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Non-Markovian evolution of an open quantum system can be induced by the memory effects of a reservoir.
Although a reservoir with stronger memory effects may seem like it should cause stronger non-Markovian
effects on the system of interest, this seemingly intuitive thinking may not always be correct. We illustrate
this by investigating a qubit (a two-level atom) that is coupled to a hierarchical environment, which contains a
single-mode cavity and a reservoir consisting of an infinite number of modes. We show how the non-Markovian
character of the system is influenced by the coupling strength between the qubit and cavity and the correlation
time of the reservoir. In particular, we found a phenomenon whereby the qubit Markovian and non-Markovian
transition exhibits a anomalous pattern in a parameter space depicted by the coupling strength and the correlation
time of the reservoir.
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I. INTRODUCTION

The Markovian approximation is important and helpful
when one is dealing with an open quantum system [1]. This
approximation is made by assuming that the correlation func-
tion of the reservoir decays much faster than the characteristic
time scale of the evolution of the system of interest so that
it can be taken as a δ function and the correlation time,
also called memory time, is zero. Under this assumption, a
reservoir is sometimes considered Markovian. One advantage
of this approximation is that, in most cases, the dynamics of
the system will be a Markovian process and can be described
by a standard Markovian master equation.

However, it has been shown that the Markovian approxi-
mation fails in many situations [2–5]. One consequence of the
breakdown of this approximation is that the evolution of the
system becomes non-Markovian rather than Markovian. Thus,
the topic of non-Markovian quantum dynamics has recently
been studied intensively [6–10] and is drawing increasing
attention.

To quantify the non-Markovian character of an open system
dynamics, several measures of non-Markovianity (NM) have
been proposed [11–13]. With the help of these measures, one
can claim that an evolution is non-Markovian if a nonzero
NM is detected. These measures have been applied to many
models to investigate their non-Markovian features [14–20].
Furthermore, a demonstration of control over the transition
from Markovian to non-Markovian dynamics has also been
experimentally implemented based on these measures [21].

Among these studies, the breakdown of the Markovian
approximation plays a crucial role. The breakdown happens
if the correlation time is not zero anymore and the reservoir
exhibits memory effects. A good example of this is the situation
where a single dissipative qubit is coupled to a reservoir with
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a Lorentzian spectrum [11,14]. In this case, the correlation
function of the reservoir is an exponential function and the
correlation time can be well defined. For this model, it has
been shown that the dynamics of the qubit is Markovian when
the correlation time is very short and non-Markovian when the
correlation time is long. Also, a simple monotonic relation
between the NM and the correlation time was presented.
In some sense, this may not seem surprising since one
may intuitively reason that the NM should be larger if the
correlation time is longer, allowing the memory effects of the
reservoir to be stronger due to the Markovian approximation’s
failure for large correlation times. However, the transition
from non-Markovian to Markovian dynamics is still poorly
understood if the environment is not formed by only a bath of
free bosons.

The purpose of this paper is to examine the interrela-
tionship between the non-Markovianity and the structured
environment. To do so, we will consider a two-level system
coupled to a composite environment consisting of a single
cavity mode and a reservoir with an infinite number of degrees
of freedom. The model under investigation is simple yet
sophisticated enough to exhibit some interesting features of
the non-Markovian and Markov crossover dynamics. Our
major motivation of the present paper is to understand how
the structural features of the environment affect the non-
Markovianity exhibiting the crossover properties between the
non-Markovian and Markovian regimes. It should be pointed
out that the non-Markovian dynamics for the same qubit-cavity
model has been carefully studied experimentally in [4] without
using the non-Markovianity. For a single reservoir with an
Ornstein-Uhlenbeck type of correlation function, the reservoir
correlation time can be easily identified with a single parameter
characterizing the reservoir decay time. It should be noted
that such a single parameter representing the memory time of
the composite environment does not exist in general. For the
composite environment considered in this paper, it is easy to
see that there are several time scales describing the mutual
information exchange between two subsystems as well as
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between the system and its environment. Hence, specifically,
we shall investigate in several parameter domains of the cavity-
reservoir coupling and the memory of the reservoir and see
how these parameters affect the system’s NM. In particular, we
show crossover properties in the non-Markovian to Markovian
transition induced by this hierarchical environment.

