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Magnon qubit and quantum computing on magnon Bose-Einstein condensates
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Recently, great progress has been made in the creation of a solid-state quantum computer using superconducting
qubits on Cooper pairs of charged electrons. However, this approach has met limitations due to decoherence effects
caused by the strong Coulomb interaction of the superconducting qubit with the environment. Here, we propose the
solution of this problem by switching to another Bose-Einstein condensate (BEC), uncharged long-lived magnons,
wherein the magnon BEC qubit can be realized due to the magnon blockade isolating a pair of the magnon conden-
sate energy levels in the mesoscopic and nanoscopic ferromagnetic dielectric sample. We demonstrate the single-
qubit gates by operating quantum transition between these states in the external microwave field. We also consider
implementation of the two-qubit gates by using the interaction between such magnon BEC qubits due to exchange
by virtual photons in a microwave cavity. Finally, we discuss the condition for long-lived magnon BEC qubits, a
scalable architecture, and promising advantages of the multiqubit quantum computer based on the magnon qubit.
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I. INTRODUCTION

A quantum computer proposed by Feynman [1] is a
tremendous computational resource. Up to now, the most
significant progress in its implementation has been achieved
on trapped ions where 14 qubits were entangled [2]. How-
ever, this approach requires extremely low temperatures of
10−6 K; therefore the solid-state prototype on superconducting
Josephson qubits working at liquid helium temperatures [3]
seems to be very promising. Another critical advantage of
the Josephson qubit is the macroscopically enhanced dipole
moment of the transition in an effective two-level system that
provides the high rate of qubits processing. The main obstacle
of superconducting qubits is caused by the strong effect of
surrounding electric fields on the charges of superconducting
qubits, which limits their decoherence time by hundreds
of microseconds [4]. Therefore, it is worthwhile to study
the possibility of long-lived qubits in other Bose-Einstein
condensates (BECs), such as magnon, polariton, and exciton
BECs. Magnons are electrically neutral and, therefore, interact
weakly with the surroundings; thus the magnon BEC state can
demonstrate the decoherence time within the time scale of
several seconds [5,6] that makes the magnon BEC especially
interesting for the construction of a long-lived qubit. However,
special research needs to be done on the implementation of
qubits on magnon condensates.

In the present paper, we propose a scheme for the realization
of qubit and quantum gates on BEC magnons. We show that the
magnon BEC qubit can be realized due to a type of blockade
that we refer to as a magnon blockade, isolating a pair of
the magnon condensate energy levels in the mesoscopic ferro-
magnetic sample. We consider single-qubit gates operating on
the transitions between these states in the external microwave
field. Also, we show that the two-qubit gates can be built using
the interaction between these qubits via exchange by virtual
photons in a microwave cavity. Promising advantages of the
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proposed magnon BEC qubit and logical gates for practical
use in quantum information processing are discussed.

II. MAGNON QUBIT

Let us consider the Hamiltonian of interacting spins in a
ferromagnetic sample that has the following form:

H = −1

2

∑
i �=j

∑
αβ

[
Jij δ

αβ + D
αβ

ij

]
Sα

i S
β

j −
∑

j

hjS
z
j , (1)

where Ŝα
i ,Ŝ

β

j are spin operators with components α,β of
atoms i and j ; Jij is the constant of the exchange interaction;
D

αβ

ij is the constant of the dipole-dipole interaction; hjS
z
j

is the Zeeman energy of the jmth spin in the external
magnetic field oriented along the �z axis. Applying the Holstein-
Primakoff transformation and the operator Fourier transform
(see Appendix A), we obtain

H =
∑

k

Akb̂
†
kb̂k +

∑
kk′k′′k′′′

(Bk+k′−k′′−k′′′ b̂
†
kb̂

†
k′ b̂k′′ b̂k′′′ + H.c.),

(2)

where b
†
k and bk are creation and annihilation operators of

magnons with the wave vector �k,

Ak = S

(
h + J0 + D0 − Jk − Dxx

k + D
yy

k

2

)
, (3)

Bk+k′−k′′−k′′′

= 1

4N

{(
Jk,k′−k′′−k′′′ + Dxx

k,k′−k′′−k′′′ + D
yy

k,k′−k′′−k′′′

2

)

+
(

J−k,−k′+k′′+k′′′ + Dxx
−k,−k′+k′′+k′′′ + D

yy

−k,−k′+k′′+k′′′

2

)

− 2
(
Jk−k′′,k′−k′′′ + Dzz

k−k′′,k′−k′′′
)}

, (4)

where Jk and D
αβ

k are Fourier images of relevant constants.
Using the Hamiltonian (2), the set of main features attributed
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to the magnon Bose condensate can be explained [7–10]. It is
worth noting that third-order terms on operators of magnon
creation and annihilation are not included in Eq. (2). The
main contribution of these terms is not taken into account
in Hamiltonian (2) because it determines relatively slow
relaxation processes of BEC magnons [8].

