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Pauli equation for a charged spin particle on a curved surface in an electric and magnetic field
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We derive the Pauli equation for a charged spin particle confined to move on a spatially curved surface S
in an electromagnetic field. Using the thin-layer quantization scheme to constrain the particle on S, and in the
transformed spinor representations, we obtain the well-known geometric potential Vg and the presence of e−iϕ ,
which can generate additive spin connection geometric potentials by the curvilinear coordinates derivatives, and
we find that the two fundamental evidences in the literature [Giulio Ferrari and Giampaolo Cuoghi, Phys. Rev.
Lett. 100, 230403 (2008)] are still valid in the present system without source current perpendicular to S. Finally,
we apply the surface Pauli equation to spherical, cylindrical, and toroidal surfaces, in which we obtain expectantly
the geometric potentials and new spin connection geometric potentials, and find that only the normal Pauli matrix
appears in these equations.
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I. INTRODUCTION

The advent and development of nanostructure technol-
ogy has renewed interest in an old subject, the dynamics
constrained on a curved surface, for theoretical physicists.
With the rapid development of the constructive nanotechnique
and nanodevices [1,2], the presence of various novel low-
dimensional functional materials supplies diverse alternative
experiments to test the developing theories. It is well known
that the geometry experiences the motion of classical and
quantum spatially limited particles in different ways. The
curvature-induced geometric potential in nanostructures was
discussed [3,4], and some experiments gave some results to
support that the curvature of a surface affects the dynamics of
the system constrained on the surface [5–7]. The development
of quantum theories for the dynamics of spatially reduced
particles has become more and more important and urgent.
The problem of a particle confined on a spatially curved
surface has been considered for more than 50 years [8–10],
but up to the present it is still unsolved completely. The
thin-layer quantization scheme [4,8–15], the generalized Dirac
canonical quantization approach [16–18], and the path integral
quantization formalism [19,20] are being developed to quan-
tize the reduced particles. During the developments of these
formalisms, the thin-layer quantization scheme was extended
to describe n noninteracting particles [11], and a spinless
charged particle in an electric and magnetic field [4,12–15]
by the surface Schrödinger equation.

The thin-layer quantization scheme is semiclassical. For
a dimensionally reduced particle, its motion is described by
the Schrödinger equation, which is quantum, but the process
constrained on a spatially curved surface is classical. The
confining process is fulfilled by introducing a potential Vλ(q3),
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which has the limit limq3→0 Vλ = 0 and satisfies the condition
Vλ = ∞ (q3 �= 0).

We explore a nonrelativistically charged spin particle
constrained on a curved surface in the thin-layer quantization
scheme. In the present paper, we derive the Pauli equation for
the dimensionally reduced spin system. This paper is organized
as follows. In Sec. II, we derive the Pauli equation for a
charged spin particle constrained on a spatially curved surface
S and discuss the fundamental evidences given by Ferrari and
Cuoghi [4,13] to decouple the Pauli equation into a normal
component and a surface component. In Sec. III, we apply the
surface Pauli equation to three examples, spherical, cylindrical,
and toroidal surfaces, and obtain expectantly the well-known
geometric potentials and additive spin connection geometric
potentials, which are generated by the connection between
spin and surface. In the three special examples, just the normal
Pauli matrix appears in these surface Pauli equations. In Sec.
IV, conclusions appear.

II. PAULI EQUATION

In the usual way, a common three-dimensional (3D) space
� is described by three basis vectors �e1, �e2, and �e3, which
are perpendicular to each other. The portion of the immediate
neighborhood of a surface S, which is embedded in �, is
denoted by VN which is described by two basis vectors �u1

and �u2, which are locally parallel to the tangent plane of S
at an arbitrarily fixed point, and a basis vector �n, which is
normal to S. Following the parametrization of da Costa [10],
we employ equations �r(q1,q2) to parametrize S. The subspace
VN sketched in Fig. 1 may be parametrized by

