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Demonstrating elements of measurement-based quantum error correction
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In measurement-based quantum computing an algorithm is performed by measurements on highly entangled
resource states. To date, several implementations were demonstrated, most of them assuming perfect noise-
free environments. Here we consider measurement-based information processing in the presence of noise and
demonstrate quantum error detection. We implement the protocol using a four-qubit photonic cluster state
where we first encode a general qubit nonlocally such that phase errors can be detected. We then read out the
error syndrome and analyze the output states after decoding. Our demonstration shows a building block for
measurement-based quantum computing which is crucial for realistic scenarios.
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I. INTRODUCTION

Measurement-based quantum computation (MBQC) is a
framework for quantum computation that offers conceptual
and practical advantages as compared to the circuit model.
The most prominent example of MBQC is the one-way
model [1–4] where the two-dimensional cluster state [5] serves
as a universal resource. Quantum information is processed by
sequences of (adaptive) single-qubit measurements on a highly
entangled resource state which is prepared beforehand, without
the need to perform coherent gates. MBQC is particularly
suited for systems such as photons where the coherent
manipulation of quantum information by gates is difficult,
but the preparation of entangled states is possible by some
other means. The resource state preparation can even be
probabilistic, without jeopardizing the deterministic character
of the overall computation. When a measurement-based
approach is applied to special-purpose quantum information
processors, one finds that specific tasks can be performed with
small resource states [6,7]. In particular, any quantum circuit
acting on N qubits that only contains Clifford gates [8] can be
implemented with a resource state of size 2N , independent of
the length of the circuit. What is more, ancilla particles that are
at some stage of the algorithm measured in the Pauli basis do
not increase the size of the resource state. It follows that several
tasks, including entanglement purification [9] or quantum error
correction (QEC) [10], can be performed very efficiently in a
measurement-based way, i.e., with resource states of minimal
size. As an additional bonus, one encounters a significantly
increased robustness against noise and imperfections [9,10].

Several elements of MBQC and QEC have been demon-
strated in photonic setups [11–21], including elementary gates
with feedforward [22] as well as simple quantum algo-
rithms [23], together with encoding quantum information in an
error-correction code [24,25]. The scheme in Ref. [25] demon-
strates topological error correction and protects a correlation
rather than a qubit, and the scheme in Ref. [26] demonstrates
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a (measurement-based) single-qubit rotation in the presence
of photon loss, using a graph state. Recently, an experimental
demonstration of error correction using a graph state code was
realized [27] combining path and polarization encodings.

Here we demonstrate how quantum error detection in-
cluding encoding, syndrome readout, and decoding, can be
performed in a measurement-based fashion, thereby providing
another building block for experimental MBQC. We imple-
ment in a photonic experiment a two-qubit error-detection code
where the state of a qubit is encoded in two further qubits such
that a phase error on one of these qubits can be detected. The
code can also be viewed as a heralded error-correction code
as a phase error can be corrected if it is known which particle
is subjected to noise. We implement such errors, thereby also
demonstrating the process of digitalization of errors and show
the error detecting and correcting capabilities of the code by
reading out the error syndrome and performing subsequent
decoding. All steps in the protocol are achieved only by
single-qubit measurements on a four-qubit cluster state, thanks
to the fact that all required operations are of Clifford type.

II. ERROR-DETECTION SCHEME

In this experiment, we demonstrate several important
paradigms of quantum error correction within MBQC: en-
coding a qubit into a code word, nondestructive readout of
the error syndrome, and decoding and digitalization of errors.
Our protocol allows one to protect a general qubit |ψ〉 =
α|0〉 + β|1〉, where |α|2 + |β|2 = 1, against phase noise. The
main idea of our protocol is to encode the state of qubit
|ψ〉 in two further qubits using measurement-based quantum
computing [10]. By measuring these qubits, a single Z = σZ

error occurring on one of them can be flagged, where σZ is the
Pauli operator—error detection. Furthermore, if the error only
affects one of the qubits and it is known beforehand which
one, then it is possible to deterministically recover the initially
encoded state—error detection and correction.

