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Quantum Gaussian states can be considered as the majority of the practical quantum states used in quantum
communications and more generally in quantum information. Here we consider their properties in relation to
the geometrically uniform symmetry, a property of quantum states that greatly simplifies the derivation of the
optimal decision by means of the square root measurements. In a general framework of the N -mode Gaussian
states we show the general properties of this symmetry and the application of the optimal quantum measurements.
An application example is presented to quantum communication systems employing pulse position modulation.
We prove that the geometrically uniform symmetry can be applied to the general class of multimode Gaussian
states.
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I. INTRODUCTION

In the last years Gaussian states have received tremen-
dous interest [1–4] due to the fact that most quantum
operations can be performed with continuous variables, of
which Gaussian states represent the most important class.
The advantage with respect to discrete variables (qubit) is
that the optical implementation of continuous variables is
available and robust. A relevant application of Gaussian
states is given by quantum communications (QC), which
in practice are implemented by coherent states, the most
important subclass of Gaussian states. Often in QC coherent
states are not related explicitly to Gaussian states [5,6], but
their recent developments led to a very elegant and powerful
theory, so that it seems important to revisit QC using this
theory.

In this context we reconsider QC having as information
carrier Gaussian states and we assume that a finite set (con-
stellation) of Gaussian states has a special form of symmetry,
called geometrically uniform symmetry (GUS). A constellation
having the GUS is generated starting from a single reference
state through a unitary operator, called the symmetry operator.
The GUS has the advantage not only of simplifying the theory
of QC, but also of deriving the optimal decision measurements,
which would otherwise not be possible. It is worth remarking
that the standard form of GUS is enjoyed by almost all constel-
lations considered for practical QC, namely phase shift keying
(PSK) and pulse position modulation (PPM). Also quadrature
amplitude modulation (QAM) verifies a generalized form of
GUS.

Since we want to establish completely general results,
valid for multimode Gaussian states, a fundamental pre-
liminary is a clear and compact formulation of the most
general Gaussian state and of the most general Gaussian
transformation (Gaussian unitary). To this end we follow the
theory developed by Ma and Rhodes in a seminal paper
published in 1990 [7]. This theory has the advantage of
handling, through an appropriate algebra of operators, the
general N -mode Gaussian states in much the same way as
the single-mode Gaussian states. Substantially, it proves that
the most general Gaussian unitary is given by a cascade
combination of a squeezing, a displacement, and a rotation.

Finally, we will prove that, starting from an arbitrary N -mode
Gaussian state, we can generate a GUS constellation where the
symmetry operator is provided by the rotation operator with
an appropriate amount of rotation.

In the literature only QC systems using coherent states
have been considered and little attention has been devoted
to the appealing possibility of using squeezed states [8].
To this end, we revisit QC where the main problem is the
optimization of quantum detection to achieve the minimum
error probability. As known, this problem is very difficult
and exact solutions are established only in a few cases. To
overcome this difficulty, suboptimal solutions are considered,
the most important of which is given by the square-root
measurements (SRM), introduced by Hausladen et al. [9]
and subsequently developed as a least-square measurement
(LSM) by Eldar and Forney [10,11]. This technique is not
in general optimal, but gives a good approximation of the
optimum (“pretty good” is the judgment given by the authors
and very often echoed in the literature). The SRM or LSM
can be applied with any constellation, but in the presence of
GUS it provides the optimal solution in an easy and explicit
form. This holds when the detection is based on pure states;
with mixed states the SRM technique is suboptimal, but gives
a very accurate overestimate of the error probability, surely
better than the quantum Chernov bound usually considered
with Gaussian states [12].

The paper is organized as follows. In Sec. II we introduce
the N -mode Gaussian states and Gaussian transformations
and discuss their most general representations in terms of
unitary Gaussian transformations. Section III is devoted to
Gaussian states equipped with the GUS. In Sec. IV we present
an application of the theory to the quantum detection for PPM,
which requires a nontrivial analysis in a multimode Hilbert
space. Explicit examples of error probability are carried out
considering as quantum carrier in PPM both coherent and
squeezed states.