Bose-condensed magnons in the sample can be prepared
in two states with wave vectors ±�k0 corresponding to the
minimal energy in the vicinity of these wave vectors [11].
The BEC stability is provided by the gap in the energy
spectrum of the nonideal Bose gas [9,10]. Large values of
the energy gap and the high stability of a magnon BEC can be
implemented in thin films at the orthogonal orientation of the
external magnetic field [12]. In this regard, we have to focus
our consideration on the properties of magnons characterized
by the wave vectors �k = ±�k0. Herein, we take initially into
account the main terms of Hamiltonian Ĥo (2) which are
characterized by these wave vectors of magnons and the rest
of the terms can be accounted for as the perturbation V̂

(Appendix B).
Let us assume for simplicity that the magnons undergo

the Bose condensation to the pure quantum state where only
one standing magnon mode with the wave vector k0 = 0 is
populated. In particular, this can be valid for the case when the
magnetic field is perpendicular to the ferromagnetic film [12].
In this state, the main Hamiltonian has the form ˆ̄H 0 = En̂ +
λn̂2, where n̂ = b̂†b̂, b̂† ≡ b̂

†
0, b̂ ≡ b̂0. Parameters incoming

in this Hamiltonian are equal to the following values: E =
[S + 1/(2N )][Dzz

0 − (Dxx
0 + D

yy

0 )/2] + Sh (main energy of
magnon BEC) and λ = [(Dxx

0 + D
yy

0 )/2 − Dzz
0 ]/(2N ) (non-

linearity of the magnon BEC spectrum), where N is the
total number of atoms in the sample. The following energy
levels, ε−1 = E(n − 1) + λ(n − 1)2, ε0 = En + λn2, ε1 =
E(n + 1) + λ(n + 1)2, etc., correspond to this Hamiltonian.
The energy of transitions between neighboring levels ε0 →
ε−1 and ε1 → ε0 can be written as �ω0,−1 = E + λ(2n − 1)
and �ω1,0 = E + λ(2n + 1), etc., and the energy difference
for the nearest two transitions is 2λ. If this difference is larger
than the transition linewidths, we can limit our consideration
by a single pair of the levels obtaining energies ε0 and ε−1

with the transition frequency ω0,−1 and introduce a magnon
BEC qubit corresponding to this pair of energy states. This
situation can be called a magnon blockade, where excitation
of one more magnon blocks transition to excess levels, similar
to how it proceeds by excitation of one more atom in the
case of a dipole blockade [13]. The difference is that the
magnon is the excitation of the whole sample and here we are
not limited by the interaction radius as in a dipole blockade.
Using numerical data [7], we obtain the following estimate,
λ/h ∼ 1014/N Hz, and our parameters are in the range of
1–100 MHz for N = 108 − 106 which is larger than the
experimental resonance linewidths of BEC magnons [5,14].
The implementation of such a large nonlinearity parameter
λ/h seems to be practical for nanosize and even for mesoscopic
magnon systems and the estimation is in agreement with recent
experimental results [15–17] which makes the Bose-Einstein
condensation in the mesoscopic systems promising for the
implementation of BEC magnon qubits. Below, we consider
single- and two-qubit gates on the proposed magnon qubit as
well as its decoherence properties.

FIG. 1. (Color online) Layout of magnon BEC single-qubit gate
(MBEC: magnon Bose-Einstein condensate; LP: laser pumping;
MWR: microwave resonator; J: current in magnetic coil; B0: magnetic
field). Here, magnon BEC is excited by the laser pulse and qubit
rotation is achieved by the interaction with a standing microwave
field in a high-quality resonator.