In detail, the basis of our protocol is a four-qubit cluster
state (see Fig. 1), the so-called box cluster state,

|ψbox〉 = 1
2 [|0〉1|+〉2|+〉3|0〉4 + |0〉1|−〉2|−〉3|1〉4

+|1〉1|−〉2|−〉3|0〉4 + |1〉1|+〉2|+〉3|1〉4], (1)
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FIG. 1. (Color online) Scheme of measurement-based error cor-
rection. (a) The four-qubit box cluster state forms the resource.
(b) The state of qubit 1 is encoded in qubit 2 and qubit 3 by measuring
it (see the main text for details). (c) An error occurs on qubit 3.
(d) Measurement instruction for the syndrome readout and respective
recovery operations for different error types. Here, Z2 (Z3) denotes a
phase error on qubit 2 (3). The result of the measurements on qubit 2
and qubit 3 shows if a X = σx recovery operation needs to be applied
to qubit 4. We present in the main text the analysis related to the
green-framed boxes, and further results are shown in Appendices C
and D.

where |±〉 = (|0〉 ± |1〉)/√2 are the eigenstates of the Pauli
operator σx = X.
The steps of our protocol are then encoding, measurement of
the error syndrome, and decoding.

First, the encoding is accomplished by a single-qubit mea-
surement on qubit 1 in the basis {α∗|0〉 + β∗|1〉,β|0〉 − α|1〉}
(see Fig. 1). If qubit 1 is projected onto state α∗|0〉 + β∗|1〉,
state |ψ〉 is encoded on qubit 2 and qubit 3, and the remaining
three-qubit state can then be written as

|ψ3〉 = α√
2

(|++〉23|0〉4 + |−−〉23|1〉4)

+ β√
2

(|−−〉23|0〉4 + |++〉23|1〉4). (2)

In the case of the other projection β|0〉 − α|1〉, the desired
encoding can still be achieved as long as this state differs from
α∗|0〉 + β∗|1〉 only by local Pauli operations, which is, e.g., the
case if the coefficients α and β are real (see Appendix A for de-
tails). Thus, in this example, qubits with real coefficients can be
deterministically encoded, whereas for complex coefficients
the encoding works only probabilistically. A deterministic
encoding of an unknown qubit can be achieved by coupling
this additional qubit by means of a Bell measurement to our
resource state.

Now, an error can occur either on qubit 2 or on qubit 3. As
our protocol detects errors on one of the qubits, we assume
in the following that an error occurs on qubit 3—and thus we
assume that the location of the error is known. The analysis
for an error on qubit 2 is similar and hence not shown here.

The second step is to read out the error syndrome. The
protocol presented here enables the detection of an error
coming from any (continuous) rotation around the Z axis.
Here, we focus on the demonstration of an e−i(π/2) Z error,
a full phase error, or an e−i(π/4) Z error, which demonstrates
the digitalization of errors. In the latter case, the syndrome

measurement projects the coherent superposition of an error
and no error onto one of these possibilities. This demonstrates
a crucial ingredient of quantum error correction, which ensures
that quantum error-correcting codes can cope with continuous
errors, by mapping them probabilistically to a discrete set of
Pauli errors. The error syndrome and the decoding are achieved
in a single step by measuring qubits 2 and 3 in the basis X. For
an error on qubit 3, if qubits 2 and 3 are found in state |++〉23

or |+−〉23, qubit 4 is in state |ψ〉, and hence no recovery
operation is necessary; if they are measured in state |−+〉23 or
|−−〉23 a recovery operation on qubit 4 needs to be applied [see
in Fig. 1(d) the green-framed boxes]. In the case of e−i(π/4)Z ,
these measurements determine whether an error occurs.

Finally, the remaining qubit 4 holds the decoded output.
Our protocol thus succeeds if the type and the location of the
single error are known. If the location of the error is unknown,
only in the case where qubits 2 and 3 are measured in state
|++〉23 or |−−〉23 can the encoded qubit be recovered. In that
sense the scheme allows one to detect errors on either of the
two intermediate qubits.

One could argue here that if we knew from the very
beginning that one particular particle will be effected by
noise, we could equally well decouple it before. We would
like to emphasize that we are doing more: A quantum error
detection—and for this both particles are required. In principle,
the additional knowledge of where the error happened allows
one to perform quantum error correction. However, our
demonstration is a particular case (n = 2) of a more general
scheme using a cluster state where one input qubit is connected
to n neighbors, which are connected to the output qubit. In this
scheme already n = 3 would not require the location of the
error to be known a priori for the realization of a full quantum
error-correction scheme. This shows how our protocol could be
easily extended with only one additional qubit required [9,10].

III. EXPERIMENT AND RESULTS

In our experiment [see Fig. 2(a)], we generate the resource
state using a photonic setup with polarization-entangled pho-
tons produced by a spontaneous parametric down-conversion
(SPDC) process in a railway-cross scheme [11] (see Ap-
pendix B for details about the experimental setup). We obtain
the box cluster state |ψbox〉 from Eq. (1) by first experimentally
producing a four-qubit cluster state (see Appendix B),

|ψlab〉 = 1
2 [|0〉1|0〉2|0〉3|0〉4 + |0〉1|0〉2|1〉3|1〉4

+|1〉1|1〉2|0〉3|0〉4 − |1〉1|1〉2|1〉3|1〉4]. (3)

We then apply local Hadamard gates H on each qubit and
a SWAP gate on qubits 2 and 4 of |ψlab〉 to obtain

|ψbox〉 = (H1 ⊗ H2 ⊗ H3 ⊗ H4)(SWAP24)|ψlab〉. (4)

In our experiment, we perform the SWAP gate by inter-
changing the qubits physically and absorb the local Hadamard
operations in the measurement basis. In the following, we
present all results in the basis of the box cluster state |ψbox〉.