�R(q1,q2,q3) = �r(q1,q2) + q3�n(q1,q2), (1)

where �n(q1,q2) is the normal basis vector depending only on
q1 and q2. The total derivative of �R(q1,q2,q3) is

d �R(q1,q2,q3) = �u1dq1 + �u2dq2 + �ndq3, (2)
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FIG. 1. (Color online) The surface S and two auxiliary surfaces
S1 and S2. The two surfaces close a subspace VN embedded in the
ordinary 3D space �. On the surface S, the point is described by
�r(q1,q2). In the subspace VN , the point is described by �R(q1,q2,q3).

where

�u1 = ∂ �R
∂q1

= ∂�r
∂q1

+ q3
∂ �n
∂q1

, �u2 = ∂ �R
∂q2

= ∂�r
∂q2

+ q3
∂ �n
∂q2

,

(3)

and �n are together called curvilinear coordinate system basis
vectors.

In VN , and with the three basis vectors �u1, �u2, and �n, the
covariant components of the metric tensor read

Gij = ∂ �R
∂qi

· ∂ �R
∂qj

= Gji, i,j = 1,2,3. (4)

For the sake of clarity, we introduce the indices a,b = 1,2
to indicate the surface parameters. On S, the covariant
components of the metric tensor read

gab = ∂�r
∂qa

· ∂�r
∂qb

. (5)

As usual Gij and gab denote the reciprocals of Gij and gab,
respectively, and G = det(Gij ), g = det(gab). From Eq. (2),
it is shown that the derivatives of �n(q1,q2) lie in the tangent
plane of S at the point fixed by (q1,q2). And then the relations
among Gij and gij can be expressed as

Gab = gab + (αg + gT αT )abq3 + (αgαT )abq
2
3 ,

(6)
Ga3 = G3a = 0, G33 = 1,

through the Weingarten curvature matrix, whose elements read

αb
a = −hacg

cb, hac = − ∂ �n
∂qa

· ∂�r
∂qc

. (7)

From Eqs. (6) and (7), it follows that the relation between G

and g satisfies the following expression:

G = f 2g, (8)

with

f = 1 + Tr(α)q3 + det(α)q2
3 . (9)

In the presence of an externally applied electromagnetic
field described by the potential vector �A and the scalar electric
potential φe, we consider a spin particle with mass m and
charge −e, confined on a two-dimensional (2D) surface by
introducing the squeezing potential Vλ(q3) [9,10]. For this

system, the dynamics can be described by the Pauli equation{
− �

2

2m

[
�σ ·

(
�∇ + ie

�

�A
)]2

− eφe + Vλ(q3)

}
ψ = i�

∂

∂t
ψ,

(10)

where �σ has three components being ordinary Pauli matrices,
�∇ denotes an ordinary derivative vector, and the wave function

ψ =
(

ψ+
ψ−

)
(11)

contains two components. Using the Pauli vector identi-
ties, (�σ · �a)(�σ · �b) = (�a · �b) + i �σ · (�a × �b), we can remove the
Pauli matrices from the kinetic energy term to rewrite (10) as{

− �
2

2m

[(
�∇ + ie

�

�A
)2

− e

�
�σ · ( �∇ × �A)

]

− eφe + Vλ(q3)

}
ψ = i�

∂

∂t
ψ. (12)

Introducing the definitions D0 = ∂t − ie
�
φe and Di = ∇i +

ie
�
Ai , we can simplify Eq. (12) in the following form:

i�D0ψ =− �
2

2m
GijDiDjψ+ e�

2m
√

G
εijkσi∂jAkψ+Vλ(q3)ψ.

(13)

Under the following gauge transformations,

A′
i = Ai + ∂iγ,

A′
0 = A0 + ∂tγ, (14)

ψ ′ = ψe−ieγ /�,

with γ being an arbitrary scalar function, the gauge invariance
of Eq. (13) is easily demonstrated.