The rest of the paper is organized as follows. In Sec. II we
present a model in which a qubit (the system of interest) is
coupled to a hierarchically structured environment consisting
of a single-mode cavity dissipatively coupled to a reservoir
with a Lorentzian spectrum. In spite of its simplicity, the
model provides many useful insights into the non-Markovian
dynamics of an open system coupled to a hierarchical envi-
ronment with the exact solution. The measure of NM is also
briefly introduced here. In Sec. III we find that, remarkably,
the simple monotonic relation between NM and the correlation
time one might intuitively believe may not be valid in this
case. Specifically, although the dynamics of the qubit may be
non-Markovian when the reservoir has a certain correlation
time, we find that it becomes Markovian for longer correlation
times. We summarize in Sec IV.

II. MODEL, SOLUTION, AND NON-MARKOVIANITY

We consider the following model, the schematic of which
is shown in Fig. 1. The total Hamiltonian can be written as
(setting � = 1)

H = HS + HC + HR + HI . (1)

Here HS = ωs

2 σz and HC = ωca
†a are the Hamiltonian of

the qubit and cavity, respectively, HR = �kωkb
†
kbk represents

the zero-temperature bosonic reservoir, and HI describes the
interactions between the subsystems. If we denote the ground
and excited levels of the qubit by |g〉 and |e〉, respectively,
then σz = |e〉〈e| − |g〉〈g| is a Pauli matrix. Here a† (a) and
b
†
k (b) are the creation (annihilation) operators for the cavity

and the k mode of the reservoir, respectively. In addition, ωs is
the transition frequency of the qubit, while ωc and ωk are the
frequencies associated with the cavity and the k mode of the
reservoir, respectively. For simplicity, we assume ωs = ωc =
ω0. Then, converting the interaction Hamiltonian HI to the
interaction picture yields

H int
I = κ(σ+a + σ−a†) +

∑
k

gk(ab
†
ke

i�kt + a†bke
−i�kt ), (2)

Reservoir

FIG. 1. (Color online) Configuration of the system plus a hierar-
chical environment: The qubit of interest is coupled to a single-mode
cavity while the cavity is coupled to a reservoir.

where �k = ωk − ω0, κ is the coupling strength between the
qubit and cavity, and gk is the coupling strength between
the cavity and the k mode of the reservoir. We suppose that
the reservoir has a Lorentzian spectrum J (ω) = �

2π
λ2

(ω0−ω)2+λ2 .
Then the correlation function of the reservoir is α(t,s) =
�λ
2 e−λ|t−s|. Thus τ = λ−1 represents the correlation time

or memory time. When λ goes to infinity, the reservoir
converges to a memoryless reservoir without memory effects.
For simplicity, we assume that the total environment including
both the cavity and reservoir is initially in the vacuum state.
The advantage of this assumption is that the model can be
easily solved analytically without losing the features of the
physics in which we are interested.

Given these conditions, the cavity stays at the ground level
initially and there is always only up to one excitation in the total
system. Then the total state can be generally written as [22]

|φ(t)〉 = C(t)|g,0,0k〉 + A(t)|e,0,0k〉
+B(t)|g,1,0k〉 +

∑
k

Ck(t)|g,0,1k〉, (3)

where |0〉 and |1〉 are the vacuum and single-photon states of
the cavity, while |0k〉 represents no excitation in the reservoir
and |1k〉 means that there is one excitation in the kth mode
of the reservoir. The dynamics of the qubit can be obtained
exactly by partial tracing both the cavity and reservoir, yielding
ρ = TrC,R[|φ(t)〉〈φ(t)|], which has matrix elements (see the
Appendix)

ρee(t) = ρee(0)|G(t)|2, ρeg(t) = ρeg(0)G(t). (4)

Here the function G(t) satisfies

G(t) = L−1[G(p)], G(p) =
p + �λ

2(p+λ)

p2 + κ2 + p�λ

2(p+λ)

, (5)

where L−1 is the inverse Laplace transform. Thus, G(t) is
determined analytically for each given set of parameters κ , λ,
and �, with the initial condition G(0) = 1.