III. SINGLE-QUBIT GATES

Let us consider the interaction of the magnon qubit |�(t)〉 =
α0|n〉 + β0|n − 1〉 with the external resonant electromagnetic
field in a resonator oriented in the (�x,�y) plane whose
Hamiltonian can be written as

H
(1)
rf = −�(S+ + S−)	(t) cos(ωt + 
0), (5)

where 	(t) and ω are the Rabi frequency and carrier frequency
of the variable radio-frequency field, respectively (where ω ∼=
ω0,−1), 
0 is the initial phase, and S+ and S− are raising
and lowering operators for effective spin corresponding to the
magnon BEC qubit (Fig. 1). The interaction between the BEC
magnons and the rectangular radio-frequency pulse leads to
the following evolution of the magnon BEC qubit:

U

(
α0

β0

)
=

(
cos 	T/2 −ie−i
0 sin 	T/2

−ie−i
0 sin 	T/2 cos 	T/2

)

×
(

α0

β0

)
, (6)

where α0, β0 are initial amplitudes of the qubit, and Т is the
pulse duration. Equation (6) describes the single-qubit rotation
in the Hilbert space at the angle θ = 	T . It is obvious that the
pulse spectral width δω should satisfy the following relation:
δω 	 2λ. Such a qubit rotation can be also realized via two-
photon Raman excitation that opens an additional advantage
for local driving of the magnon BEC qubits.

Another single-qubit operation is a phase gate. It is
implemented here by applying the additional magnetic field for
time Т in order to change the qubit frequency ω′

0,−1 = ω0,−1 +
�ω0,−1. As a result, the qubit phase shift is �ϕ = �ω0,−1T .
Using this gate it is possible to implement the Hadamard gate
and the NOT gate forming a complete set of single-qubit gates.

IV. TWO-QUBIT GATES

Let us consider two films with magnon Bose-Einstein
condensates in a common microwave cavity (Fig. 2)
among other such films. We equalize the condensate
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FIG. 2. (Color online) Scheme of quantum computer on magnon
BEC qubits and multiqubit atomic quantum memory in waveguide
microwave resonator (PN: processor node; QM: quantum memory).
Dashed lines show interaction between two qubits and reversible
transfer of quantum information between PN and QM via the
interaction with virtual photons.

energies in two films E(n1 ⊗ n2 + 1) = E(n1 + 1 ⊗ n2)
(|n1 ⊗ n2 + 1〉 and |n1 + 1 ⊗ n2〉 are two resonant states)
by the appropriate choice of the magnetic fields for
each magnon BEC qubit. Here, we can limit ourselves
by four states: |n1 − 1 ⊗ n2 − 1〉 ≡ |0,0〉, |n1 − 1 ⊗ n2〉 ≡
|0,1〉, |n1 ⊗ n2 − 1〉 ≡ |1,0〉, |n1 ⊗ n2〉 ≡ |1,1〉 and their

eigenvalues E(n1 − 1 ⊗ n2 − 1) ≡ E0,0, E(n1 ⊗ n2 − 1) ≡
E1,0 = E(n1 − 1 ⊗ n2) ≡ E0,1, and E(n1 ⊗ n2) ≡ E1,1. Tak-
ing into account that the magnon-magnon interaction Ŵ

couples only two states, |n1 − 1 ⊗ n2〉 and |n1 ⊗ n2 − 1〉
(i.e., |0,1〉 and |1,0〉), if n1κ 	 λ and n2κ 	 λ, we find
the effective Hamiltonian of the long-range interaction Ŵ =√

n1n2κ(S+
1 S−

2 + S−
1 S+

2 ) between the two magnon BECs,
where we have introduced the effective spin operators of
two-level systems [S+

1,2 = 1
2 (Sx

1,2 + iSy

1,2) and S−
1,2 = (S+

1,2)+
are spin operators of the two-level system] in the films. The
interaction arises due to the exchange by virtual photons
in the cavity, κ = g2/� is the effective coupling constant,
� = ω0,−1 − ω, ω is a resonant frequency of the microwave
resonator, and g is a spin-phonon coupling constant in the
Jaynes-Cummings model. The effective Hamiltonian Ŵ is
obtained in straightforward manner using Schrieffer-Wolf
transformation as in [18,19] for superconducting qubits.