For the sake of calculational simplicity, we continuously
use the curvilinear coordinate system which is the same as
the framework in Eq. (1). In the specially moving coordinate
frame, there are some mathematical variables and operators
that need to be briefly reviewed. The covariant derivatives
∇i are defined by ∇iv

j = ∂iv
j + �

j

ikv
k , where vj are the

contravariant components of the 3D vector potential �v, ∂i

are the derivatives with respect to the spatial variables
qi , and �

j

ik are the Christoffel symbols defined by �k
ij =

1
2Gkl[∂jGli + ∂iGlj − ∂lGij ] [4,13]. With �i

ij = ∂ ln
√

G
∂qj , the

covariant divergence reads ∇iA
i = 1√

G

∂(
√

GAi )
∂qi , and then

∇2 = 1√
G

∂
∂qi (

√
GGij ∂ψ

∂qj ). The rotation of �A is �∇ × �A = ξ i �ei

with ξ i = 1√
G

εijk∇jAk , where the repeating of indexes is

summation. The Levi-Civita symbol εijk is 1 when (ijk) is
(123) with even operations, −1 with (ijk) being (123) operated
odd times, and 0 in otherwise.

In the curvilinear coordinate system, in terms of the
ordinary Pauli matrices

σ 1 =
(

0 1

1 0

)
, σ 2 =

(
0 −i

i 0

)
, σ 3 =

(
1 0

0 −1

)
,

(15)
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the induced matrices [21] can be defined by

�a(q) =
3∑

i=1

σ i∂iq
a, a = 1,2, (16)

which satisfy the following commutation relations

[�a(q),�b(q)] = 2iεijkσi∂j q
a∂kq

b, (17)

and anticommutation relations

{�a(q),�b(q)} = 2gab(q), a,b = 1,2, (18)

where q denotes (q1,q2,q3), i,j,k = 1,2,3, and the repeating
of indexes means summation. In this special case, the induced
Pauli matrices with respect to the basis vectors �u1 and �u2

depend on the three matrices in Eqs. (15). In order to gauge
away σ 3 from the right-hand side of Eq. (16), we have to
perform a rotation R(q) to bring the tangent plane of S into
the (�e1,�e2) plane. The tangent plane is spanned by �u1 and �u2. In
terms of the two basis vectors, we can construct the Cartesian
vectors [21]

�n1 = �u1

|�u1| ,

�n2 = �u2 − (�n1 · �u2)�n1√
�u2

2 − (�n1 · �u2)2
,

�n3 = �n1 × �n2 = �u1 × �u2√
�u2

1 �u2
2 − (�u1 · �u2)2

,

where �n3 is parallel to �n in Eq. (1). And then we define a
rotation R(q) which satisfies the following expression:

R(q)

⎛
⎜⎝

�n1

�n2

�n3

⎞
⎟⎠ =

⎛
⎜⎝

�e1

�e2

�e3

⎞
⎟⎠ . (19)

The corresponding spinor representation U(q) = U(R(q)) can
gauge away the σ 3 term from the right-hand side of Eq. (16),
which reads

σa(q) = U(q)�a(q)U−1(q) =
2∑

i=1

σ i∂iq
a. (20)

It is easy to check that the transformed induced matrices σa(q)
still satisfy the commutation relations

[σa(q),σ b(q)] = 2iεijkσi∂j q
a∂kq

b, (21)

and the anticommutation relations

{σa(q),σ b(q)} = 2gab(q). (22)

In the transformed spinor representation, the Pauli matrices in
Eq. (12) should be two transformed induced Pauli matrices σ 1

and σ 2 defined by Eq. (20), and one ordinary Pauli matrix σ 3

in Eq. (15), and the wave function ψ should be replaced by
U−1(q)ψ .

According to the previous concise discussions, for a generic
3D curvilinear coordinate system, the covariant Pauli equation

can be obtained as

i�D0ψ
′ = − 1

2m

{
�

2

√
G

∂i(
√

GGij∂jψ
′)

+ ie�√
G

[∂i(
√

GGijAj )]ψ ′

+ 2ie�GijAi∂jψ
′ − e2GijAiAjψ

′

− e�√
G

εijkσi(∂jAk)ψ ′
}

+ Vλ(q3)ψ ′, (23)

where ψ ′ = U−1(q)ψ . It is clear that the previous Pauli
equation can return to the Schrödinger equation in Ref. [13] if
the spin is ignored.