We characterize the experimentally obtained box cluster
state using state tomography and reconstruct its density matrix
ρ, see Fig. 2(b). For the case where no error was introduced
a fidelity of our experimentally obtained state with the ideal
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FIG. 2. (Color online) Experimental setup and results. (a) A
UV pump beam makes two passes through a β-barium borate
(BBO) crystal, generating entangled photon pairs in the forward and
backward modes. The coherent overlap of the different emissions at
the polarizing beam splitters (PBSs) together with postselection of
fourfold coincidences yield the four components of the cluster state.
The error unitaries, half-wave plates (HWPs) or quarter-wave plates
(QWPs), implement physically the e−i(π/2)Z (e−i(π/4)Z) error. Finally,
the state is analyzed via the state quantum tomography using HWPs,
QWPs, and PBSs. (b) The reconstructed density matrix (real part) of
the four-qubit box cluster state in the eigenbasis of Z ⊗ X ⊗ X ⊗ Z.
The wire frame shows the ideal density matrix; the components of
the imaginary part are below 0.037 and are hence not presented here.

box cluster state |ψbox〉 of F = 0.656 ± 0.006 was obtained
after local unitary transformations. The density matrices for
the states after the implementation of errors have similar
fidelities and are shown in Appendix C. To demonstrate the
implementation of the protocol we choose a set of input states
|ψ〉 as shown in Fig. 3 to be encoded in the box cluster state
and subsequently decoded, recovering the initial state.

We implement the errors on qubit 3 using additional
half-wave and quarter-wave plates. In detail, we use a
HWP (QWP) at 45◦ (−45◦) for the implementation of the
e−i(π/2)Z (e−i(π/4)Z) error (see Appendix B). We proceed with
the error syndrome readout and, finally, the state of the de-
coded qubit is reconstructed through single-qubit tomography
of qubit 4. In the case where an error is detected, the original
qubit is recovered through implementation of a postprocessing
recovery operation: either I or X.

FIG. 3. (Color online) Representation of a set of encoded input
states. (a) A Bloch sphere where different planes are marked with
color codes. The green circle marks the X-Z plane, the red circle
marks the X-Y plane, and the blue circle marks the Y -Z plane.
(b)–(d) The encoded input states are shown in the correspondent
plane of the Bloch sphere. For a complete definition of the chosen
states, see Table III in Appendix D.

The fidelities of experimentally obtained (and then de-
coded) qubits with respect to the ideal decoded qubits vary
with the encoded state. For the cases where no recovery
operation was needed the fidelities lie within the values
[0.810 ± 0.036,0.990 ± 0.009]. Decoded qubits in which a
X recovery operation was applied present slightly lower
fidelities [0.629 ± 0.039,0.982 ± 0.008]. This discrepancy
follows from nonideal resource states as shown in Fig. 2(b).
Due to experimental noise, the single-qubit fidelities of qubit
4 vary for different projections of qubit 2 and qubit 3.

To illustrate some of the experimental results, in Fig. 4 we
show the results obtained for the case where the state |N〉 =
(|+i〉 + e−i(π/4)|−i〉)/

√
2 (here, |±i〉 = (|0〉 ± i|1〉)/√2) was

encoded (Fig. 4), subjected to a full phase error on qubit 3 and
subsequently decoded.

A list of the fidelities of all operations performed is shown
in Appendix D where we also present the results for errors
occurring on qubit 2.

IV. CONCLUSION

We have presented the implementation of an error-detection
protocol in measurement-based quantum computing. Al-
though the demonstration was performed using a photonic
quantum computing architecture, measurement-based error
detection and correction can be implemented with other phys-
ical systems as demonstrated recently with trapped ions [28].

