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Quantum simulation of the Schwinger model: A study of feasibility
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We analyze some crucial questions regarding the practical feasibility of quantum simulation for lattice gauge
models. Our analysis focuses on two models suitable for the quantum simulation of the Schwinger Hamiltonian,
or QED in 1 + 1 dimensions, which we investigate numerically using tensor networks. In particular, we explore
the effect of representing the gauge degrees of freedom with finite-dimensional systems and show that the results
converge rapidly; thus even with small dimensions it is possible to obtain a reasonable accuracy. We also discuss
the time scales required for the adiabatic preparation of the interacting vacuum state and observe that for a
suitable ramping of the interaction the required time is almost insensitive to the system size and the dimension
of the physical systems. Finally, we address the possible presence of noninvariant terms in the Hamiltonian that
is realized in the experiment and show that for low levels of noise it is still possible to achieve a good precision
for some ground-state observables, even if the gauge symmetry is not exact in the implemented model.
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I. INTRODUCTION

Gauge theories are a central part of our understanding
of modern physics. A standard tool for exploring them in
the nonperturbative regime is Wilson’s lattice gauge theory
(LGT) [1], where the continuous theory is formulated on a
discrete space-time lattice. In the context of LGT, advanced
Monte Carlo simulations have been developed and it is possible
to study phase diagrams [2], mass spectra [3], and other
phenomena. However, despite the great success of these
techniques there are still many problems which cannot be
addressed with them, e.g., out of equilibrium dynamics or
regions of the phase diagram where Monte Carlo simulations
suffer from the sign problem [2,4]. Therefore it would be
highly desirable to have new tools [5] which overcome these
problems. Quantum simulation may offer one such alternative
route to tackle gauge theories, and indeed, during recent
years there have been several proposals for (analog) quantum
simulators using atomic systems [6–16].

Quantum simulation of LGT presents a number of particular
features. The quantum systems that can be controlled and
manipulated to realize a quantum simulator have finite-
dimensional Hilbert spaces. This is in contrast to the infinite-
dimensional degrees of freedom required by continuous gauge
symmetries. Therefore the models that can be realized in
the experiments often correspond to finite-dimensional or
truncated versions of the original gauge groups, and it is in
the limit in which the dimensions get large that the original
models are recovered.

Furthermore, in quantum simulation proposals the Hamilto-
nian often arises as a (low-energy) effective model that governs
the dynamics of atoms trapped in an optical lattice. However,
in this limit the terms generated by the atomic interaction do
not necessarily exhibit the gauge symmetry of the model to
be simulated. In such cases, the Gauss law is imposed via
a penalty term that penalizes nonphysical states [7–10]. In
particular proposals the right symmetry can be ensured via a
more fundamental conservation law [11–13], however, even in
these cases the presence of noise in the simulation is likely to
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break gauge invariance. Hence, it is a crucial question whether
the nonfundamental character of the gauge symmetry in a
quantum simulator will affect its expected performance.

Additionally, in order to assess the feasibility of such a
simulation of LGT, the mere physical requirements also need
to be analyzed. This includes scaling of resources, such as the
minimal system size that will allow the observation of rele-
vant phenomena, the time required for adiabatic preparation
schemes, and the necessary noise control.

In this paper we address some of these issues by studying
two possible realizations of the Schwinger model that might
be suitable for ultracold atoms. We focus on proposals
which have a built-in gauge symmetry, but where the gauge
degrees of freedom are represented by a Hilbert space with
small dimension. For these models we numerically address
three questions using matrix product states (MPS) [17] with
open boundary conditions to reflect a possible experimental
realization. First, we investigate how the truncation of the
gauge degrees of freedom to a finite-dimensional Hilbert space
affects the nature of the ground state and reveals that even
a small dimension allows quite accurate predictions for the
ground-state energy. Second, we examine the resources needed
for adiabatic preparation of the ground state. We give evidence
that the first part of the adiabatic evolution is crucial, and for
the systems we study, with up to a hundred sites, the total time
required for a successful preparation is practically independent
of the system size. Our results also show that the Hilbert space
dimension of the gauge degrees of freedom hardly affects the
success of the preparation procedure. Third, we analyze the
effect of imperfect gauge symmetry by studying the adiabatic
preparation in the presence of noninvariant noise terms, as
these might occur in an experimental realization. We quantify
the level of noise up to which the results for the ground-state
energy are still reasonably close to those for the noiseless case.