The rotation defined in Eq. (19) can be accomplished
through two rotations around two axes, respectively, which
are different for different points (q1,q2) on S. We can have

U(q) = eiϕ(q1,q2,σ ), (24)

where σ may be σ 1, σ 2, and σ 3. According to the well-known
thin-layer quantization scheme [4,9–15], we try to decouple the
wave function ψ into surface and normal parts by introducing
a new wave function χ , which is χ = χsχn = √

f ψ . From the
structure of the metric tensor (6), it is straightforward to show
the following limiting relations:

lim
q3→0

Gab�c
ab = gabγ c

ab, lim
q3→0

Gab�3
ab = −Tr(α). (25)

With the limit q3 → 0, the corresponding relations between
the original wave function ψ and the new wave function χ and
their derivatives are

lim
q3→0

ψ = χ,

lim
q3→0

∂3ψ = ∂3χ − 1
2 Tr(α)χ, (26)

lim
q3→0

∂2
3 ψ = ∂2

3 χ − Tr(α)∂χ + 3
4 [Tr(α)]2 − det(α)χ.

Defining a new metric tensor G̃ in the form

G̃ =

⎛
⎜⎝

g11 g12 0

g21 g22 0

0 0 1

⎞
⎟⎠ , (27)

and introducing ∇̃ivj = ∂ivj − γ k
ij vk , and D̃i = ∇̃i + ie

�
Ai ,

we can rewrite the Pauli equation (23) as

i�D0χ
′ = − 1

2m
G̃ij D̃iD̃jχ

′

+ e�

2m
√

G̃
εijkσi∂jAkχ

′ + Vλ(q3)χ ′,
(28)

where G̃ = det(G̃ij ), and χ ′ = e−iϕχ . It is easy to check
that the Pauli equation (28) is invariant under the gauge
transformations (14). We therefore obtain a mapping of the
original metric tensor Gij into G̃ij preserving the gauge
invariance. Using the previously discussed results, we expand
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the Pauli equation (28) as

i�D0e
−iϕχ = − �

2

2m
√

g
∂a[

√
ggab∂bχ

′] − ie�

m
gabAa∂bχ

′ − ie�

2m
√

g
[∂a(

√
ggabAb)]χ ′ + e2

2m
gabAaAbχ

′

+ e�

2m
√

g
ε3abσ3(∂aAb)χ ′ + e�

2m
√

g
εab3σa(∂bA3)χ ′ − �

2

2m
∂2

3 χ ′ − ie�

2m
∂3A3χ

′ − ie�

m
A3∂3χ

′

+ e2

2m
A2

3χ
′ + e�

2m
√

g
εa3bσa(∂3Ab)χ ′ + Vgχ

′ + Vλ(q3)χ ′, (29)

where Vg is the well-known geometric potential in the form

Vg = − �
2

2m
(M2 − K), (30)

wherein M = 1
2 Tr(α) is the mean curvature and K = det(α)

is the Gaussian curvature. In Eq. (29), the term of mixing, Aj ,
and the curvature matrix αb

a does not appear. With the metric
tensor G̃ij , the Lorentz gauge reads

�∇ · �A = gab∂aAb + ∂3A3. (31)

One of the two fundamental evidences given in Ref. [13] is still
valid in the present paper. There is no coupling between the
magnetic field and the curvature of the surface, independently
of the shape of the surface, of the field �B, and of the gauge,
but dependent on the metric tensor G̃ij .