A Markovian evolution can always be represented by
a dynamical semigroup of completely positive and trace-
preserving maps. These properties guarantee the contractive-
ness of the trace distance (to be defined below) between any
fixed pair of initial states ρ1(0) and ρ2(0), which means that
a Markovian evolution can never increase the trace distance;
it can only decrease it or leave it unchanged. The decrease
of trace distance indicates the reduction of distinguishability
between the two states. This could be interpreted as an outflow
of information from the system to the environment. A violation
of this contractive condition is understood as a backflow of
information into the system of interest. Based on this concept,
a measure of NM can be defined as in [11] by

N = max
ρ1(0),ρ2(0)

∫
σ>0

dt σ (t,ρ1(0),ρ2(0)). (6)

Here σ (t,ρ1(0),ρ2(0)) = d
dt

D(ρ1(t),ρ2(t)) is the rate of change
of the trace distance, which is defined as

D(ρ1(t),ρ2(t)) = 1
2 Tr|ρ1(t) − ρ2(t)|, (7)
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where |A| =
√

A†A. Thus, N represents the total increase of
distinguishability over the whole time evolution, i.e., the total
amount of information flowing back to the system of interest.
Under this measure, an evolution is non-Markovian if and only
if N > 0. This is also equivalent to saying that an evolution is
Markovian if and only if the trace distance of any two initial
states decreases monotonically.

In our case, for the evolution in Eq. (4), a monotonically
decreasing function |G(t)| is also a necessary and sufficient
condition that the evolution is Markovian [14]. Explicitly,
given our system’s evolution as described by Eq. (4), the trace
distance is

D(ρ1(t),ρ2(t)) = |G(t)|
√

|G(t)|2(�a)2 + |�b|2, (8)

where G(t) is given in Eq. (5), �a = 〈e|ρ1(0)|e〉 − 〈e|ρ2(0)|e〉,
and �b = 〈e|ρ1(0)|g〉 − 〈e|ρ2(0)|g〉. Though optimization is
technically needed in Eq. (6), it is not difficult to see that
the detection of NM will be recognized with a nonmonotonic
function |G(t)| if one notices that the trace distance D(t) =
D(ρ1(t),ρ2(t)) in Eq. (8) shares the same monotonicity with
|G(t)|. More interestingly, if an evolution follows Eq. (4),
then the monotonicity of D(t) does not depend on the choice
of initial states. Thus, the maximization can be removed
without affecting the sensitivity of N for detecting the
NM [23]. Nevertheless, the optimized pair of initial states
we found through numerical simulation is ρ1 = |+〉〈+| and
ρ2 = |−〉〈−|, where |±〉 = 1√

2
(|e〉 ± |g〉), which has also been

proven theoretically [15,16].
Particularly in this paper, we numerically integrate Eq. (6),

with the help of Eq. (8), to compute the NM, while the
two initial states are taken as ρ1 = |+〉〈+| and ρ2 = |−〉〈−|.
Though the values of the NM are obtained by the numerical
method, we emphasize that the detection of NM can be done
by showing the monotonicity of D(t) analytically whenever
the explicit model parameters are given. Our conclusion is not
unaffected by the possible numerical errors.

III. DISCUSSION

In the following, we discuss how the two parameters κ and
especially λ, or the correlation time, influence the NM of the
qubit while � is constant. First, we focus on κ . The variation
of the NM with respect to κ for different λ is plotted in Fig. 2.
For each line (a fixed λ), the increase of κ leads to an increase
of NM. An interesting feature here is that a transition from
Markovian to non-Markovian dynamics is observed for each
line. This observation will also be verified in later discussion.
The speed that the information flowing out of the qubit is very
low when κ is small, while the evolution of the environment
itself is at a very fast pace when λ and � are large. A relatively
small κ with respect to λ and � indicates that the qubit is
losing information at a far slower rate than the environment
is evolving, so the backflow of information cannot happen
and the environment is not appreciably interrupted. Thus
the phenomenon of transition can only arise from the
fact that the coupling strength κ becomes so strong that
the qubit has disturbed the environment, thereby undermining
the foundation of the Markovian approximation, which
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FIG. 2. (Color online) Change of the NM with respect to κ for
different λ. From top to bottom, λ changes from 0.2 � to ∞.

eventually results in the appearance of information backflow
to the qubit.