The rest of the paper is organized as follows. In Sec. II
we briefly review the Schwinger model and explain the two
particular discrete versions studied here. Furthermore, we give
a brief description of the numerical methods we use. In Sec. III
we present our results on how the finite-dimensional Hilbert
space for the gauge degrees of freedom affects the ground
state. Subsequently we examine one possible scenario for
the adiabatic preparation of the ground state in Sec. IV and
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KÜHN, CIRAC, AND BAÑULS PHYSICAL REVIEW A 90, 042305 (2014)

study the effect of gauge invariance breaking noise during this
procedure in Sec. V. Finally, we conclude in Sec. VI.

II. MODELS AND METHODS

The Schwinger model, or QED in 1 + 1 dimensions, was
introduced in [18]. It is possibly the simplest gauge theory with
matter and its compact lattice formulation shows nontrivial
phenomena, like confinement, that are also observed in QCD.
Therefore it is an ideal benchmark model for LGT techniques.

A possible discrete version of the Schwinger Hamiltonian
on a lattice with spacing a is given by the Kogut-Susskind
formulation [19],

H = g2a

2

∑
n

(
Lz

n

)2 + m
∑

n

(−1)nφ†
nφn

− i

2a

∑
n

(φ†
nL

+
n φn+1 − H.c), (1)

where g denotes the coupling constant and m the fermion mass.
The field φn is a single-component fermionic field sitting on
site n and the operators L+

n = exp(iθn), Lz
n act on the links

in between sites n and n + 1. The operators θn and Lz
n fulfill

the commutation relation [θn,L
z
m] = iδn,m, where θn can take

values in [0,2π ]. L+
n therefore acts as a rising operator for the

electric flux on link n and Lz
n gives the quantized flux on the

link. The physical states satisfy Gn|�〉 = 0 ∀n [20], where

Gn = Lz
n − Lz

n−1 − φ†
nφn + 1

2 [1 − (−1)n] (2)

are the Gauss law generators.
There are several proposals to quantum simulate the

Schwinger model [9–12]. Since the dimensions of quantum
systems available for quantum simulation are finite, most
proposals focus on models with finite-dimensional variables
on the links that recover Hamiltonian (1) in the limit d → ∞.
One way is to simulate a quantum link model, in which the
gauge variables are represented by finite-dimensional quantum
spins [21,22]; another is to truncate the dimension of the link
variables [23]. These approaches can lead to a Hamiltonian
with a gauge symmetry which is different from that of the
Schwinger model.

Here we consider two particular models, one which has
the same gauge symmetry as the Schwinger model despite the
finite-dimensional links and one which has a different gauge
symmetry due to the finite dimension.

A. Truncated compact QED (cQED) model

The first model we examine corresponds to the proposal for
the simulation of the cQED from Ref. [12], using fermionic
and bosonic atoms trapped in an optical superlattice. The
fermions are sitting in the minima of one lattice forming the
sites. The links are populated by an (even) number of particles
N0 = a

†
nan + b

†
nbn, consisting of two bosonic species A and

B, sitting between the fermions in the minima of another
lattice. The operators an and bn (a†

n and b
†
n) are the annihilation

(creation) operators for species A and B on link n, fulfilling
the usual commutation relations. This model gives rise to a

Hamiltonian of the form of (1) with link operators

L+
n = i

a
†
nbn√

l(l + 1)
, Lz

n = 1

2
(a†

nan − b†nbn), (3)

where l = N0/2, so that the link operators are angular
momentum operators in the Schwinger representation. As
a
†
nan + b

†
nbn is a constant of motion, the number of particles

on a link, N0, is conserved. The dimension of the Hilbert space
for each link is given by d = N0 + 1, and in the limit N0 → ∞
the link operators become pure phases that coincide with those
from the Kogut-Susskind Hamiltonian. In this realization, the
angular momentum conservation in the scattering between
fermionic and bosonic species ensures the Gauss law, which
does not have to be imposed effectively via a penalty term.

The Hamiltonian in this case is invariant under local
transformations that affect the annihilation operator for one
fermion on site n and its adjacent bosons as

φn → eiαnφn,

bn−1 → eiαnbn−1,

an → e−iαnan

while the operators acting on other sites and links are
unchanged. The model then has the same U(1) symmetry
as the untruncated Schwinger model and we refer to it as
the truncated cQED model. The Hamiltonian of this model
commutes with the Gauss law generators

GcQED
n = Lz

n − Lz
n−1 − φ†

nφn + 1
2 [1 − (−1)n],

where the Lz
n operators are given by Eq. (3).

