can be expressed as an integral
transform where

W (α,z) = 2

T π

∫ [
− 2

T
|α − βe−κz|2

]
W (β,0), (A6)

where T = 1 − e−2κz, z is the transmission distance and
κ is the corresponding decay constant. Fortunately, we are
working with all Gaussian functions, or the sum of Gaussian
functions as each peak in the encoded state is a Gaussian,
where we can invoke the linearity of the Wigner function.
Since the product and convolution of Gaussian functions
are simple and remain a Gaussian it is easy to see what
happens to each part in the sum of the encoded state
when applying an amplitude damping channel. One can then
construct suitable approximations of the damped encoded state
numerically by choosing an appropriate cutoff in the infinite
summation.
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