Our protocol can be readily extended to larger cluster
states containing more qubits. A five-qubit cluster state would
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FIG. 4. (Color online) Experimental results. We encode a state into qubits 2 and 3 and then let a phase error act on qubit 3. (a) Representation
of the ideal state |N〉 = (|+i〉 + e−i(π/4)|−i〉)/

√
2 to be encoded (|±i〉 = (|0〉 ± i|1〉)/√2). (b) State of qubit 4 after decoding when qubits 2 and

3 are measured in state |+−〉23. In the case where no recovery operation is required [(b)] the fidelity of the experimentally obtained state after
decoding with the ideal state is F = 0.940 ± 0.024. (c) State of qubit 4 after decoding when qubits 2 and 3 are measured in state |−+〉23 before
a recovery operation was applied. (d) Qubit 4 after applying the recovery operation X in (c) through postprocessing (F = 0.875 ± 0.029).
(e) Overview of the encoded and decoded qubits of (a)–(d).

be sufficient to also correct the error within the experiment
such that no postprocessing would be necessary. A structure
containing seven qubits or more would allow for the detection
and correction of multiple phase errors or a general error on a
single qubit.

Our experiment constitutes a building block for larger-
scale hybrid quantum computing networks where elements
of different computational schemes are combined to provide
a computational architecture that unifies the advantage of
the different approaches [10]. In such a hybrid architecture,
elementary blocks and gate sequences can be performed in a
measurement-based way, i.e., by preparing specific resource
states, and then combined in a sequential fashion as in the
circuit model. This approach leads to a remarkable robustness
against noise and imperfections with error thresholds on the or-
der of 10% per particle. Our paper presents a proof-of-principle
demonstration of one of the main building blocks in this
scheme, thereby providing another step towards measurement-
based quantum information processing in realistic scenarios.
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APPENDIX A: THEORY

1. Deterministic and probabilistic encoding

As described in detail in the main paper, we encode the input
state by measuring qubit 1 in the basis {α∗|0〉 + β∗|1〉,β|0〉 −
α|1〉}. If qubit 1 is projected onto state α∗|0〉 + β∗|1〉, the
remaining three-qubit state is as follows:

|ψ3〉 = α√
2

(|++〉23|0〉4 + |−−〉23|1〉4)

+ β√
2

(|−−〉23|0〉4 + |++〉23|1〉4), (A1)

and if qubit 1 is projected onto state β|0〉 − α|1〉, it is as
follows:

|ψ3〉 = β∗
√

2
(|++〉23|0〉4 + |−−〉23|1〉4)

− α∗
√

2
(|−−〉23|0〉4 + |++〉23|1〉4). (A2)

In the latter case, a correction is possible whenever β|0〉 − α|1〉
differs from α∗|0〉 + β∗|1〉 only by local Pauli operations. This
is the case for real coefficients α,β where the desired state can
be obtained by applying local Pauli corrections [(XZ)2 ⊗ Z3]
but, e.g., also for a σy eigenstate α = 1/

√
2, β = ±i/

√
2.

In all other cases, the encoding procedure is probabilistic.
Notice that the process can be made deterministic by using
an additional qubit 1′, whose (unknown) state can be read-in
deterministically (up to Pauli correction) by performing a Bell
measurement on qubits 1 and 1′.
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TABLE I. Recovery operations for the (e−i(π/2)Z) phase error.

Error type No error Z2 error Z3 error

Syndrome measurement |++〉23 |−−〉23 |−+〉23 |+−〉23 |+−〉23 |−+〉23

Recovery operation I X I X I X

2. Syndrome readout and decoding

If an e−i(π/2)Z error occurs on qubit 2, the three-qubit state
related to (A1) becomes

|ψ ′
3〉 = α√

2
(|−+〉23|0〉4 + |+−〉23|1〉4)

+ β√
2

(|+−〉23|0〉4 + |−+〉23|1〉4). (A3)

If qubits 2 and 3 are measured to be in state |−+〉23, the
final state of qubit 4 is |ψ〉 = α|0〉 + β|1〉; whereas if they are
measured to be in state |+−〉23, the state of qubit 4 will be
α|1〉 + β|0〉, which can be corrected by applying a recovery
operation X.

If an e−i(π/2)Z error occurs on qubit 3, the three-qubit state
related to (A1) becomes

|ψ ′
3〉 = α√

2
(|+−〉23|0〉4 + |−+〉23|1〉4)

+ β√
2

(|−+〉23|0〉4 + |+−〉23|1〉4). (A4)

In this case, if qubits 2 and 3 are projected onto state |+−〉23,
the final state of qubit 4 will be |ψ〉, whereas for |−+〉23 we
obtain |ψ〉 only after applying a recovery operation X.