In the previously discussed results, the electromagnetic
field is externally applied, and the corresponding source
currents are not mentioned. In the trivial case, the coupling
of the electromagnetic field to the curvature of the surface is
trivially decoupled. In a general case of the present reduced
system containing source currents �J in all space directions,
the vanishing of the J 3 component is a necessary condition
to remove the coupling of the electromagnetic field to the
curvature of the surface from the Lorentz gauge and the
dynamics simultaneously [14]. The condition is also necessary
to decompose the dynamics into a surface component and a
transverse component. These results open up some interesting
avenues to research a 2D reduced system.

Although the Pauli equation (29) is more complicated than
the Schrödinger equation in Ref. [13], there is also only one
term A3(q1,q2,0)∂3χ

′ connecting the dynamics on S with the
dynamics along q3. The term including ∂3Aa vanishes on S
for the surface components of �A depending only on the two
tangent variables q1 and q2. With the metric tensor G̃ij to
choose the best suitable choice

γ (q1,q2,q3) = −
∫ q3

0
A3(q1,q2,z)dz (32)

for the scalar function in Eqs. (14), and with ∂aA3 depending
only on q1 and q2 at q3 → 0, we can eliminate all terms
containing A3 or ∂3A3 from Eq. (29). We decompose the Pauli
equation (29) into a normal component

i�∂tχn = − �
2

2m
∂2

3 χn + Vλ(q3)χn, (33)

and a surface component

i�∂t (e
−iϕχs) = − 1

2m

{
�

2

√
g

∂a

√
ggab∂b

+ 2ie�gabAa∂b + ie�√
g

[∂a(
√

ggabAb)]

− e2gabAaAb − e�√
g

εabσ3(∂aAb)

− e�√
g

εabσa(∂bA3)

}
χ ′

s

+Vgχ
′
s − eφeχ

′
s , (34)

where the wave function χ ′
s = e−iϕχs , wherein χs is described

by the ordinary spinor representation containing two compo-
nents,

χs =
(

χ+
s

χ−
s

)
. (35)

Expression (33) is just a one-dimensional Pauli equation for a
charged spin particle constrained on S by the normal potential
Vλ(q3) and can be ignored in all future calculations. However,
expression (34) is very interesting because of the presence of
Vg and e−iϕ and it describes the dynamics of the spin particle
with charge −e bounded on S in an electromagnetic field. In
this case, the actions of the curvilinear coordinate derivative
terms on e−iϕ can bring out some spin connection geometric
potentials. Ignoring the spin of the discussed system, from
expression (34) we can vanish the terms depending on the
transformed induced and normal Pauli matrices and obtain the
surface Schrödinger equations in Ref. [13]. It is worth noticing
that the decoupling of the Pauli equation (29) is analytical
without approximation, but with the vanishing of the source
current perpendicular to the surface S. With G̃ij , the second
fundamental evidence in Ref. [13] is also valid in the present
paper. Without the source current normal to S, the dynamics
on the surface and the normal dynamics can be separated.

III. PAULI EQUATIONS ON SPHERICAL, CYLINDRICAL,
AND TOROIDAL SURFACES

It is well known that the sphere and the cylinder are
two typical nanostructures, and that the torus is a typical
topological geometry. In the presence of a homogeneous
magnetic field, we derive the surface Pauli equation for
a charged spin particle constrained on the three surfaces.
The spherical surface is the simplest one, and its extensive
investigation is fullerene [6]. We first discuss it. In the spherical
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FIG. 2. (Color online) A spherical surface of radius r and its
coordinate system (θ,φ,ρ). The green arrow denotes the direction
of the magnetic field �B, which is perpendicular to the plane at θ = π

2 .

coordinate system (θ,φ,ρ), a sphere with radius r is put in a
constant magnetic field �B, which is parallel to the polar axis,
and is sketched in Fig. 2.

In spherical coordinates, on the sphere the induced Pauli
matrices (16) are

�θ = 1

r

( − sin θ cos θe−iφ

cos θeiφ sin θ

)
,

�φ = 1

r sin θ

(
0 −ie−iφ

ieiφ 0

)
,

�ρ =
(

cos θ sin θe−iφ

sin θeiφ − cos θ

)
.