The effective Hamiltonian determines the following evolu-
tion of the two coupled qubits:

|�(τ̃ + t)〉 = exp{−i( ˆ̄H eff + Ŵ )t/�}|�(τ̃ )〉
= α0,0 exp{−iE0,0t/�}|0,0〉 + α1,1 exp{−iE1,1t/�}|1,1〉 + exp{−iE1,0t/�}{α1,0[cos(

√
n1n2κt)|1,0〉

− i sin(
√

n1n2κt)|0,1〉] + α0,1[cos(
√

n1n2κt)|0,1〉 − i sin(
√

n1n2κt)|1,0〉]}, (7)

where the initial state of two qubits |�(τ̃ )〉 = α0,0|0,0〉 +
α1,0|1,0〉 + α0,1|0,1〉 + α1,1|1,1〉.

The evolution (7) can be described in a simpler way:
|�(τ̃ + t)〉 = exp{−i ˆ̄H eff t/�}Ŝ(t)|�(τ̃ )〉, where Ŝ(t) is rep-
resented by a matrix in the basis of four states |0,0〉, |0,1〉,
|1,0〉, |1,1〉.

It is seen in Table I that the matrix Ŝ(t) provides the imple-
mentation of the gate ISWAP(θ ) (θ = 2

√
n1n2κt). Choosing the

corresponding time “t” we can obtain
√

n1n2κt = π/2, where
the matrix Ŝ(t) yields the ISWAP gate, and if

√
n1n2κt = π/4,

we have the
√

ISWAP gate. The ISWAP gate gives a possibility
of the quantum excitation transfer between the films under
the external magnetic fields that can switch on or switch off
this transfer. The

√
ISWAP gate together with single-qubit gates

form a universal set of gates for quantum computations. It is
worth noting that the nano- and mesoscopic magnon BEC
qubits can be efficiently integrated with multiqubit atomic
quantum memory in microwave QED cavity (Fig. 2) similar
to the integration of superconducting and other macroscopic

TABLE I. The matrix Ŝ(t) of the two-qubit operation caused
by the magnon-magnon interaction of two magnon Bose-Einstein
condensates.

|0,0〉 |1,0〉 |0,1〉 |1,1〉
|0,0〉 1
|1,0〉 cos(

√
n1n2κt) −i sin(

√
n1n2κt)

|0,1〉 −i sin(
√

n1n2κt) cos(
√

n1n2κt)
|1,1〉 1

qubits [20,21] that is necessary for realization of a multiqubit
quantum computer.

V. DECOHERENCE

The number of magnons in BEC should be preserved with
accuracy up to one magnon in order to avoid variation of
magnon qubit frequency exceeding 2λ. It can be shown that a
stable state of BEC magnons can be formed in YIG film at low
temperatures during several nanoseconds after excitation [19].
But the magnon qubit still experiences decoherence due to
variation of phase in the course of magnon qubit number
quantum fluctuations on the background of a stable mean
value due to magnon BEC–thermal reservoir interaction.
Decoherence of the qubit in a two-level model can be described
by the Bloch equation [22]:

�̇p = ω × �p − R �p + �p0, (8)

where �ω = (0,0,ω01), ω01 is the frequency difference between
working levels, and �p0 is the initial value of Bloch vector �p,

R =

⎛
⎜⎝

T −1
2 0 0

0 T −1
2 0

0 0 T −1
1

⎞
⎟⎠ , (9)

1

T1
= 2Re(�(+)

0110 + �
(+)
1001), (10)

is the reverse time of longitudinal relaxation;

1

T2
= 1

2T1
+ 1

Tφ

= 1

2T1
+ Re(�(+)

0000 + �
(+)
1111 − 2�

(+)
0011),

(11)
is the reverse time of transverse relaxation.
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Here,

�
(+)
lmnk = lim

ε→+0

∫ ∞

0
dte−i(ωnk−iε)tTrBHSB(t)lmHSB(0)nkρB,

(12)

where trace is performed over the modes of bath reservoir with
density matrix ρB ,

HSB(t) = eiHBtHSBe−iHB t , (13)

where ωnk is related to the resonant frequencies of the analyzed
system, HB is the Hamiltonian of bath, and HSB is the
Hamiltonian of the system-bath interaction.