If an e−i(π/4)Z error occurs on qubit 2, the three-qubit state
related to (A1) becomes

|ψ ′
3〉 = α

2
(|++〉23|0〉4 − i|−+〉23|0〉4

+|−−〉23|1〉4 − i|+−〉23|1〉4)

+β

2
(|−−〉23|0〉4 − i|+−〉23|0〉4

+|++〉23|1〉4 − i|−+〉23|1〉4). (A5)

The remaining state is a coherent superposition of the error
case and no error case. If qubits 2 and 3 are projected onto
state |++〉23 or |−−〉23, then the encoded qubit has not been
affected by noise, whereas for |+−〉23 or |−+〉23 a phase flip
acted. In both cases the final state of qubit 4 will be equal to
|ψ〉 up to I or X operations, respectively.

The same procedure is used to obtain the final state of qubit
4 after an e−i(π/4)Z error occurred on qubit 3.

We summarize in Tables I and II the syndrome outcomes
and respective recovery operations for an e−i(π/2)Z error (see
Table I) and an e−i(π/4)Z error (see Table II).

APPENDIX B: EXPERIMENTAL SETUP

In our experiment [see Fig. 2(a) in the main paper] entangled
photon pairs are produced by a noncollinear type-II SPDC
process on a BBO crystal.

A solid-state 532-nm laser (Coherent Verdi-10) pumps
a mode-locked Ti:sapphire oscillator (Coherent Mira 900),
yielding a pulsed output (τ = 200 fs, λ = 789 nm, 76 MHz).
This is afterwards frequency doubled through second-
harmonic generation in a 2-mm-thick lithium triborate (LBO)
crystal, producing UV pulses with a 0.7 W cw average. We
achieve a stable source of UV pulses by translating the LBO
to avoid optical damage to the antireflection coating of the
crystal. Dichroic mirrors are used to separate the up-converted
UV from the residual infrared light.

The UV pump beam is focused on the 2-mm-thick BBO,
generating down-converted infrared photons in the forward
modes a and b. Then, the UV beam is reflected back, crossing
the BBO a second time and producing entangled photon pairs
in the backward modes c and d. HWPs and additional BBOs
are used to compensate for walk-off effects and allow the
production of any Bell state in the forward and backward
modes.

The modes of the different pairs a,b and d,c, respectively,
are then coherently overlapped at PBSs by equalizing the
different path lengths.

Narrow-band interference filters (
λ = 3 nm) are used to
spatially and spectrally select the down-converted photons,
which are then coupled into single-mode fibers that guide
them to the polarization analysis setup. There, different po-
larization measurements are performed using QWPs, HWPs,
and polarizing beam splitters as well as single-photon detectors
(PerkinElmer—SPCM AQ4C).

The preparation of the four-qubit linear cluster state relies
on the simultaneous detection of one (and only one) photon in
each of the four outputs 1, 2, 3, and 4.

In order to produce the desired state, we align our
setup such that a |�−〉ab = (|HH 〉ab − |V V 〉ab)/

√
2 state is

emitted in the forward direction and a |�+〉cd = (|HH 〉cd +
|V V 〉cd )/

√
2 state is emitted in the backward direction, where

TABLE II. Recovery operations for the (e−i(π/4)Z) error.

e−i(π/4)Z2 error e−i(π/4)Z3 error

Error type No error Z2 error No error Z3 error

Syndrome measurement |++〉23 |−−〉23 |−+〉23 |+−〉23 |++〉23 |−−〉23 |+−〉23 |−+〉23

Recovery operation I X I X I X I X
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FIG. 5. (Color online) Density matrix (real part) of the four-qubit
box cluster state after a full-phase error occurred on qubit 3 (F =
0.656 ± 0.006 via local unitary operations). The components of the
imaginary part are below 0.032 and are hence not presented here.

|H 〉 (|V 〉) denotes the horizontal (vertical) polarization state.
The emission of only one entangled pair in the forward
direction and only one pair in the backward direction results
in two different four-photon terms: |H 〉1|H 〉2|H 〉3|H 〉4 and
−|V 〉1|V 〉2|V 〉3|V 〉4 due to the properties of the PBSs. The
two-pair emissions also lead to fourfold coincidences, namely,
to a −|H 〉1|H 〉2|V 〉3|V 〉4 state and a |V 〉1|V 〉2|H 〉3|H 〉4 state
for a double-pair emission in the forward and in the backward
directions, respectively. We shift the phase of the term
−|H 〉1|H 〉2|V 〉3|V 〉4 by π to generate a sign shift. For this, we
use the method described in Ref. [11] where a rotation of an
additional wave plate has the desired effect. The final output
state is a superposition of all these four terms. Experimentally,

FIG. 6. (Color online) Density matrix (real part) of the four-
qubit box cluster state after a full-phase error occurred on qubit
2 (F = 0.646 ± 0.008 via local unitary operations rotations). The
components of the imaginary part are below 0.027 and are hence not
presented here.