On the sphere, for the transformation of the induced Pauli
matrices, the spinor rotation is

U(θ,φ) = e
i
2 θσ2+ i

2 φσ3 =
(

cos θ
2 ei

φ

2 sin θ
2 e−i

φ

2

− sin θ
2 ei

φ

2 cos θ
2 e−i

φ

2

)

and its inverse matrix is

U−1(θ,φ) =
(

cos θ
2 e−i

φ

2 − sin θ
2 e−i

φ

2

sin θ
2 ei

φ

2 cos θ
2 ei

φ

2

)
.

The transformed induced Pauli matrices on the sphere are

σ θ = 1

r
σ 1, σ φ = 1

r sin θ
σ 2, σ ρ = σ 3.

According to the gauge condition (32), the best suitable vector
potential is (Aθ,Aφ,Aρ) = (0, 1

2Br2 sin2 θ,0). From Eq. (34),
the spherical surface dynamics for the charged spin particle
can be described by

i�∂tχ
′
s = − 1

2m

{
�

2

r2
∂2
θ + �

2 cos θ

r2 sin θ
∂θ + �

2

r2 sin2 θ
∂2
φ

−
(

i�2

r2 sin2 θ
σρ − ie�B

)
∂φ

−
[

1

4
e2B2r2 sin2 θ + e�B

(
1

2
+ cos θ

)
σρ

+ �
2

4r2 sin2 θ
+ eφe

]}
χ ′

s , (36)

where the wave function χ ′
s consists of two components:

χ ′
s =

(
cos θ

2 χ+
s − sin θ

2 χ−
s

sin θ
2 χ+

s + cos θ
2 χ−

s

)
. (37)

For the spherical surface, the geometric potential Vg = 0. It
is worth noticing that the new term − �

2

8mr2 sin2 θ
is given by

the derivative ∂2
φ acting on e−iϕ , which connects the spin

with the surface. We call this new term the spin connection
geometric potential. It is clear that there are two additive

terms i�2σρ

2mr2 sin2 θ
∂φ and e�B

4m
, too. With ∂2

θ and ∂θ acting on
the component (cos θ

2 χ+
s − sin θ

2 χ−
s ), we can obtain additively

two spin connection geometric potentials
�

2 cos θ
2

8mr2 and �
2 cos θ

8mr2 cos θ
2

for χ+
s , and two other spin connection geometric potentials

−�
2 sin θ

2
8mr2 and �

2 cos θ

8mr2 sin θ
2

for χ−
s . Working on the other compo-

nent, (sin θ
2 χ+

s + cos θ
2 χ−

s ), we can get two spin connection

geometric potentials
�

2 sin θ
2

8mr2 and − �
2 cos θ

8mr2 sin θ
2

for χ+
s , and two

other spin connection geometric potentials
�

2 cos θ
2

8mr2 and �
2 cos θ

8mr2 cos θ
2

for χ−
s . In the Pauli equation (36), we notice that there is only

the component σρ mixing with the curvature of the spherical
surface and coupling to the magnetic field.

The cylinder is a most popular geometry in the nanometer
world, and its extensive investigations are various nanotubes,
such as carbon nanotubes, semiconductor nanotubes, and
metal nanotubes. We consider a cylinder of radius r , which is
sketched in Fig. 3. This cylinder is described in the cylindrical
coordinate system (θ,y,ρ) and is put in a magnetic field
�B which can be expressed as the summation of B0, which
is parallel to the direction of the y axis, and B1, which is
perpendicular to the y axis and parallel to the direction of
the ρ axis at θ = 0. The most suitable vector potential is

FIG. 3. (Color online) A cylindrical surface of radius r and its
coordinate system (θ,y,ρ). The magnetic field �B consists of B0

parallel to the y axis and B1 perpendicular to the y axis at θ = 0.
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(Aθ,Ay,Aρ) = ( 1
2 r2B0,rB1 sin θ,0), the same given by Ferrari

and Cuoghi [13].
On the cylinder, the induced Pauli matrices can be given:

�θ = 1

r

(− sin θ cos θ

cos θ sin θ

)
,

�y =
(

0 −i

i 0

)
,

�ρ =
(

cos θ sin θ

sin θ − cos θ

)
.