B. Zd model

Another possibility to represent the links with finite-
dimensional objects is to substitute the infinite-dimensional
U(1) gauge operators in Eq. (1) with Zd operators. This can
be realized with the link operators

L+
n =

J∑
k=−J

∣∣ϕk+1
n

〉〈ϕk
n

∣∣, Lz
n =

J∑
k=−J

k|ϕk
n

〉〈
ϕk

n

∣∣, (4)

where one needs to identify |ϕJ+1
n 〉 with |ϕ−J

n 〉. Consequently
the dimension of the Hilbert space of a link is given by d =
2J + 1. As shown in Ref. [24], in the limit d → ∞ these
operators approach the link operators of the Kogut-Susskind
Hamiltonian.

The resulting Hamiltonian is invariant under local transfor-
mations of the fermions and adjacent links [25] as

φn → eiαnφn,∣∣ϕk
n−1

〉 → e−ikαn
∣∣ϕk

n−1

〉
,∣∣ϕk

n

〉 → eikαn
∣∣ϕk

n

〉
,

with αn = 2πq/d, q ∈ Z. Differently from the truncated
cQED case, here only discrete phase transformations leave the
Hamiltonian invariant [26]. Correspondingly the Gauss law is
only fulfilled modulo d and the operators that commute with
the Hamiltonian are actually

UZd

n = ei 2π
d

(Lz
n−Lz

n−1−φ
†
nφn+ 1

2 [1−(−1)n]), (5)

where the Lz
n-operators are given by Eq. (4).
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In the following we restrict ourselves for both models to
the massless case, m = 0, and the subspace of vanishing total
charge,

∑
n(φ†

nφn − 1
2 [1 − (−1)n]) = 0, for which analytical

results are available [18]. No big qualitative changes are
expected for the massive case.

C. Numerical approach

We study the model Hamiltonians using standard MPS
techniques to compute the ground state and simulate the time
evolution. The MPS ansatz for a system of N sites with open
boundary conditions is of the form

|�〉 =
∑

i1,i2,...,iN

A
i1
1 A

i2
2 . . . A

iN
N |i1〉|i2〉 . . . |iN 〉,

where A
ik
k are D × D–dimensional complex matrices for 1 <

k < N and A
i1
1 (AiN

N ) is a row (column) vector. Each superscript
ik ranges from 1 to the dimension dk of the local Hilbert space
of site k, and |ik〉dk

k=1 forms a basis of the local Hilbert space.
The number D, the bond dimension of the MPS, determines
the number of variational parameters in the ansatz and limits
the amount of entanglement which can be present in the state.
For convenience in the simulations, we use an equivalent spin
formulation of each Hamiltonian [19], which can be obtained
via a Jordan-Wigner transformation on the fermionic degrees
of freedom.

In our simulations, we are interested in different aspects.
First, we would like to determine the effect of using finite-
dimensional Hilbert spaces for the gauge degrees of freedom.
To study this, we compute the ground state for each of the
models by variationally minimizing the energy as described
in Ref. [27]. Second, to analyze the performance of the
adiabatic preparation scheme, in particular, the effect of noise,
we need to simulate time evolution. In order to compute the
evolution numerically we split the Hamiltonian into two sums,
each containing only mutually commuting three-body terms,
and approximate the time evolution operator via a second-
order time-dependent Suzuki-Trotter decomposition [28]. This
allows us to simulate the time evolution of the models with
MPS [29–31], as long as the system stays close to the ground
state [32] (a detailed review of MPS methods can be found in
Refs. [33,34]).

In our simulations, errors may originate from two main
sources. Both in the ground state and in the dynamical simula-
tions, the bond dimension employed is limited. Nevertheless,
this source of error is controlled by choosing a sufficiently
large D. In the dynamical simulations, an additional source
of error arises from the Suzuki-Trotter decomposition of the
time evolution operator. This error can be controlled via the
time step size used for the splitting (a more detailed analysis of
our numerical errors for the results presented in the following
sections is reported in Appendix A).

III. EFFECT OF THE FINITE DIMENSION

In order to analyze the effect of using finite-dimensional
systems to represent the gauge degrees of freedom, we study
the ground states of the truncated cQED and Zd models for
different (odd) values of d, ranging from 3 to 9, and compare
them to the case of the lattice Schwinger model.