FIG. 7. (Color online) Density matrix (real part) of the four-qubit
box cluster state after a half-phase (e−i(π/4)Z) error occurred on qubit
3 (F = 0.667 ± 0.009 via local unitary operations).

we measure a count rate of 0.25 fourfold coincidences per
second.

Theoretical considerations show that for a ratio of 1:3
between the backward (4.4 ks−1) and the forward (13.2 ks−1)
twofold coincidences, the right amplitudes are attained by set-
ting the HWP to 27.5◦ [11]. The ratio is adjusted by tweaking
the coupling efficiencies of the forward and backward modes.

Additional phase shifts arising due to reflections at the PBS
are compensated by tilting the BBO crystals in the forward
direction (and effectively aligning for state |�+〉).

In our experiment, the emitted Bell pairs show typical
visibilities of about 0.9. The different photon emissions then
interfere at the PBSs with average visibilities of 0.85. Addi-
tional errors arise due to phase drifts during the measurements.
These main error contributions, together with minor errors,
such as polarization drifts, decrease the fidelity of our cluster
states with respect to the ideal state. In our calculations, we

FIG. 8. (Color online) Density matrix (imaginary part) of the
four-qubit box cluster state after a half-phase (e−i(π/4)Z) error occurred
on qubit 3 (same fidelity as the real part, Fig. 7).
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FIG. 9. (Color online) Density matrix (real part) of the four-qubit
box cluster state after a half-phase (e−i(π/4)Z) error occurred on qubit
2 (F = 0.641 ± 0.009 via local unitary operations).

always assume Poissonian errors. In fact, these indicate a
lower bound for the actual error that takes all the experimental
imperfections into account.

The implementation of the errors is accomplished by
inserting additional QWPs and HWPs in the respective modes.
Note that due to the swap operation, noise affecting qubit 2 of
the box cluster is experimentally implemented on qubit 4 of
our experimental cluster state. Likewise, because of the H gate
(implemented in the postprocessing), the phase flip e−i(π/2)Z

is implemented via a bit flip (X) in the experiment.
The error was estimated running a 100-cycle Monte Carlo

simulation with Poissonian noise added to the experimental
counts.

The data-acquisition time was 600 s per measurement
setting for the state tomographies (Appendix C) of the box
cluster state and 1800 s for each of the measurements where
a full phase error was implemented. For the cases where a
half-phase error was implemented, the acquisition time per

FIG. 10. (Color online) Density matrix (imaginary part) of the
four-qubit box cluster state after a half-phase (e−i(π/4)Z) error occurred
on qubit 2 (same fidelity as the real part, Fig. 9).

setting was 3600 s (see Appendix D) with the exception of the
first column of Table VI (1800 s per setting).

APPENDIX C: FOUR-QUBIT DENSITY MATRICES

We present the full-tomographic reconstructions of the box
cluster resource state after the occurrence of an e−i(π/2)Z error
on qubit 2, an e−i(π/2)Z error on qubit 3, an e−i(π/4)Z error on
qubit 2, and an e−i(π/4)Z error on qubit 3. The density matrices
are presented in the eigenbasis of Z ⊗ X ⊗ X ⊗ Z to easily
visualize the state (see Figs. 5–10). The wire frames represent
the ideal state after the error occurred.

APPENDIX D: DECODING RESULTS

In Tables IV–VII we report fidelities of the experimentally
obtained and then decoded qubits (see Table III for encoded
states) with the ideal state for each type of implemented error
(e−i(π/2)Z error on qubit 2, e−i(π/2)Z error on qubit 3, e−i(π/4)Z

TABLE III. Initial states of qubit 1 reported in different notations: The measured state laboratory shows the projection state α∗|0〉 + β∗|1〉
of qubit 1 of |ψlab〉 (see the main paper) and the relative basis; the measured state box shows the projection state α∗|0〉 + β∗|1〉 of qubit 1 of
|ψbox〉 and the relative basis; and the encoded state box notation shows the encoded qubit 1 in the box cluster notation. In this case we report
per input state the explicit qubit, the relative basis, and the spherical coordinates.