In the case of magnon BEC HS = �ω01b
†
0b0, bath

comprises reservoir non-BEC magnons and phonons,
HB = ∑

k �=k0
�ωkb

†
kbk + ∑

q �	qc
†
qcq and HSB = Vm−m +

Vm−ph, where

V
(1)
m−m = B

∑
k,q

′
[b̂†0(b̂†kb̂k+q b̂−q) + (b̂†−q b̂

†
k+q b̂k)b̂0] (14)

is the Hamiltonian of reservoir magnons scattering on BEC
magnons (B ≡ B0) and

Vm−ph = F
∑

q

(b†0bqc
†
q + b†qb0cq) (15)

is the Hamiltonian of phonons scattering on BEC magnons
(F ≡ F0). Using these Hamiltonians, we get

1

T1
= 2πB2n0e

− ��p

kB T

∫∫
dkdqρ(�p + ω̃k)ρ(�p + ω̃q)δ(ω−10 + ω̃k − ω̃k+q − ω̃−q − �p)

×
[
e
− ��p

kB T

(
e
− ��p

kB T e
− �ω̃k

kB T + 1

)
e
− �ω̃k+q

kB T e
− �ω̃−q

kB T + e
− �ω̃k

kB T

(
e
− ��

kB T e
− �ω̃k+q

kB T + 1

)(
e
− �ω̃−q

kB T + 1

)]
+ 2πF 2n0e

− ��p

kB T

×
∫

dqρ(�p + ω̃q,	q)δ(ω−10 − �p − ω̃q + 	q)

[
e
− �ω̃q

kB T

(
e
− ��p

kB T e
− �(ω̃q −ω10)

kB T + 1

)
+

(
e
− ��p

kB T e
− �ω̃q

kB T + 1

)
e
− �(ω̃q −ω10)

kB T

]
, (16)

1

Tφ

= 8πB2e
− ��p

kB T

∫∫
dkdk′ρ(�p + ω̃k)ρ(�p + ω̃k′)δ(ω̃k − ω̃k′)e− �ω̃k

kB T

(
e
− ��p

kB T e
− �ω̃

k′
kB T + 1

)
, (17)

where we have used ωk = �p + ω̃k and assumed that the
temperature of reservoir magnons is equal to the tem-
perature of phonons T ; ρ is a density of the magnon
modes.

We see from expressions (16) and (17) that T1,Tφ → ∞
for sufficiently low temperature kBT 	 ��p. It means that
preferable conditions for magnon qubit quantum computer
operation are low temperatures. If �p ∼ 2 GHz [12], T should
be less than 0.1 K.

VI. CONCLUSION

We have proposed a qubit on magnon BEC using a magnon
blockade. We have shown that mesoscopic dimensions of the
sample are preferable for realization of such blockade. We
have also shown that the decoherence processes of the magnon
BEC qubit can be highly suppressed at helium temperatures.
Possibility of the proposed mesoscopic magnon BEC qubit
realization is supported by recent experimental observations
of magnon BECs in mesoscopic systems [15–17] and in some
nanostructures [23]. We have also considered a realization
of single- and two-qubit gates for the construction of a
quantum computer on magnon qubits in QED cavity where
small sample dimensions ensure effective energy exchange
with electromagnetic waves. The operation rate of the gates
are proportional to

√
n and n, respectively, where n is the

BEC magnon number. The observed results open promising
possibilities for implementation of a long-lived mesoscopic
qubit providing realization of fast operation rate for quantum
information processing.
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APPENDIX A: HAMILTONIAN OF MAGNONS

Let us consider Hamiltonian (1):

H = −1

2

∑
i �=j

∑
αβ

[
Jij δ

αβ + D
αβ

ij

]
Sα

i S
β

j −
∑

j

hjS
z
j . (A1)

Transformation of Holstein-Primakov is written as

Ŝ+
i =

√
2S

√
1 − b̂

†
i b̂i

2S
bi

=
√

2S

(
b̂i − b̂

†
i b̂i b̂i

4S
+ · · ·

)
, (A2)

Ŝ−
i =

√
2Sb

†
i

√
1 − b̂

†
i b̂i

2S

=
√

2S

(
b̂
†
i − b̂

†
i b̂

†
i b̂i

4S
+ · · ·

)
, (A3)

Ŝz
i = S − b̂

†
i b̂i , (A4)

where b
†
i and bi are operators of excitations’ creation and

annihilation in the node i, S is a spin. We apply it to
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Hamiltonian (1) and get