In a lattice calculation, in which the goal is to extract
the continuum limit, simulations need to be run at different
values of the lattice spacing. Hence, we have also explored
the effect of the finite d for various lattice spacings, ga, and
for several system sizes. As a figure of merit, we analyze
the ground-state energy density, ω = E0/2Nx, and compare
the values in the thermodynamic limit obtained in each
case to those from finite-size extrapolations of the lattice
Schwinger model. In the previous expression N is the number
of fermionic sites in the chain, x is related to the lattice spacing
as x = 1/(ga)2, and E0 denotes the ground-state energy of
the dimensionless Hamiltonian 2H/ag2 [see Appendix B,
Eq. (B1), for the explicit expression] [35]. To get the energy
density in the thermodynamic limit, we first compute the
ground-state energy, E0, for each set of parameters (N,d,x)
for various bond dimensions D, which allows us to extrapolate
D → ∞ and estimate our numerical errors. Subsequently, we
extrapolate N → ∞ for each combination of (x,d) which
yields the values for ω in the thermodynamic limit (details
about the extrapolation to the thermodynamic limit can be
found in Appendix A).

In our simulations we explore system sizes such that N

ranges from 50 to 200, and lattice spacings corresponding to
values of x ∈ [50,100]. Our results are shown in Fig. 1 [36].
We observe that the truncated cQED model converges to the
values of the Schwinger model with increasing value of d. By
contrast, theZd model already yields very accurate results even
for low values of d and the level of accuracy stays practically
constant for larger d.

In our range for x, we can also attempt a continuum limit
extrapolation for each set of values (see inset in Fig. 1) [37,38].
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FIG. 1. (Color online) Thermodynamic limit for the energy den-
sity for various values of x. Crosses show the values for the truncated
cQED model for d = 3 [upper (blue) crosses] and d = 9 [lower
(red) crosses]. Circles show the values for the Zd model for d = 3
(blue) and d = 9 (red), which are almost identical. Values obtained
for the Schwinger model are shown in gray. Inset: Values obtained
by extrapolating x → ∞ for the continuum energy density for the
truncated cQED model [(blue) X’s] and theZd model [(red) asterisks].
The horizontal gray line represents the value for the Schwinger model
in the massless case, −1/π . In both cases the error bars from the
extrapolation procedure are smaller than the markers.
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Here we observe that the truncated cQED model approaches
rapidly the exact value for increasing d, whereas for the Zd

model the continuum extrapolation is already quite close to it
for d = 3 and there is almost no change for larger d. This is
consistent with our observations for the thermodynamic limit,
where the results in the Zd case are already very accurate for
each lattice spacing, even for small d. However, one should
take into account that the values of x used in this work are
relatively small to extrapolate to the continuum [39], which
is likely the source of larger systematic errors not taken into
account here (a more detailed description of the extrapolation
procedure and error estimation is given in Appendix A). Hence
the level of error due to the finite-dimensional Hilbert spaces
is expected to be already smaller than that of the extrapolation.

IV. ADIABATIC PREPARATION OF THE GROUND STATE

Given a physical system which effectively implements one
of these models, the nontrivial vacuum state could, in principle,
be constructed using an adiabatic step [40]. In this step one
starts with an initial state, which is the ground state of a simpler
Hamiltonian and easy to prepare. Subsequently the interactions
are then slowly switched on to reach the desired model.

For both models considered here, a valid initial state could
be the strong coupling ground state (x = 0) in the physical
(i.e. Gauss law fulfilling) subspace, which is a simple product
state with the odd (even) sites occupied (empty) and the links
carrying no flux, |ψ0〉 = |1〉|0〉|0〉|0〉|1〉|0〉|0〉 . . . [19,41]. In
the previous expression, the bold numbers represent the
occupation of the sites. The coupling strength can be tuned
by changing x from 0 to xF. Provided the change is slow
enough, the adiabatic theorem ensures that the final state will
be close to the ground state for xF.

The resources required to successfully perform this prepara-
tion are dominated by the total time T needed for an adiabatic
enough evolution, which depends on the inverse gap of the
Hamiltonian. As our model Hamiltonians are of the from (1),
it can be directly seen that the gap vanishes in the massless case
for x = 0. For finite values of x, Fig. 2 reveals that the gap starts
to grow with increasing x, and the growth in the region of small
x is almost independent of system size N and Hilbert space
dimension d for both models. Thus the change of the Hamil-
tonian at early times (or while x is small) has to be very slow,
whereas it is rather insensitive after reaching larger values of x.

To analyze the performance of a quantum simulation that
runs this adiabatic preparation, we simulate a ramping of the
parameter x form 0 to a value of xF = 100 which corresponds
to the smallest lattice spacing used in the previous section.
We use a function x(t) = xF · (t/T )3 that turns out to be flat
enough at the beginning in our evolution simulations.