It is worth noting the situation where the reservoir is
memoryless (λ → ∞). In this case, the presence of the cavity
is fully responsible for the non-Markovian character. Also, the
solution of G(t) in Eq. (5) is

G(t) = e−�t/4

[
�

a
sinh

(
at

4

)
+ cosh

(
at

4

)]
, (9)

where a = √
�2 − 16κ2. This formally reproduces the results

in [8,14] except for a difference in the scale of parameters.
This coincidence stems from the fact that the dynamics of a
single qubit coupled to a vacuum reservoir with a Lorentzian
spectrum could be simulated by a pseudomode approach
with a memoryless reservoir [24–26]. Two distinct dynamical
regimes [14] are identified by a threshold κT = �

4 . In the weak-
coupling regime where κ < κT , the evolution is Markovian
and G(t) decreases monotonically. In the strong-coupling
regime where κ > κT , the evolution is non-Markovian and
G(t) oscillates between positive and negative values.

Now we focus on λ. Recall that τ = λ−1 is the correlation
time of the reservoir. When λ becomes finite and keeps
decreasing, the Markovian approximation of the reservoir fails
and one might expect the memory effects of the reservoir to
enhance the amount of information backflow, and hence to
increase the NM, as well. This would be true if one were
considering a model where the qubit is directly connected
to a reservoir without the cavity and κ is the coupling
strength between them, as shown in Fig. 3(b). There we see a
simple monotonic relation between λ and NM; a decreasing
correlation time (λ is moving towards the right) results in a
lower value of NM.

However, this relationship may not be universally true.
When we consider our hierarchical environment model, λ

and the NM exhibit nonmonotonic relations when κ = 0.3 �

and 0.4 �, as shown in Fig. 3(a). The particularly astonishing
phenomenon is that when κ = 0.3 �, the NM drops to zero
first and later revives as the parameter λ continues to grow.
This revival is due to the fact that κ = 0.3 � is larger than the
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FIG. 3. (Color online) Change of the NM with respect to λ for
(a) the model where a qubit is coupled to a hierarchical environment
consisting of one cavity and one reservoir with a memory time of
τ = λ−1, as shown in Fig. 1, and (b) the model where a qubit is
coupled to a reservoir with coupling strength κ and memory time
τ = λ−1 of the reservoir. It is worth mentioning that the dashed and
dotted lines in (a) and all three lines in (b) decrease exactly to zero,
though it is not shown in the figure.

threshold κT (λ → ∞) = �
4 . Therefore, when κ = 0.3 �, the

evolution of the qubit well eventually become non-Markovian
if λ is approaching ∞ (as the correlation time τ → 0).

Thus, the surprising message is that a stronger memory
effect of the reservoir may not always be helpful in enhancing
the NM of the system, due to the presence of the cavity. In fact,
because the reservoir is only a part of the environment now,
an integrated consideration including both the cavity and the
reservoir is needed to determine the non-Markovian character
of the qubit of interest. An increase of memory effects from the
reservoir alone is not sufficient to estimate the change of NM.

To comprehensively explain how our modulation of the
environment affects the NM of the qubit, Fig. 4 shows how
the NM changes with respect to κ and λ. It is shown that a
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FIG. 4. (Color online) The NM of the qubit for different κ and λ.
The non-Markovian regime is colored while the Markovian regime
is white. The dashed black lines are the contour lines of the NM. The
diamond blue line is the curve of the threshold κT (λ).
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FIG. 5. (Color online) Evolution of the trace distance D(t) when
κ = 0.3 � and the pair of initial states is ρ1(0) = |+〉〈+| and ρ2(0) =
|−〉〈−|, where |±〉 = 1√

2
(|e〉 ± |g〉).

non-Markovian threshold κT (λ) exists for every given λ. Thus,
the transition from Markovian to non-Markovian dynamics
always exists for whatever value λ takes, which verifies the
statement we made before.