Ĥ = Ĥ0 + Ĥ1 + Ĥ2 + Ĥ3 + Ĥ4, (A5)

where

Ĥ0 = −S2

2

∑
ij

(
Jij + Dzz

ij

)
, (A6)

Ĥ1 = −S

2

√
S

2

∑
ij

[(
Dzx

ij − iD
zy

ij

)
b̂j + (

Dzx
ij + iD

zy

ij

)
b̂
†
j

]
,

(A7)

Ĥ2 =
∑
ij

A(ij )b̂†i b̂j+1

2

∑
ij

{B(ij )b̂i b̂j + B∗(ij )b̂†i b̂
†
j }, (A8)

Ĥ3 = 1

2

√
S

2

∑
ij

{(
Dzx

ij + iD
zy

ij

)(
b̂
†
i b̂i b̂j + 1

4
b̂
†
j b̂

†
j b̂j

)
+ H.c.

}
,

(A9)

Ĥ4 = −1

2

∑
ij

Jij

{
n̂i n̂j − 1

2
(b̂†i b̂

†
j b̂j b̂j + H.c.)

}

− 1

2

∑
ij

{
Dzz

ij n̂i n̂j − 1

4

(
Dxx

ij + D
yy

ij

)
(b̂†i b̂

†
j b̂j b̂j + H.c.)

}

+ 1

8

∑
ij

{(
Dxx

ij − iD
xy

ij − D
yy

ij

)
b̂
†
i b̂i b̂i b̂j + H.c.

}
,

(A10)

where

A(ij ) = S1

{
δij

(
N∑

n=1

Jin + h

)
− Jij

+δij

N∑
n=1

Dzz
in − Dxx

ij + D
yy

ij

2

}
, (A11)

B(ij ) = −S

2

(
Dxx

ij − iD
xy

ij − D
yy

ij

)
. (A12)

The operator Fourier transform,

b̂i = 1√
N

∑
k

ei�k�ri b̂k, (A13)

gives the following expression for terms of the Hamiltonian
preserving the number of magnons:

H =
∑

k

Akb̂
†
kb̂k +

∑
kk′k′′k′′′

(Bk+k′−k′′−k′′′ b̂
†
kb̂

†
k′ b̂k′′ b̂k′′′ + H.c.),

(A14)

where

A(k) = S

(
h + J0 + D0 − Jk − Dxx

k + D
yy

k

2

)
, (A15)

Bk+k′−k′′−k′′′

= 1

4N

{(
Jk,k′−k′′−k′′′ + Dxx

k,k′−k′′−k′′′ + D
yy

k,k′−k′′−k′′′

2

)

+
(

J−k,−k′+k′′+k′′′ + Dxx
−k,−k′+k′′+k′′′ + D

yy

−k,−k′+k′′+k′′′

2

)

− 2
(
Jk−k′′,k′−k′′′ + Dzz

k−k′′,k′−k′′′
)}

, (A16)

Jk =
∑

i

Jij e
−i�κ�rij , (A17)

D
αβ

k =
∑

i

D
αβ

ij e−i�κ�rij , (A18)

Jk1,k2 = 1

N

∑
ij

Jij e
−i�k1�ri e−i�k2�rj , (A19)

D
αβ

k1,k2
= 1

N

∑
ij

D
αβ

ij e−i�k1�ri e−i�k2�rj (A20)

and we used an approximation of spatially homogeneous
sample where the interaction constants depend only on the
distance between the atoms; we also considered the case of
constant magnetic field h inside the sample.

APPENDIX B: MODIFICATION OF MAGNON BEC
HAMILTONIAN UNDER THE INFLUENCE OF

RESERVOIR MAGNONS

Let us consider the Hamiltonian

H = A0n̂0 +
∑

k

′
Akn̂k + U

2N
(n̂0)2

+ U

N

∑
k,q

′
[b̂†0(b̂†kb̂k+q b̂−q) + (b̂†−q b̂

†
k+q b̂k)b̂0]

+ U

N

∑
q

′{[b̂†0b̂†0(b̂q b̂−q) + (b̂†−q b̂
†
q)b̂0b̂0]

+ [n̂0n̂q + (n̂q + 1)(n̂0 + 1)]}, (B1)

that can be obtained from Hamiltonian (А14) neglecting
the wave vector dependence of the interaction constant and
accounting only terms with participation of magnon BEC. Let
us introduce

H0 = A0n̂0 +
∑

k

′
Akn̂k + U

2N
(n̂0)2 + U

N

∑
q

′
[n̂0 + n̂q + 1].