We adopt the following notation: ·T denotes transposition,
while ·∗ has the multiple role of adjoint for operators,
Hermitian conjugation for matrices, and complex conjugation
for numbers. The normalization follows the notation of the
authors of [1], where in particular the reduced Planck constant
is set to � = 2.
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II. GAUSSIAN STATES AND GAUSSIAN
TRANSFORMATIONS

A. Definition of Gaussian states

In an N -mode bosonic space H⊗N quantum states are
represented in general by density operators ρ : H⊗N →
H⊗N . Any density operator has an equivalent representation
in the phase space R2N given by a characteristic function and
Wigner function. In particular, Gaussian states are defined with
reference to their characteristic and Wigner functions, which
should have a multivariate Gaussian form. For an N -mode
Gaussian state with mean X and covariance matrix V the
characteristic function has the following form

χ (u,v) = exp
[ − 1

2uv
T�V �Tuv − j (�X)Tuv

]
,

(u,v) ∈ R2N (1)

with

uv = [u1,v1, . . . ,uN,vN ]T , � = diag [�1, . . . ,�N ],

�i =
[

0 1
−1 0

]
. (2)

The relevant property of Gaussian states is that they are
specified simply by the pair (X,V ) and for this reason the
density operator of a Gaussian state is often indicated in the
form ρ(X,V ).

B. Gaussian transformations

A quantum transformation or quantum operation maps the
state of the system ρ into a new state ρ̃ = �(ρ). In general
a quantum transformation defines a quantum channel, which
may refer to an open system [13], while in closed quantum
systems the map is provided by a unitary transformation
according to

ρ → ρ̃ = U ρ U ∗. (3)

A quantum transformation is Gaussian when it transforms
Gaussian states into Gaussian states. When the Gaussian
transformation is performed according to the unitary map (3)
it is called Gaussian unitary. It can be shown [1] that Gaussian
unitaries are generated in the form U = exp(−iH/2), where
H is a Hamiltonian, which is a second-order polynomial
in the field operators qp := [q1,p1, . . . ,qN ,pN ]T or, equiv-
alently, in the bosonic operators a := [a1, . . . ,aN ]T, a∗ :=
[a∗

1 , . . . ,a
∗
N ]T.

In terms of quadrature operators qp, a Gaussian unitary
gives a symplectic transformation, which has the form

qp → S qp + d, (4)

where S is a 2N × 2N real matrix and d ∈ R2N . S has the
property (symplectic matrix) S �ST = �.

A symplectic transformation modifies the mean vector X =
qp and the covariance matrix V in the form

X → S X + d, V → S V ST. (5)

These are the key results because they allow us to specify a
Gaussian transformations in terms of the parameters (S,d),
which “live” in the phase space R2N .

C. Fundamental Gaussian unitaries

In the literature we find a plethora of forms for the Gaussian
unitaries with specific expressions in the single mode, in the
two mode, and in the N mode. Here we follow the unified form
developed by Ma and Rhodes [7] for the N mode. This form,
using appropriate matrix notations, turns out to have extremely
similar algebraic properties as that of the single mode and is
very useful in establishing general results.

There are only three fundamental Gaussian unitaries, which
are specified by the following unitary operators.

(1) N -mode displacement operator

D(α) := ea∗α −α∗ a, α = [α1, . . . ,aN ]T ∈ CN . (6)

(2) N -mode rotation operator

R(φ) := ei a∗φ a, φ N × N Hermitian matrix. (7)

(3) N -mode squeeze operator

S(z) := e
1
2 [ (a∗ z a∗−aT z∗ a)], z N × N symmetric matrix.

(8)

In these definitions a = [a1, . . . ,aN ]T and a∗ = [a∗
1 , . . . ,a

∗
N ]T

are column vectors, while a∗ = [a∗
1 , . . . ,a

∗
N ] is a row vector.

In (7) the N × N symmetric matrix z can always be written
in the forms [7] z = r eiθ = eiθT

rT, where r and θ are N ×
N Hermitian (in general noncommuting) matrices and r is
positive semidefinite. A particular case of (7) with N = 2 gives
the beam splitter, while the most popular forms of squeezing
(single mode and two mode) are particular cases of (8) for
N = 1,2.

Note that the above fundamental unitaries are special
cases of the general Gaussian unitary U = e−iH/2 with H

a Hamiltonian, quadratic in the creation and annihilation
operators collected in a∗ and a. As we shall see below, all
Gaussian transformations are obtained as a combination of
these operators, and the corresponding Gaussian states are
typically generated starting from replicas of vacuum states or
of coherent states.

We are particularly interested in the cascade combination,
where one can switch the order of operators with an appropriate
change in the parameters [7]

D(α) S(z) = S(z) D(β), β = cosh(r) α − sinh(r) eiθ α∗
(9)

S(z) R(φ) = R(φ) S(z0), z0 = e−iφz e−iφT

(10)

D(α) R(φ) = R(φ) D(β), β = α e−iφ. (11)

D. Most general Gaussian unitary

The importance of the fundamental unitaries lies in the
following.

Theorem 1. The most general Gaussian unitary is given by
the cascade combination of the three fundamental Gaussian
unitaries: S(z), D(α), and R(φ), cascaded in any arbitrary
order by a proper adjustment of the parameters.