In order to probe the scaling of the required time with
system size and other parameters, we deem an evolution
successful only if the overlap with the exact ground state
is above a minimum value (0.99). We monitor the overlap
between the evolved state and the exact ground state for various
values of t , where the exact ground state is computed using
the method from the previous section [42].

As the cQED (Zd ) Hamiltonian commutes with GcQED
n

(UZd
n ) independently from the value of x, and our initial

state is in the physical subspace, the Gauss law will be
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FIG. 2. (Color online) Gap between the ground state and the first
excited state in the Gauss law fulfilling sector for the Zd model and
the truncated cQED model. Open symbols represent the values for the
Zd model for N = 50 (triangles) and N = 100 (circles). Values for
the truncated cQED model are represented by the crosses (N = 50)
and circles (N = 100). Red markers indicate d = 3; blue markers,
d = 9. Inset: The region for small values of x shown in greater detail.
All data points were computed with D = 60.

fulfilled at any time during the preparation procedure. As a
consistency check for the numerics, nevertheless, we monitor
whether the simulated state stays in the physical subspace
with a total charge equal to 0, which is characterized by
UZd

n = 1 (GcQED
n = 0) for the Zd (truncated cQED) model.

Therefore a violation results in a finite expectation value
of the observable PZd = ∑

n(UZd
n − 1)†(UZd

n − 1) (P cQED =∑
n G

cQED†
n GcQED

n ) in the Zd (truncated cQED) case that can
be detected during the evolution.

The results obtained by the preparation procedure described
above are shown in Figs. 3 and 4. For all the data presented
here, we see that the expectation values of P ν during the
evolution indeed stay down to 0 up to machine accuracy, where
ν = cQED, and Zd labels the appropriate model. We find that
for the chosen parameters we can obtain overlaps higher than
0.99 for both models around a total evolution time of T = 60
and the results still improve until T = 80, where we reached an
overlap close to 1 and the error bars are already smaller than the
markers. The relative error ε in the energy with respect to the
exact ground-state energy (see insets in Figs. 3 and 4) shows a
similar behavior. Remarkably, for the range of parameters we
have studied, the results are almost independent of the system
size, N , and the Hilbert space dimension, d, as can be checked
in Figs. 3 and 4, where data are shown for N = 50 and 100.
This is in accordance with our observation that the gap does
not depend on the system size and the Hilbert space dimension
for small values of x (see Fig. 2).

V. EFFECT OF BROKEN GAUGE INVARIANCE

One crucial question for the quantum simulation of LGT is
whether the nonfundamental character of the gauge invariance
will limit the power of the method. Even though it has been
shown that it is possible to have models where the invariance
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FIG. 3. (Color online) Truncated cQED model with D = 50.
Final overlap with the exact ground state at the end of the adiabatic
preparation as a function of the total evolution time. The (blue) X’s
represent the data for N = 50, d = 3; (blue) triangles for N = 100,
d = 3; (red) circles, for N = 50, d = 9; and (red) squares for
N = 100, d = 9. Error bars were obtained from the difference in
results with bond dimension D = 50 vs D = 30. Inset: Relative error
of the energy with respect to the exact ground state.

is ensured at the level of interactions among the quantum
systems [11–13], external sources of noise that do not fulfill
the gauge symmetry will likely be present in an experiment.

In order to study the effect of such nongauge symmetric
contributions, we add a noise term to the Hamiltonian, which
is given by

∑
n λx(t)(L+

n + L−
n ) for the Zd case and by∑

n λx(t)(a†
nbn + b

†
nan) for the truncated cQED case. This
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FIG. 4. (Color online) Zd model with D = 50. Final overlap with
the exact ground state at the end of the adiabatic preparation as a
function of the total evolution time. The (blue) X’s represent the
data for N = 50, d = 3; (blue) triangles, for N = 100, d = 3; (red)
circles for N = 50, d = 9; (red) squares for N = 100, d = 9. Error
bars were obtained from the difference in results with bond dimension
D = 50 vs D = 30. Inset: Relative error of the energy with respect
to the value for the exact ground state.
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FIG. 5. (Color online) Truncated cQED model. Penalty energy
per site at the end of the noisy adiabatic preparation as a function
of the noise strength. The [blue (green)] X’s represent the values
for N = 50, d = 3; the [blue (green)] triangles, the N = 100, d = 3
case; the [red (magenta)] circles, the N = 50, d = 5 case; and the
[red (magenta)] squares, the N = 100, d = 5 case. Error bars were
computed the same way as in the noiseless case. Inset: Overlap (blue
and red symbols) and relative error in energy (green and magenta
symbols) with respect to the noise-free exact ground state. As a guide
for the eye, data points are connected.