Measured state laboratory Measured state box Encoded state box

Qubit Basis Qubit Basis Qubit Basis θ ϕ

|+〉 σx |0〉 σz |0〉 σz 0◦ 0◦

|0〉 σz |+〉 σx |+〉 1√
2
(|0〉 + |1〉) σx 90◦ 0◦

|−i〉 −σy |+i〉 σy |−i〉 1√
2
(|0〉 − i|1〉) −σy 90◦ −90◦

|P 〉 σx + σy |U〉 σz − σy |T 〉 1√
2
(|+〉 + e−iπ/4|−〉) σz + σy 45◦ 90◦

|M〉 σx − σy |T 〉 σz + σy |U〉 1√
2
(|+〉 + eiπ/4|−〉) σz − σy 45◦ −90◦

|Q〉 σx + σz |Q〉 σz + σx |Q〉 1√
2
(|+i〉 + eiπ/4|−i〉) σz + σx 45◦ 0◦

|S〉 σx − σz |N〉 σz − σx |N〉 1√
2
(|+i〉 + e−iπ/4|−i〉) σz − σx 45◦ 180◦

|T 〉 σz + σy |M〉 σx − σy |P 〉 1√
2
(|0〉 + e+iπ/4|1〉) σx + σy 90◦ 45◦

|U〉 σz − σy |P 〉 σx + σy |M〉 1√
2
(|0〉 + e−iπ/4|1〉) σx − σy 90◦ −45◦
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TABLE IV. Fidelities of different encoded and decoded states after an e−i(π/2)Z error was implemented but no recovery operation was
necessary.

Encoded state No error Error Z3 Error Z2 Error Z2Z3

|0〉 F = 0.967 ± 0.011 F = 0.874 ± 0.022 F = 0.904 ± 0.021 F = 0.886 ± 0.022
|+〉 F = 0.944 ± 0.017 F = 0.945 ± 0.016 F = 0.943 ± 0.015 F = 0.969 ± 0.009
|−i〉 F = 0.956 ± 0.012 F = 0.925 ± 0.019 F = 0.912 ± 0.019 F = 0.905 ± 0.019
|T 〉 F = 0.820 ± 0.030 F = 0.965 ± 0.021 F = 0.971 ± 0.014 F = 0.907 ± 0.028
|U〉 F = 0.863 ± 0.025 F = 0.957 ± 0.013 F = 0.927 ± 0.025 F = 0.885 ± 0.028
|Q〉 F = 0.938 ± 0.026 F = 0.898 ± 0.033 F = 0.915 ± 0.026 F = 0.976 ± 0.009
|N〉 F = 0.967 ± 0.020 F = 0.940 ± 0.024 F = 0.915 ± 0.026 F = 0.922 ± 0.024
|P 〉 F = 0.895 ± 0.033 F = 0.902 ± 0.026 F = 0.810 ± 0.036 F = 0.910 ± 0.028
|M〉 F = 0.918 ± 0.026 F = 0.965 ± 0.016 F = 0.947 ± 0.023 F = 0.970 ± 0.018

TABLE V. Fidelities of different encoded and decoded states after an e−i(π/2)Z error was implemented and a recovery operation was
performed.

Encoded state No error Error Z3 Error Z2 Error Z2Z3

|0〉 F = 0.767 ± 0.032 F = 0.716 ± 0.035 F = 0.793 ± 0.030 F = 0.784 ± 0.028
|+〉 F = 0.948 ± 0.016 F = 0.945 ± 0.018 F = 0.944 ± 0.014 F = 0.943 ± 0.015
|−i〉 F = 0.684 ± 0.036 F = 0.674 ± 0.038 F = 0.710 ± 0.036 F = 0.658 ± 0.034
|T 〉 F = 0.686 ± 0.033 F = 0.809 ± 0.031 F = 0.792 ± 0.032 F = 0.700 ± 0.028
|U〉 F = 0.681 ± 0.037 F = 0.771 ± 0.032 F = 0.662 ± 0.034 F = 0.740 ± 0.038
|Q〉 F = 0.741 ± 0.044 F = 0.776 ± 0.034 F = 0.833 ± 0.031 F = 0.813 ± 0.029
|N〉 F = 0.793 ± 0.047 F = 0.875 ± 0.029 F = 0.843 ± 0.029 F = 0.962 ± 0.027
|P 〉 F = 0.750 ± 0.029 F = 0.811 ± 0.031 F = 0.790 ± 0.028 F = 0.862 ± 0.024
|M〉 F = 0.800 ± 0.035 F = 0.801 ± 0.038 F = 0.823 ± 0.029 F = 0.895 ± 0.030

TABLE VI. Fidelities of different encoded and decoded states after an e−i(π/4)Z error was implemented but no recovery operation was
performed.