The proof can be obtained for the general multimode
using the Lie algebra. Ma and Rhodes [7], generalizing a
previous result obtained for the single mode [14,15], proved
that a unitary operator e−iH/2, where H is a general N -mode
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quadratic Hamiltonian, can be written in the form

U = eiγ S(z) D(α) R(φ), (12)

where the phasor eiγ with γ ∈ R is irrelevant for the state
generation. On the other hand, we can apply the switching rules
(10) and (11) to change the order of the fundamental unitaries
in (12), with appropriate modifications of the parameters.

In phase space a Gaussian unitary is equivalent to a sym-
plectic map (4), specified by the pair (S,d). The Gaussian uni-
tary can always be written in the form US,d = D(α)US , where
US corresponds to the map qp → Sqp and the displacement
operator D(α) in the phase space provides the displacement
qp → qp + d, with d2i−1 = Re αi and d2i = Im αi .

E. Most general Gaussian state

The most general Gaussian state can be derived by
combination of the thermal decomposition and Theorem 1.

In a Gaussian state with the pair (V,X), the covariance
matrix V and the mean vector X can be handled separately.
The covariance matrix V is fully described by powerful
Williamson’s theorem, which states that an N -mode covari-
ance matrix V can be decomposed in the form

V = Sw V ⊕ ST
w, V ⊕ = diag

[
σ 2

1 ,σ 2
1 , . . . ,σ 2

N,σ 2
N

]
, (13)

where Sw is a 2N × 2N symplectic matrix and the σ 2
i are

positive real values, called the symplectic eigenvalues of V .
The application of Williamson’s theorem gives the so-called

thermal decomposition of a Gaussian state [4], that is, an
arbitrary N -mode zero-mean Gaussian state can be generated
by the tensor product of N single-mode thermal states, with
covariance matrix Vk = σ 2

k I2, where I2 is the 2 × 2 identity,
and number of thermal photons Nk = 1

2 (σ 2
k − 1). In fact, a

single-mode thermal state is specified by a covariance matrix
σ 2I2, with average photon number N = 1

2 (σ 2 − 1). Now,
according to (13), the N -mode Gaussian state with the diagonal
covariance matrix V ⊕ is given by

ρth(0,V ⊕) = ρ
(
0,σ 2

1 I2
) ⊗ · · · ⊗ ρ

(
0,σ 2

N I2
)
. (14)

However, by Theorem 1, we know that US can be written as
the cascade combination US = S(z) R(φ) or US = R(φ) S(z).
Then, a zero-mean Gaussian state with covariance matrix
V is generated from ρth(0,V ⊕) in the form ρ(0,V ) =
US ρth(0,V ⊕) U ∗

S , where US is the unitary operator correspond-
ing to the symplectic transformation Sw of decomposition (13).

A Gaussian state with non-zero mean is generated by
introducing in ρ(d,V ) an appropriate displacement operator.
In conclusion, by the combination of the previous statements
the following theorem holds.

Theorem 2. The most general N -mode Gaussian state is
generated from thermal state (14) by application of the three
fundamental unitaries as

ρ(d,V ) = D(α) R(φ) S(z) ρth(0,V ⊕) S∗(z) R∗(φ) D∗(α),

(15)

where the order D(α) R(φ) S(z) can be permuted according to
(10) and (11).

For the particular case of pure states, the thermal decompo-
sition degenerates into the product of N replicas of the vacuum
state, say |0N 〉, and then ρ(d,V ) = |ψ(d,V )〉〈ψ(d,V )|, with
|ψ(d,V )〉 = D(α) R(φ) S(z) |0N 〉. But we can invert the order
of squeezing and rotation with the rules (10) and (11) and after
the change, R(φ)|0N 〉 = |0N 〉. In conclusion, we present the
following corollary.

Corollary 1. The most general N -mode pure Gaussian state
is obtained from the N replica of the vacuum |0N 〉 as

|ψ(d,V )〉 = D(α) S(z) |0N 〉 := |z,α〉. (16)

In other words, the most general N -mode Gaussian pure
state is a squeezed-displaced state or a displaced-squeezed
state.

III. GEOMETRICALLY UNIFORM SYMMETRY
WITH GAUSSIAN STATES

The context of GUS is provided by QC systems where
the transmission of classic information uses quantum states
as physical carriers. A classical source emits a symbol A

belonging to a set of K elements, A ∈ A = {0,1, . . . ,K − 1},
with assigned a priori probabilities qi = P [A = i], i ∈ A. The
transmitter (Alice) encodes the symbol A into a quantum state
|γA〉 in a constellation of K pure states {|γ0〉, . . . ,|γK−1〉}, and
more generally, in a constellation of mixed states with density
operators {ρ0, . . . ,ρK−1}.