could represent some noise that occurs in the experimental
setup implementing the interactions and is, thus, proportional
to their strengths, x. The parameter λ would then be the relative
strength of the noise. We simulate the same adiabatic protocol
as in the previous section, for a total time T = 100, which
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FIG. 6. (Color online) Zd model. Penalty energy per site at the
end of the noisy adiabatic preparation as a function of the noise
strength. The [blue (green)] X’s represent the values for N = 50,
d = 3; the [blue (green)] triangles, the N = 100, d = 3 case; the [red
(magenta)] circles, the N = 50, d = 5 case; and the [red (magenta)]
squares, the N = 100, d = 5 case. Error bars were computed the same
way as in the noiseless case. Inset: Overlap (blue and red symbols)
and relative error in energy (green and magenta symbols) with respect
to the noise-free exact ground state. As a guide for the eye, data points
are connected.
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ensures success of the evolution as described earlier, under
different levels of noise and for the same values of the other
parameters (N,d,xF) studied before. In addition to the overlap
with respect to the exact ground state, we quantify the violation
of the Gauss law per particle P ν/N for each case. The results
are shown in Figs. 5 and 6.

We observe that even small levels of noise (λ = 5 × 10−4)
result in finite values of P ν/N and a drastic reduction of the
final overlap with the ground state. Nevertheless, the relative
error in the energy stays below 2% for both models. Conse-
quently, if the noise can be controlled relative to the value of
x, the predictions for some ground-state observables may still
be quite accurate although the gauge invariance is broken.

Figures 5 and 6 also show that the quantity P ν/N does
not show a strong dependence on the system size. To get an
estimation of the scaling, we computed perturbatively the first
nonvanishing contribution to the expectation value of P ν [43].
We found that P ν ∝ N,λ2 for fixed T ,xF independently of the
ramping. Specifically for our choice of x(t), we find P ν to be
proportional to (λxF)2t8N (see Appendix B). Consequently,
independent of the system size, P ν/N is proportional to λ2 for
a fixed value of t , consistent with our data.

VI. CONCLUSION

Using MPS techniques, we have studied numerically two
particular proposals for quantum simulation of the lattice
Schwinger model. These methods allow us to address three
important questions that affect the feasibility of quantum
simulation for more general LGT.

First, we have shown that although the finite dimension of
the physical systems that represent gauge variables on the links
may affect the ground state of the model, the results converge
rapidly as this dimension is increased. In particular, for the
truncated cQED model, we observed fast convergence to the
exact ground state of the Schwinger model for d ranging from
3 to 9. For the Zd model, the results with d = 3 are already
extremely close to those of the full model.

Second, we have discussed an adiabatic preparation proto-
col for the ground state starting from a simple product state.
Our results suggest that the preparation is feasible and that the
initial part of the evolution is crucial for its success. With a suit-
able choice of x(t), we can obtain an overlap of more than 0.99
with the exact ground state for both models. Most remarkably,
the required total time (for a given final value xF) is practically
insensitive to the system size and the physical dimension of
the gauge variables, in accordance with the observed gap.

Finally we have shown that the procedure for adiabatic
preparation of the ground state is to some extent robust to non-
invariant terms as the energy can still be reliably determined
up to a certain noise level. This is promising, as it demonstrates
that even if the gauge invariance is broken, which could happen
due to noise or at the fundamental level of interactions among
the basic ingredients, the proposals do not immediately lose
their predictive power. Furthermore, the scaling of our results
is in good agreement with a perturbative calculation.

In our study, we have proposed a polynomial ramp for x

slow enough to achieve the desired preparation. However,
with the observation that the gap opens with increasing
values of x and the results form the perturbative calculation,

one could think about designing an optimized ramp x(t).
Furthermore, optimal control concepts could also be helpful
to design optimized ramps [44]. On the one hand, this could
allow shorter total evolution times while keeping the same
level of overlap with the exact ground state in the noise-free
case. On the other hand, one could possibly achieve a better
scaling of the Gauss law violation with time in the presence
of noninvariant terms and therefore improve the robustness of
the preparation scheme proposed.
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APPENDIX A: NUMERICAL ERRORS

In this Appendix we provide details about the extrapolation
procedure and our estimation of errors. For the ground-state
calculations we run the variational ground-state search [27]
for different system sizes, N , different lattice spacings, x, and
several (odd) physical dimensions, d, of the link variables,
ranging from 3 to 9. For each combination (N,d,x) we increase
the bond dimension until the ground-state energy converges up
to a predefined relative accuracy. For the truncated cQED case
we find D = 100 together with relative accuracy 10−6 to be
sufficient for all the studied parameters, while for theZd model
we go up to D = 200 and a relative accuracy of 10−12. Our
final energy value is extrapolated linearly in 1/D using the two
largest computed bond dimensions and the error is estimated
as the difference from the largest D result.