On the cylinder, for the transformation of the induced Pauli
matrices, the spinor rotation matrix is

U(θ,y) = e
i
2 θσ2 =

(
cos θ

2 sin θ
2

− sin θ
2 cos θ

2

)
,

and its inverse matrix is

U−1(θ,y) =
(

cos θ
2 − sin θ

2

sin θ
2 cos θ

2

)
.

The transformed induced Pauli matrices on the cylinder are

σ θ = 1

r
σ 1, σ y = σ 2, σ ρ = σ 3.

From Eq. (34), the cylindrical surface dynamics can be
described by

i�∂tχ
′
s = − 1

2m

[
�

2

r2
∂2
θ + ie�B0∂θ + �

2∂2
y

+ 2ie�rB1 sin θ∂y −
(

1

4
e2r2B2

0

+ e2r2B2
1 sin2 θ + e�B1 cos θσρ

)
− �

2

4r2

]
χ ′

s ,

(38)

where the wave function χ ′
s also has two components,

χ ′
s =

(
cos θ

2 χ+
s − sin θ

2 χ−
s

sin θ
2 χ+

s + cos θ
2 χ−

s

)
. (39)

On the cylinder, the geometric potential Vg = �
2

8mr2 . The
derivative ∂2

y cannot bring out anything from e−iϕ , but the
derivative ∂2

θ still can take out some exciting terms for the pre-
sent system from e−iϕ . It is very interesting to us that some

spin connection geometric potentials appear:
�

2 cos θ
2

8mr2 ,
�

2 sin θ
2

8mr2

for χ+
s , and −�

2 sin θ
2

8mr2 ,
�

2 cos θ
2

8mr2 for χ−
s . Of course, the derivative

∂θ can offer
ie�B0 sin θ

2
4m

and − ie�B0 cos θ
2

4m
for χ+

s , and
ie�B0 cos θ

2
4m

and
ie�B0 sin θ

2
4m

for χ−
s . In the Pauli equation (38), there is

only the component σρ coupling to the magnetic field with
− 1

2m
e�B1 cos θσρ .

The torus is a mathematical topological geometry. It is
very interesting to investigate, both from the theoretical and
from the experimental points of view. In the reference system
(θ,φ,ρ), a torus is put in an arbitrary constant magnetic field
�B, which is sketched in Fig. 4.

FIG. 4. (Color online) A toroidal surface of radius r and its
coordinate system (θ,φ,ρ). R0 is the distance from the center of
the tube to the center of the torus, r is the radius of the tube, and R is
the distance from the center of the tube to one point which lies on the
toroidal surface. The magnetic field �B can be decomposed into two
parts: B1 lies in the plane of R0 and φ, and B0 is perpendicular to the
circle defined by R0 and φ.

On the torus, the induced Pauli matrices are

�θ = 1

r

( − sin θ cos θe−iφ

cos θeiφ sin θ

)
,

�φ = 1

R

(
0 −ie−iφ

ieiφ 0

)
,

�ρ =
(

cos θ sin θe−iφ

sin θeiφ − cos θ

)
.

The spinor rotation matrix is

U(θ,φ) = e
i
2 θσ2+ i

2 φσ3 =
(

cos θ
2 ei

φ

2 sin θ
2 e−i

φ

2

− sin θ
2 ei

φ

2 cos θ
2 e−i

φ

2

)
,

and its inverse matrix is

U−1(θ,φ) =
(

cos θ
2 e−i

φ

2 − sin θ
2 e−i

φ

2

sin θ
2 ei

φ

2 cos θ
2 ei

φ

2

)
.

The transformed induced Pauli matrices on the torus are

σ θ = 1

r
σ 1, σ φ = 1

R
σ 2, σ ρ = σ 3.