The receiver (Bob) performs a quantum measurement from
the received state ρA with positive-operator valued measure
(POVM) measurement operators {Pk,k ∈ A}. On the basis of
the measurement, Bob estimates the state sent by Alice. The
correct decision probability is [16]

Pc =
∑
i∈A

qiTr(ρiPi). (17)

The choice of the measurement operators maximizing Pc is a
(generally difficult) key problem in QC. In particular, if Alice
uses pure states, i.e., ρi = |γi〉〈γi |, according to Kennedy’s
theorem [17], the optimal POVM have rank one Pi = |μi〉〈μi |,
where the μi are called measurement vectors and (17) becomes

Pc =
∑
i∈A

qi |〈μi |γi〉|2 . (18)

A. Definition of GUS

Since the beginning of QC [16,18] particular attention has
been paid to constellations enjoying a high degree of symmetry
with uniform a priori probabilities. The interest of this case
resides both in the fact that it corresponds to many practical
situations and that the optimal measurements are easy to obtain
[5,6,10,19]. We now define the GUS for pure states and we
assume equiprobable symbols, qi = 1/K , but the definition
can be extended to generic a priori probabilities qi substituting
the states with the weighted states

√
qi |γi〉 or qi ρi (see [10]).

A constellation of K pure states {|γ0〉,|γ1〉, . . . ,|γK−1〉} has
the geometrically uniform symmetry when the two properties
are verified. (1) There exists a unitary operator Q with the
property QK = IH⊗N , where IH⊗N is the identity operator of
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H⊗N , and (2) the K states |γi〉 are obtained from a single
reference state |γ0〉 in the following way

|γi〉 = Qi |γ0〉, i = 0,1, . . . ,K − 1. (19)

The operator Q, which is given by a Kth root of the identity
operator, is called the symmetry operator. Thus, in the presence
of the GUS, the specification of the constellation is limited to
the symmetry operator Q and to the reference state |γ0〉. In
addition, it simplifies the quantum decision because we can
choose the POVMs of the form Pi = |μi〉〈μi |, where the μi

(measurement vectors) have the same symmetry as the states,
that is, |μi〉 = Qi |μ0〉, i = 0,1, . . . ,K − 1.

B. GUS with Gaussian states

We now investigate the possibility that a constellation of
Gaussian states have GUS. Let S = {|ψ(p)〉,p ∈ P} be a class
of pure quantum states, dependent on a parameter p. The class
is closed with respect to rotations if R(φ)|ψ〉 ∈ S, where R(φ)
is the rotation operator. With such a class we can construct
constellations of any order K with the GUS property. In
practice in the single mode we get a K-ary PSK constellations,
by choosing an arbitrary reference state |ψ0〉 in S and using
as symmetry operator Q = R(2π/K). In the multimode a
relevant application is given by the PPM (see below). We
know that the new state is still Gaussian, but we want to find
the new parameters α and z determined by the rotation. We
apply relation (11) to get R(φ) D(α) = D(eiφ α) R(φ). Next
we apply (11) to get R(φ) S(z) = S(eiφ z eiφT

) R(φ). Hence

|ψ(z,α,φ)〉 = D(eiφ α) S
(
eiφz eiφT)

R(φ) |0N 〉
:= |z,α,φ〉. (20)

But R(φ)|0N 〉 = |0N 〉, so that the rotation can be dropped. In
conclusion the rotation modifies the parameters in the form

z = → eiφz eiφ, α → α eiφ, (21)

and we have the following theorem.
Theorem 3. The class of pure displaced-squeezed states is

closed under rotations. A rotated-displaced-squeezed state can
be obtained from a displaced-squeezed state by modification
of the squeeze factor and of the displacement amount as

|z,α,φ〉 = |eiφz eiφT
,eiφ α〉 . (22)

With reference to the class S = {|ψ(p)〉,p ∈ P } the state-
ment of Theorem 3 can be formulated as follows. The class S
becomes explicitly the class of squeezed displaced states with
the correspondence

p = (z,α), P = C2, |ψ(p)〉 = |(z,α)〉. (23)

If p0 = (z0,α0) ∈ C2 is an arbitrary value of p, after the
rotation, the parameter becomes

pφ = (zφ,αφ) = (eiφz eiφ,α eiφ). (24)

The statement can be reformulated also in the phase space as
follows. Let V (p) = V (z,α) be the covariance matrix of the

squeezed displaced state |(z,α)〉, then the rotation provides the
change

V (z0,α0) → V (zφ,αφ) = Srot(φ) V (z0,α0) ST
rot(φ), (25)

where Srot(φ) is the symplectic matrix of the rotation transfor-
mation, which is given by [7]

Srot(φ) =
[

cos φ − sin φ

sin φ cos φ.