For the results shown in Fig. 1, we perform a finite-size
extrapolation for each pair (x,d), using the same functional
form as in Ref. [39]:

E0

2Nx
= ω + c1

N
+ O(N−2).

Similarly to the procedure described in Ref. [39], we extrap-
olate to the continuum from each set of values for a given
d, by fitting the ground-state energy densities obtained in the
previous step to a quadratic function in 1/

√
x = ga. This limit

is expected to be only of limited precision since the values
used in this paper, x ∈ [50,100], are still far away from the
continuum, which constitutes a source of error much more
important than that of the particular fit.

In the case of time evolution we have an additional source of
error due to the second-order time-dependent Suzuki-Trotter
approximation [28] of the time evolution operator. For the
results presented in Secs. IV and V we have tried different time
steps and a value of �t = 0.001 turns out to be sufficiently
small, so that the errors are much below the observed effects.
The large error bars in Figs. 5 and 6 for small T are due to
the limited bond dimension. In these cases the evolution is not
adiabatic enough to stay close to the ground state and one ends
up in a superposition state which cannot be well approximated
by a MPS with our values of D = 30,50. As one can see,
for longer total evolution times, where one stays close to the
ground state, this effect vanishes and the simulations converge
with a small D.
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APPENDIX B: ANALYTIC ESTIMATION OF THE EFFECT
OF GAUGE INVARIANCE BREAKING PERTURBATIONS

To get an idea how the violation of the Gauss law scales
in the case of noisy evolution, we compute the lowest
order contribution to 〈ψ(t)|P ν |ψ(t)〉 using perturbation theory
following Ref. [43]. For clarity we simply write P and
suppress, for the rest of this section, the index labeling the
model. Additionally, to keep the equations short, we introduce
Un, which refers to UZd

n − 1 (GcQED
n ) in the Zd (truncated

cQED) case.
Starting from a dimensionless version of our model Hamil-

tonian, W = 2H/ag2, we use an equivalent spin formulation,

W (t) =
N−1∑
n=1

(
Lz

n

)2 + μ

2

N∑
n=1

(−1)n
(
σ z

n + 1
)

+ x(t)
N−1∑
n=1

(σ+
n L+

n σ−
n+1 + H.c.), (B1)

where μ = 2m/ag2, and add the noise term
∑

n λx(t)(L̄+
n +

L̄−
n ) to it,

W̃ (t) = W (t) +
∑

n

λx(t)(L̄+
n + L̄−

n ),

where L̄±
n refers to L±

n for the Zd model and to a
†
nbn (b†nan)

for the truncated cQED model, and therefore coincides with
the L±

n operators for this model up to a constant. For small
times t and small values of λ we can treat the noise term as
a perturbation to the Hamiltonian W (t). The contributions to
〈ψ(t)|P |ψ(t)〉 are given by subsequent commutators of P with
the Hamiltonian

〈ψ(t)|P |ψ(t)〉

= 〈ψ0|P |ψ0〉 + 1

i

∫ t

0
dt ′〈ψ0|[P,W̃ (t ′)]|ψ0〉

+ 1

i2

∫ t

0
dt ′

∫ t ′

0
dt ′′〈ψ0|[[P,W̃ (t ′)],W̃ (t ′′)]|ψ0〉 + · · · ,

(B2)

where ψ0 is the initial state; in our case this is a product
state fulfilling the Gauss law. As the unperturbed Hamiltonian
commutes with Un and L̄±

n |ψ0〉 is still an eigenstate of Un

which is orthogonal to |ψ0〉, it is immediately clear that the first
contribution occurs at second order and the double commutator
reduces to

[[P,W̃ (t ′)],W̃ (t ′′)]

= −λ2x(t ′)x(t ′′)
∑
n,m,k

(〈ψ0|L̄+
mU †

nUnL̄
−
k |ψ0〉

+ 〈ψ0|L̄−
mU †

nUnL̄
+
k |ψ0〉

+ 〈ψ0|L̄+
k U †

nUnL̄
−
m|ψ0〉

+ 〈ψ0|L̄−
k U †

nUnL̄
+
m|ψ0〉)

= −2λ2x(t ′)x(t ′′)
∑

n

(〈ψ0|L̄−
n U †

nUnL̄
+
n |ψ0〉

+ 〈ψ0|L̄+
n U †

nUnL̄
−
n |ψ0〉).
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FIG. 7. (Color online) Truncated cQED model. Penalty energy
per site as a function of time for d = 3 (both axes are on a logarithmic
scale). The vertical gray line indicates the point in time where we
determined the offsets �1 and �2. The lower [red (N = 50) and
cyan (N = 100)] dashed lines show the values for λ = 1 × 10−4, the
middle [green (N = 50) and black (N = 100)] dashed lines show the
values for λ = 5 × 10−4, and the upper [blue (N = 50) and yellow
(N = 100)] dashed lines show the values for λ = 1 × 10−3.