e−i(π/4)Z3 error e−i(π/4)Z2 error

Encoded state No error Error Z3 No error Error Z2

|0〉 F = 0.896 ± 0.027 F = 0.865 ± 0.035 F = 0.909 ± 0.021 F = 0.927 ± 0.015
|+〉 F = 0.861 ± 0.034 F = 0.913 ± 0.022 F = 0.936 ± 0.021 F = 0.986 ± 0.007
|−i〉 F = 0.908 ± 0.024 F = 0.865 ± 0.025 F = 0.945 ± 0.017 F = 0.914 ± 0.022
|T 〉 F = 0.850 ± 0.042 F = 0.880 ± 0.040 F = 0.823 ± 0.036 F = 0.842 ± 0.030
|U〉 F = 0.951 ± 0.034 F = 0.951 ± 0.013 F = 0.930 ± 0.028 F = 0.903 ± 0.028
|Q〉 F = 0.849 ± 0.037 F = 0.854 ± 0.035 F = 0.905 ± 0.031 F = 0.937 ± 0.028
|N〉 F = 0.963 ± 0.023 F = 0.942 ± 0.024 F = 0.894 ± 0.027 F = 0.923 ± 0.025
|P 〉 F = 0.871 ± 0.030 F = 0.964 ± 0.021 F = 0.972 ± 0.011 F = 0.972 ± 0.015
|M〉 F = 0.956 ± 0.022 F = 0.984 ± 0.016 F = 0.990 ± 0.009 F = 0.929 ± 0.025

TABLE VII. Fidelities of different encoded and decoded states after an e−i(π/4)Z error was implemented and a recovery operation was
performed.

e−i(π/4)Z3 error e−i(π/4)Z2 error

Encoded state No error Error Z3 No error Error Z2

|0〉 F = 0.702 ± 0.038 F = 0.843 ± 0.280 F = 0.690 ± 0.036 F = 0.721 ± 0.029
|+〉 F = 0.948 ± 0.015 F = 0.981 ± 0.008 F = 0.896 ± 0.024 F = 0.837 ± 0.023
|−i〉 F = 0.629 ± 0.039 F = 0.814 ± 0.035 F = 0.697 ± 0.040 F = 0.644 ± 0.030
|T 〉 F = 0.658 ± 0.033 F = 0.691 ± 0.038 F = 0.699 ± 0.037 F = 0.656 ± 0.033
|U〉 F = 0.677 ± 0.032 F = 0.814 ± 0.037 F = 0.813 ± 0.039 F = 0.776 ± 0.034
|Q〉 F = 0.832 ± 0.032 F = 0.818 ± 0.031 F = 0.842 ± 0.0345 F = 0.734 ± 0.033
|N〉 F = 0.932 ± 0.028 F = 0.857 ± 0.038 F = 0.794 ± 0.041 F = 0.894 ± 0.031
|P 〉 F = 0.749 ± 0.029 F = 0.919 ± 0.028 F = 0.799 ± 0.031 F = 0.706 ± 0.031
|M〉 F = 0.775 ± 0.034 F = 0.941 ± 0.025 F = 0.906 ± 0.028 F = 0.823 ± 0.032

042302-8



DEMONSTRATING ELEMENTS OF MEASUREMENT-BASED . . . PHYSICAL REVIEW A 90, 042302 (2014)

FIG. 11. (Color online) Experimental decoding results in Bloch sphere representation for an e−i(π/4)Z error on qubit 3. (a) Encoded or ideal
state |M〉, an eigenstate of the operator (X − Y ). (b) Decoded qubit reading the outcomes |−+〉 of qubits 2 and 3, F = 0.984 ± 0.016. (c) and
(d) Decoded qubit reading the outcomes |+−〉 before and after applying the recovery operation X, F = 0.941 ± 0.025. (e) Overview of the
encoded and decoded qubits.

error on qubit 2, and e−i(π/4)Z error qubit 3) and considering
different syndrome outcomes (associated with applying or not
the recovery operation X). Specifically we report two tables
for the e−i(π/2)Z error type, the first related to the outcomes
with no need of a recovery operation, and the second related
to the results after the recovery operation X. The same for the
e−i(π/4)Z error type.

The last column of each table shows fidelities for decoded
qubits in the presence of two errors on both qubits 2 and
3. When this case happens we have to discard the obtained
results since the relative syndrome outcomes can be confused
with the ones respective to the one-qubit error case. However,
in order to fully characterize our experiment, we reconstruct
the decoded qubit (knowing a priori the two errors occurred
on qubits 2 and 3).

The experimentally obtained fidelities for the cases where
an error occurs are sometimes found to be higher than the
no-error cases. This effect occurs due to experimental im-
perfections (phase shifts, polarization rotations, and nonideal
overlap of the photons at the beam splitters), which lead
to nonideal four-photon state fidelities. These experimental
imperfections do not act on all states in the same way,
thus our experimental noise is not white noise but depends
on the states. Thus, it can easily happen that for some
settings, the fidelity of the output state is higher when
errors (which basically are phase shifts) on two qubits were
applied.

Furthermore, we show in the Bloch sphere representation
the decoded qubit |M〉 after an e−i(π/4)Z error acted on qubit 3
(see Fig. 11).
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