]
(26)

C. Extension of the GUS to mixed Gaussian states

First, the definition of GUS can be extended to mixed
states as follows. A constellation of K density operators
{ρ0,ρ1, . . . ,ρK−1} has GUS when the two properties are
verified: (1) there exists a unitary operator Q with the property
QK = IH and (2) the K density operators ρi are obtained from
a single reference density operator ρ0 in the following way

ρi = Qiρ0 (Qi)∗, i = 0,1, . . . ,K − 1. (27)

This extension is in harmony with the fact that with pure states
the density operators become ρi = |γi〉〈γi |. In addition, with
the factorization of the density operators ρi = γiγ

∗
i , relation

(27) gives γi = Qiγ0, which generalizes (19). In the context
of optimal decision [11] the POVMs can be chosen in the form
Pi = μiμ

∗
i , where the measurement factors have the symmetry

μi = Qiμ0, i = 0,1, . . . ,K − 1.
In terms of the characterization of Gaussian states, the

previous results obtained for pure states cannot be extended
straightforwardly to the whole class of mixed Gaussian states.
In fact, the critical point in the proof of Theorem 3 is repre-
sented by the relation R(φ)|0N 〉 = |0N 〉, in which the ground
state |0N 〉 “absorbs the rotation.” This property does not hold
when the ground state is replaced by a general thermal state.

We remind that a general Gaussian channel [13] is com-
pletely specified by a triplet (E,�,F ), where E and F are
2N × 2N real matrices and � ∈ R2N . A Gaussian channel
transforms the mean X and the covariance matrix V of an
input state ρ in the form

X → ET X + �, V → ET V E + F. (28)

To get useful results we have to limit the class of mixed
states to a suitable subclass of Gaussian states obtained in
the following way, which comprises all the cases of interest
for the applications. We suppose that a pure Gaussian state
|ψ(p)〉 is sent through a Gaussian channel specified by the
triplet (E,�,F ). At the output the noisy state is still Gaussian,
but mixed, with a density operator ρ(ψ(p)) as in Fig. 1. We

FIG. 1. A pure Gaussian state |ψ(p)〉 is sent through a Gaussian
channel specified by the triplet (E,�,F ). The state at the output is still
Gaussian, but in general mixed and described by the density operator
ρ(ψ(p)).
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denote by S(E,�,F ) = {ρ(ψ),p ∈ P } this restricted subclass of
Gaussian mixed states.

Theorem 4. The class of states S(E,�,F ) = {ρ(ψ(p))}, ob-
tained at the output of a Gaussian channel with input pure
Gaussian states, is closed under rotations, provided that the
matrix E commutes with the rotation matrix Srot(φ) and F has
the form f I2N , with f a scalar.

Proof. The mean vector is modified as X → ET X + �,
while the covariance matrix is modified as

V → ET V E + F. (29)

Consider a generic generic pure state |ψ(p0)〉 in the class
S with covariance V (p0). Let V (pφ) be the covariance matrix
after the rotation φ in the class S, obtained according to (25).
Then

Srot(φ)(ETV (p0)E + F )Srot(φ)T = ETV (pφ)E + F. (30)

In fact,

Srot(φ)(ETV (p0)E + F )Srot(φ)T

= Srot(φ)ETV (p0)ESrot(φ)T + Srot(φ)FSrot(φ)T

= ETSrot(φ)V (p0)Srot(φ)TE + f Srot(φ)I2NSrot(φ)T,

(31)

where Srot(φ) verifies the condition Srot(φ)ST
rot(φ) = I2N .

Hence the conclusion. �
This model includes the most relevant cases [13,20], such

as the following.
(1) The classical noise channel, which merely adds clas-

sical Gaussian noise to a quantum state, i.e., E = I2N , f � 0.
(2) The lossy (or attenuation) channel in which E =√

ηI2N and F = (1 − η) I2N , with η < 1 so that V →
η V + (1 − η)I2N . This is the model, for example, for the
propagation along an optical fiber, where each photon is lost
with probability (1 − η).

(3) The amplification channel in which E = √
ηI2N and

F = (η − 1) I2N , with the gain η > 1, so that V → η V +
(η − 1)I2N .

(4) The thermal noise channel also called sometimes the
attenuation channel [13], with E = √

ηI2N and F = (1 −
η)σ 2 I2N , with η < 1 and σ 2 I2N , σ 2 � 1 is the covariance
matrix of a thermal state with average photon number N =
(σ 2 − 1)/2.