In the second step we have used that L̄±
m|ψ0〉 are eigen-

states of Un, with nonzero eigenvalue iff m = n, and that
〈ψ0|L̄∓

k L̄±
m|ψ0〉 = c±

m · δk,m with a constant c±
m. Thus there

are only contributions if n = k = m and we are left with a
single sum. The two different matrix elements appearing in
the sum are simply giving two constants, hence the sum can
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FIG. 8. (Color online) Truncated cQED model. Penalty energy
per site as a function of time for d = 5 (both axes are on a logarithmic
scale). The vertical gray line indicates the point in time where we
determined the offsets �1 and �2. The lower [red (N = 50) and
cyan (N = 100)] dashed lines show the values for λ = 1 × 10−4, the
middle [green (N = 50) and black (N = 100)] dashed lines show the
values for λ = 5 × 10−4, and the upper [blue (N = 50) and yellow
(N = 100)] dashed lines show the values for λ = 1 × 10−3.
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FIG. 9. (Color online) Zd model. Penalty energy per site as a
function of time for d = 3 (both axes are on a logarithmic scale). The
vertical gray line indicates the point in time where we determined the
offsets �1 and �2. The lower [red (N = 50) and cyan (N = 100)]
dashed lines show the values for λ = 1 × 10−4, the middle [green
(N = 50) and black (N = 100)] dashed lines show the values for
λ = 5 × 10−4, and the upper [blue (N = 50) and yellow (N = 100)]
lines show the values for λ = 1 × 10−3.

be estimated as cN with a constant c. Plugging this back into
Eq. (B2), we obtain

〈ψ(t)|P |ψ(t)〉 ≈ 2λ2cN

∫ t

0
dt ′x(t ′)

∫ t ′

0
dt ′′x(t ′′).

For our x(t) = xF · (t/T )3 the integrals can be easily solved
yielding

〈ψ(t)|P |ψ(t)〉 ≈ 2(λxF)2 t8

32T 6
cN. (B3)

To numerically check this behavior, we plot P/N as a
function of time for both models (cf. Fig. 7–10) for the three
smallest values of noise used in Sec. V. The time interval
was chosen as close as possible to the beginning of the
evolution but late enough to ensure that the values for P/N

are above the machine accuracy. These plots reveal that P/N

indeed shows a power law behavior in t which is independent
from N .

2 2.5 3 3.5 4
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−15
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−14

10
−13

10
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10
−11

10
−10

10
−9

t

P
/N

FIG. 10. (Color online) Zd model. Penalty energy per site as a
function of time for d = 5 (both axes are on a logarithmic scale). The
vertical gray line indicates the point in time where we determined the
offsets �1 and �2. The lower [red (N = 50) and cyan (N = 100)]
dashed lines show the values for λ = 1 × 10−4, the middle [green
(N = 50) and black (N = 100)] dashed lines show the values for
λ = 5 × 10−4, and the upper [blue (N = 50) and yellow (N = 100)]
dashed lines show the values for λ = 1 × 10−3.

To check the scaling with time, we can fit the data to extract
the slope mλ for each case. This yields values between 7.5544
and 7.5589 for all cases presented in Fig. 7–10 which is in good
agreement with our calculations. Furthermore we can check
the scaling with λ. From Eq. (B3) we obtain for the offset �

between two curves with different noise levels λ1 and λ2

� = ∣∣ log10

(
λ2

1

) − log10

(
λ2

2

)∣∣ = 2| log10(λ1) − log10(λ2)|.

For the values of λ used here (1 × 10−4, 5 × 10−4 and
1 × 10−3) this yields �1 = 1.3979 and �2 = 0.6021. The
values extracted from our numerical data for both mod-
els with various N and d show a relative deviation of
at most 10−4 from these predictions, which indicates that
there is almost no dependency on system size and Hilbert
space dimension, in excellent agreement with our theoretical
calculation.
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