According to the gauge condition (32), the most
suitable (Aθ,Aφ,Aρ) = ( 1

2B1r sin φ(R0 sin θ + r), 1
2R(B0R −

B1r cos θ cos φ),0) with R = R0 + r sin θ . From Eq. (34), we
can calculate the surface Pauli equation:

i�∂tχ
′
s = − 1

2m

{
�

2

r2
∂2
θ + �

2 cos θ

rR
∂θ + �

2

R2
∂2
φ

− �
2

4R2
− i�2

R2
σρ∂φ

+ ie�

r
B1(R0 sin θ + r) sin φ∂θ

+ ie�

R
(B0R − B1r cos θ cos φ)∂φ

+ e�

2R
(B0R − B1r cos θ cos φ)σρ
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+ R2
0 + r2 + 2rR0 sin θ

2rR
ie�B1 cos θ sin φ

+ r

2R
ie�B1 cos θ sin φ

− e2

4
[B2

1 sin2 φ(R0 sin θ + r)2

+ (B0R − B1r cos θ cos φ)2]

− e�

(
B0 + r

R
B1 cos θ cos φ

)
cos θσρ

+ �R2
0

(2rR)2

}
χ ′

s , (40)

where the transformed surface wave function χ ′
s can be

expressed as

χ ′
s =

(
cos θ

2 χ+
s − sin θ

2 χ−
s

sin θ
2 χ+

s + cos θ
2 χ−

s

)
. (41)

It is very interesting to notice that there is �
2

8mR2 , the fourth
term on the right-hand side of Eq. (40), which is a new spin
connection geometric potential, and plays the same role as

the well-known geometric potential Vg = − �
2R2

0
8mr2R2 , but both

terms have opposite sign. In other words, Vg is attractive, but
�

2

8mR2 is repulsive. In the present system, the derivatives ∂2
θ

and ∂θ can contribute some new spin connection geometric

potentials
�

2 cos θ
2

8mr2 ,
�

2 sin θ
2

8mr2 ,
�

2 cos θ sin θ
2

4mrR
, and −�

2 cos θ cos θ
2

4mrR
for χ+

s ,

and −�
2 sin θ

2
8mr2 ,

�
2 cos θ

2
8mr2 ,

�
2 cos θ cos θ

2
4mrR

, and
�

2 cos θ sin θ
2

4mrR
for χ−

s . In the
Pauli equation (40), there is only the component σρ mixing
with the curvature of the toroidal surface and coupling to the
magnetic field.

IV. CONCLUSIONS

In this paper we have briefly reviewed, reconsidered, and
extended the thin-layer quantization scheme, which was used
to derive the surface Schrödinger equation for a spinless

particle constrained on a spatially curved surface, to derive the
surface Pauli equation for a charged spin particle confined on a
curved surface in an electromagnetic field. Through a rotation,
we have described the reduced system in the transformed
spinor representation. In this case, we have chosen the proper
gauge condition for the electromagnetic field to accomplish
analytically the separation of the Pauli equation into normal
and surface parts. For the separation of the Schrödinger
equation for a reduced system, the fundamental evidences
[13] are still valid for the decoupling of the Pauli equation
for the constrained system. There is no coupling between the
electromagnetic field and the surface, and the separation of
normal and surface parts can be accomplished analytically
with proper gauge choice. It is worth noticing that the two
fundamental evidences are valid with the metric tensor G̃ij .
In other words, the thin-layer quantization scheme is valid to
systems without source current perpendicular to S.

In order to understand the connection between spin and the
surface and the geometric potential clearly, we have applied
the surface Pauli equation to spherical, cylindrical, and toroidal
surfaces. The tangent variable derivatives act on the rotation
U−1(q1,q2) to contribute some spin connection geometric
potentials for the three examples. These spin connection
geometric potentials are produced in the inverse process of
the transformation for the spinor representation. The results
support that the curved surface acts on a spin particle with
more contributions. In the special case, for the three examples
there is only the component σρ appearing in the surface Pauli
equations.
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