Remark. Note that in these channels the assumption is that
the parameters are the same for all the N modes. In particular,
for the thermal noise channel, in all the modes the average
number of thermal photons is considered the same. In general,
denoting by σ 2

k the thermal contribution in the k mode, the
matrix F in the covariance relation should be modified as

F = (1 − η)
N⊕

k=1

σ 2
k I2.

However, the assumption σ 2
k = σ 2 is acceptable for PPM or

other modulations in quantum communications.

IV. EXAMPLES OF APPLICATIONS

In this section we recall the quantum detection based on
the square-root measurements (SRM) in general and then in

the presence of GUS. Finally we give an explicit application
to PPM.

A. SRM in general

In the case of pure states, the measurement vectors |μi〉 are
chosen with the criterion of making the differences between
the states and the measurement vectors |ei〉 = |γi〉 − |μi〉 as
small as possible and we look for the measurement vectors
|μi〉, which minimize the quadratic error [10]

E =
K−1∑
i=0

〈ei |ei〉 =
K−1∑
i=0

(〈γi | − 〈μi |)(|γi〉 − μi〉) (32)

with the constraint of the resolution of the identity∑K−1
i=0 |μi〉〈μi | = IH.
The evaluation of the measurement vector is obtained by

computing the inner products 〈γi |γj 〉 between the states of the
constellation, thus obtaining the Gram’s matrix

G
K×K

= �∗ � = [〈γi |γj 〉], i,j = 0, . . . ,K − 1. (33)

Then we evaluate, by eigendecomposition, the square root and
the inverse square root G±1/2. The measurement vectors are
given explicitly by

|μi〉 =
K−1∑
j=0

(G−1/2)ij |γj 〉. (34)

The transition probabilities result in pc(j | i) = |(G 1
2 )ij |2, from

which we obtain the correct decision probability

Pc = 1

K

K−1∑
i=0

|(G 1
2 )ii |2. (35)

The advantage of the SRM method is that it gives explicit
results for any constellation, that is, for any modulation format.

B. SRM in the presence of GUS

When the constellation has the GUS, the Gram’s
matrix becomes circulant. In fact, the inner products result
in Gij = 〈γi |γj 〉 = 〈γ0|(Q∗)iQj |γ0〉 = 〈γ0|Qj−i |γ0〉 and
depend upon the difference i − j (mod K). This property
provides two advantages. (1) The performance evaluation
becomes easier with the technique of the discrete Fourier
transform (DFT) and (2) the corresponding quantum detection
becomes optimal [10,21].

The eigendecomposition of the circulant Gram ma-
trix is simply given by G = W ∗�W , where � =
diag [λ0,λ1, . . . ,λK−1] collects the eigenvalues and W is the
K × K DFT matrix W = K− 1

2 [W−rs
K ], r,s = 0, . . . ,K − 1,

with WK := ei2π/K . Moreover, the eigenvalues are given by
the DFT of the first row of G

λp =
K−1∑
q=0

G0qW
−pq

K . (36)
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The square roots of G are simply obtained as G± 1
2 =

W ∗�± 1
2 W and the transition probabilities are

pc(j |i) =
∣∣∣∣∣∣

1

K

K−1∑
p=0

λ
1
2
pW

−p(i−j )
K

∣∣∣∣∣∣
2

,

i,j = 0,1, . . . ,K − 1. (37)

In particular, the diagonal transition probabilities are all equal

pc(i|i) = [ 1
K

∑K−1
p=0 λ

1
2
p ]2, independent of i, and the correct

decision probability (35) becomes explicitly

Pc =
⎡
⎣ 1

K

K−1∑
p=0

λ
1
2
p

⎤
⎦

2

. (38)

It is possible to obtain the explicit expression of the measure-
ment vectors |μi〉, given by |μ0〉 = ∑K−1

j=0 (G−1/2)ij |γj 〉.

C. Extension of the SRM to mixed Gaussian states

The SRM method can be extended to mixed states. The
preliminary step is the factorization of the density operators
ρi = γiγ

∗
i and it can be shown [11] that the measurement

operators can be factored as the density operators Pi = μiμ
∗
i ,

where the rank of μi is the same as that of γi .
In this case the error is considered between the state factors

and the measurement factors ei = γi − μi . From the factors
γi , we first form the Gram matrix G = [γ ∗

i γj ]i,j=0,1,...,K−1,
then from the square roots G±1/2 we can obtain both the
measurement factors μi and the transition probabilities in a
similar way as for the pure states.

The SRM method always leads to explicit results and,
in general, provides a good overestimation of the error
probability, also compared to other suboptimal methods such
as the Chernoff bound [12].