(B2)

Then

H = H0 + V1 + V2, (B3)

where

V1 = U

N

∑
k,q

′
[b̂†0(b̂†kb̂k+q b̂−q) + (b̂†−q b̂

†
k+q b̂k)b̂0], (B4)
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V2 = U

N

∑
q

′
[b̂†0b̂

†
0(b̂q b̂−q) + (b̂†−q b̂

†
q)b̂0b̂0]. (B5)

We denote wave functions of BEC giving us

H0

∣∣ϕn,mk

〉 = En,{mk}
∣∣ϕn,{mk}

〉
, (B6)

where energy En,mk
includes the impact from magnon BEC

and from other magnons,

En,{mk} = A0n + U

2N
(n)2 + U

N

∑
k

′
[n + mk + 1]

+
∑

k

′
Akmk, (B7)

∣∣ϕn,mk

〉 = |n〉0

∏
k

|m〉k. (B8)

We are interested in the ground state of BEC that in the
approximation of absent interaction with magnons outside
BEC is written as∣∣ϕn,mk=0

〉 ≡ |ϕn,0〉 = |n〉0

∏
k

|0〉k. (B9)

Using perturbation theory, we find the BEC wave function
in the first order of perturbation theory,

|ψn,0〉 ≡ |ϕn,0〉 +
∑
n′ �=n

∑′
k
|n〉0

∏
k

|0〉k0〈n|
∏
k

k〈0|

× (V1 + V2)(V1 + V2)(
En,0 − En′,{mk}

) |n′〉0

∏
k

|m〉k′ , (B10)

and BEC energy in the perturbation theory second order by
interaction with other magnons,

Ẽn,0 ≡ En,0 +
∑
n′ �=n

∑
q,mq

′ 	
0k ,mq

n,n′
(
	

0k ,mq

n,n′
)∗(

En,0 − En′,{mq }
) , (B11)

where

	
0k ,mq

n,n′ = 〈n|
∏
k

k〈0|(V1 + V2)
∏
q

|m〉q |n′〉0. (B12)

Finally, we get Ẽn,0 ≡ En,0 + δEn,0, where energy correc-
tion

δEn,0 =
(

U

N

)2

n(n − 1)
∑

q

1

2(A0 − Aq) − |U |
N

(n − 2)

(B13)

is calculated at the negative value of constant U = −|U |, when
there is no resonance between frequencies of BEC magnons
and other magnons since Aq > A0, so that the denominator
in (B13) never becomes zero when summing over various
magnon frequencies. Such a sign of constant U = −|U |
indicates an attractive character of magnon interaction that
provides condensate stability. Let us consider the case of
sufficiently large gap Aq − A0 � |U |

N
(n − 2) ∼= |U |

N
n, when

the influence of the spectral region where this condition
does not fulfill is negligibly small, which gives the following
expression for energy correction:

δEn,0
∼= δεn − δλn2 + δμn3, (B14)

where at U > 0 constants

δε = −1

2

(
U

N

)2 ∑
q

1

(A0 − Aq)

{
1 − 1

(A0 − Aq)

U

N

}
,

(B15)

δλ = −1

2

(
U

N

)2 ∑
q

1

(A0 − Aq)

{
1 − 3

2(A0 − Aq)

U

N

}
,

(B16)

δμ = 1

4

(
U

N

)3 ∑
q

1

(A0 − Aq)2
, (B17)

are positively definite. The term δεn̂ leads to linear magnon
frequency shift that can be compensated by the external
constant magnetic field. The second term, −δλn̂2, indicates
the presence of attractive interaction of condensed magnons
via magnon modes of other frequencies that again indicate
the stability of magnon condensate. The third term, δμn̂3,
is significantly less than the first two terms and we neglect its
influence on the nonlinear character of magnon BEC spectrum.

Returning in (B13) back to the magnon operators we get

ˆ̄H ∼= Ẽn̂ + λ̃n̂2, (B18)

where

Ẽ = A0 − M

N
|U | + δε, (B19)

λ̃ = −|U |
2N

− δλ. (B20)

M is the number of magnon modes.
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