D. Application to pulse position modulation

Pulse position modulation (PPM) is widely adopted in free-
space optical transmission, and is a candidate for deep-space
transmission, also in quantum form. Here we evaluate the
error probability in K-ary quantum optical PPM systems,
considering the most general Gaussian states.

In the quantum PPM the modulation format and the states
belong to a composite Hilbert space, given by the tensor
product H = H0 ⊗ H0 ⊗ · · · ⊗ H0 of K equal Hilbert spaces
H0 [18,22], where H0 has dimension n and H has dimension
N = nK

|γi〉 = |γi,0〉 ⊗ |γi,1〉 ⊗ · · · ⊗ |γi,K−1〉,
(39)

i = 0,1, . . . ,K − 1.

Considering Gaussian states, with the most general squeezed-
displaced states, symbolized by |z,α〉, the natural choice
for PPM is to associate the symbol 0 to the ground state
|γik〉 = |0,0〉 and to the symbol 1 the generic state |γik〉 =
|z,α〉. With this choice (39) represents a constellation of

K-mode Gaussian States. For instance, for K = 3 we have
country="Italy" explicitly

|γ0〉 = |z,α〉 ⊗ |0,0〉 ⊗ |0,0〉,
|γ1〉 = |0,0〉 ⊗ |z,α〉 ⊗ |0,0〉, (40)

|γ2〉 = |0,0〉 ⊗ |0,0〉 ⊗ |z,α〉.
Note that, without loss of generality, we can choose a real
displaced parameter α, while we let a generic complex
squeezing factor z = r eiθ .

The application of GUS to PPM is not trivial because the
states are multimode. The symmetry operator Q is given by
[22,23]

Q =
n−1∑
k=0

wn(k) ⊗ IN ′ ⊗ wT
n (k), N ′ = nK−1, (41)

where ⊗ is the Kronecker’s product, wn(k) is a column vector
of length n with null elements except for one unitary element
at position k, and IN ′ is the N ′ × N ′ identity matrix. Then Q

has dimension N = nK and the property QK = IN .
Now, it is not immediate to see that Q is a rotation operator,

that is, of the form R(φ) = eiφ , with φ an N × N Hermitian
matrix. To find the “phase” φ we use the eigen-decomposition
(EID) of S written in the form Q = ∑K−1

m=0 λmPm where
λm = ei2πm/K := Wm

K are the K distinct eigenvalues and Pm

are K orthogonal projectors. In this EID the eigenvalues
are known, while the projectors should be evaluated from
the the expression (41), which defines a complicated per-
mutation matrix. The alternative is the evaluation through
the powers of Q, Qk = ∑K−1

m=0 Wmk
K Pm. According to this

relation [Q0,Q1, . . . ,QK−1] turns out to be the DFT of
[P0,P1, . . . ,PK−1]. Thus, taking the inverse DFT one gets
Pm = 1

K

∑K−1
k=0 W−mk

K Qk , which is easy to evaluate. Next we
recall that Q is unitary and therefore it can be written in the
form Q = ei φ , where φ is a Hermitian matrix. Then, by com-
parison to the EID of Q we find that the EID of φ is given by

φ =
K−1∑
m=0

2πm

K
Pm, (42)

where the eigenvalues become 2π m/K and the projectors
are the same as in the EID of Q.

Example. We give an example with K = 3 and n = 2,
where the matrices are 8 × 8. The symmetry operator is

Q =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (43)

The projectors [P0,P1,P2] are obtained by the DFT of
[Q0,Q1,Q2] and finally we have the phase matrix φ from(42).
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It reads

φ = 3

π

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0

0 2 −1 − i√
3

0 −1 + i√
3

0 0 0

0 −1 + i√
3

2 0 −1 − i√
3

0 0 0

0 0 0 2 0 −1 + i√
3

−1 − i√
3

0

0 −1 − i√
3

−1 + i√
3

0 2 0 0 0

0 0 0 −1 − i√
3

0 2 −1 + i√
3

0

0 0 0 −1 + i√
3

0 −1 − i√
3

2 0

0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (44)

We can verify (e.g., with MATHEMATICA) that eiφ = Q and that eiKφ = IN .

E. Statistics of the quantum states in PPM

To evaluate the error probability of QC systems with PPM we need the following statistics of the single-mode state |z,α〉.
(1) The mean photon number, which is given by [24]

N̄|z,α〉 = |α|2 + sinh2(r). (45)

Then all the K PPM symbols have the same mean number of photons per symbol, given by

Ns = |α|2 + sinh2(r). (46)

(2) The inner product between two states was evaluated by Yuen [24] and reads

〈z1,α1|z0,α0〉 = A− 1
2 exp

[
−A(|β1|2 + |β0|2) − 2β1β

∗
0 + B β∗2

1 − B∗β2
0

2A

]
, (47)

where μi = cosh(ri), νi = sinh(ri)eiθi , βi = μiαi − νiα
∗
i , A = μ0μ

∗
1 − ν0ν

∗
1 , B = ν0μ1 − μ0ν1.

F. Error probability in the quantum PPM

The analysis of a quantum PPM system (limited to coherent
states) has been done in a famous article by Yuen, Kennedy,
and Lax [18] who found the optimal elementary projectors
using an algebraic method developed “ad hoc” for this kind
of modulation. In [22] we proposed an original method based
on the SRM, which gave the minimum error probability for
the GUS of the quantum PPM. Also in [22] the analysis was
limited to coherent states. Here we extend the evaluation to
general Gaussian states.

In the SRM the error probability depends only on the inner
product between the single-mode states |z,α〉 and |0,0〉. In
fact, the Gram matrix is given by

G =

⎡
⎢⎢⎣

1 � . . . �

� 1 . . . �
...

. . .
� � . . . 1

⎤
⎥⎥⎦ , (48)

where � := |〈z,α|0,0〉|2.

About the inner product

The squared inner product can be written in the form

� = 1

cosh r
exp[−α2 f (r,θ )], (49)

where

f (r,θ ) = cosh(2r) + tanh(r) sinh(2r)

− [sinh(2r) + tanh(r) cosh(2r)] cos θ . (50)

Clearly, for r and α given, � has a minimum for θ = π , as
shown in Fig. 2. The interpretation in the phase space may
be the following. In the phase space, thinking to the Wigner
function, an inner product as 〈reiθ ,α|0,0〉 depends on the

FIG. 2. (Color online) Squared inner product � =
|〈reiθ ,α|0,0〉|2 versus the phase θ for r = 1.0 and two values
of the displacement.
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FIG. 3. Representation of the states |z,α〉 and |0,0〉 in the phase
space for different values of z = r eiθ . Pictorially the noise variances
are represented by a tilted “error ellipse.”

distance between the two states, which is provided by the
displacement α, but also on the “orientation” of the squeezing,
which is determined by the phase θ . We know that in a squeezed
displaced state |reiθ ,α〉 the noise variances are different and
pictorially this difference can be represented by a tilted ellipse,
as shown in Fig. 3. The ellipse degenerates into a circle in
the case of a coherent state (and for the ground state). With
the objective to minimize the error probability, the minimum
value of � is sought. From the figure we can easily realize that
a squeezing factor with θ = 0 gives a worse error probability
than the use of a coherent state, while the best performance is
achieved with θ = π .

The error probability computed from (35) becomes [22]

Pe = 1 − 1

K2
(
√

1 + (K − 1)� + (K − 1)
√

1 − �)2, (51)

in perfect agreement with the results of the findings in [18].
Also in this case Pe can be expressed in terms of the mean
photon number per symbol Ns by writing � as

� = 1

cosh r
exp[−(Ns − sinh2 r) f (r,θ )],

Ns � sinh2 r. (52)

In the representation of the error probability it is convenient
to consider as a variable the average number of photons per
bit NR = Ns/ log2 K . We see in the expression of Ns (46)
that a contribution comes from the displacement and one form
the squeezing. If we fix a value of r , the minimum of Ns

becomes sinh2(r) and for Ns < sinh2(r) there is no room for
the displacement.

FIG. 4. (Color online) Error probability of quantum 8-PPM for
coherent states and three values of squeezing. For z = −0.1 we must
have NR � 3.3 × 10−3, for z = −0.5, NR � 0.09, and for z = −1,
NR � 0.46.

In Fig. 4 we present the error probability as a function of NR

for coherent states and the other three values of the squeezing
factor. Note that by properly choosing the value of z one can
reduce dramatically the error probability with respect to the
use of coherent states.

V. CONCLUSION

We have seen that GUS plays a fundamental role in quantum
communications due to the optimality of measurement oper-
ators obtained by the SRM in the quantum discrimination.
The considerations on Gaussian states and their invariance
properties with respect to unitary transformations and in
particular rotations allow one to construct constellations of
Gaussian states having GUS, for example, coherent states
for their use in quantum optical communications. Moreover,
the transmission of such states through and additive-noise
channel preserves the GUS. The theory of the GUS applied
to the most general Gaussian states extends the analysis of
the performance of a QC system employing PPM (or other
modulations with GUS) to the most general case, not limiting
the evaluation to the case of coherent states.
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