Two interesting regimes are identified clearly in Fig. 4:
The white Markovian regime is below the threshold κT (λ)
and the non-Markovian regime is above κT (λ) and is colored.
However, the pattern of κT (λ) is rather interesting, shown as
the diamond line in Fig. 4. The curve of the threshold is not
a monotonic function of λ. The threshold κT (λ) increases as
λ increases when λ is small, which is reasonable since the
memory time of the reservoir is shorter and therefore a larger κ

is necessary to make a non-Markovian evolution. Nevertheless,
the curve is bent down as λ continues to increase and then
eventually approaches �

4 , which is the limit in the memoryless
reservoir case. The overall message here agrees with the
statement we made before: The NM does not necessarily
decrease as the correlation time of the reservoir decreases.
The non-Markovian dynamics of the qubit is determined by a
delicate balance between the two major parameters λ and κ .
This is the major result of this paper.

Finally, to further demonstrate our result, we directly
investigate the trace distance D(t) given in Eq. (8). Figure 5
shows its evolution when κ = 0.3 �. If λ = 0.5 �, we are
in the non-Markovian regime. The trace distance D(t) is
not monotonic and the evolution is non-Markovian. When λ

increases to �, we arrive at the Markovian regime. Then D(t)
becomes monotonic and the evolution becomes Markovian.
However, D(t) becomes nonmonotonic again when λ contin-
ues to increase as we are falling to the non-Markovian regime
once more.

A notable point is that even in the non-Markovian regime,
D(t) exhibits different patterns for different λ. When λ =
0.5 �, the curve of D(t) is bumpy, but gradually approaches
zero. However, for the cases λ = 5 � and λ = ∞, D(t) keeps
hitting the zero line and then bounces back, as seen in the
inset of Fig. 5. These zero points mean that the two states ρ1

and ρ2 are totally indistinguishable at those time points and
correspond to the points where G(t) = 0. From Eq. (4) one
can tell that the qubit actually evolves into its ground state
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at these zero points and hence loses all the information. The
qubit is supposed to stop evolving after this point without
recapturing the lost information under a typical Markovian
evolution. Thus, the bounce of D(t) from the inset of Fig. 5
serves as a remarkably non-Markovian feature, meaning that
the information could flow back into the qubit even if it has
been completely leaked into the environment, which would
never happen in a Markovian evolution.

IV. CONCLUSION

In summary, we studied a qubit that is coupled to a
hierarchically structured environment consisting of a cav-
ity and a reservoir. We investigated how the qubit-cavity
coupling strength and the reservoir’s memory time affect
the non-Markovian character of the qubit. We found that a
threshold κT (λ) exists for an arbitrarily given λ, separating
the Markovian and non-Markovian regimes of the parameter
space. Surprisingly, κT (λ) is a nonmonotonic function of λ and
a longer correlation time of the reservoir does not necessarily
result in a larger value of NM.

Finally, it should be noted that our calculation is based
on the measure of the NM proposed in [11]. Several other
measures of the NM have been proposed as well [12,13].
Generally, these measures do not need to agree with each
other [27]. However, it has been proven that they are equivalent
in the sense of detecting the NM for the dynamics in the form
of Eq. (4) [13,23]. Therefore, our conclusion is invariant with
respect to the definition of the NM.
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APPENDIX: EVOLUTION OF THE QUBIT

Plugging the state in Eq. (3) and the Hamiltonian in
Eq. (2) into the Schrödinger equation |φ̇(t)〉 = −iH int

I |φ(t)〉,
we obtain the following:

Ȧ(t) = −iκB(t),

Ḃ(t) = −iκA(t) − i
∑

k

gke
−i�ktCk(t)dτ,

(A1)
Ċk(t) = −igke

i�ktB(t),

C(t) = C(0).

Considering the initial conditions that B(0) = Ck(0) = 0
and the correlation function α(t,s) = ∑

k |gk|2e−i�k (t−s) =
�λ
2 e−λ|t−s|, we have

Ȧ(t) = −iκB(t),
(A2)

Ḃ(t) = −iκA(t) −
∫ t

0
α(t − τ )B(τ )dτ.

Taking advantage of the Laplace transformF(p) ≡ L[F (t)] =∫ ∞
0 F (t)e−ptdt leads to

pA(p) − A(0) = −iκB(p),
(A3)

pB(p) − B(0) = −iκA(p) − �λ

2(p + λ)
B(p).

Then we easily achieve A(p) = A(0)G(p) and A(t) =
A(0)G(t), where G(p) and G(t) are given in Eq. (5). The
state of the qubit of interest is then given by

ρ = TrC,R[|φ(t)〉〈φ(t)|] =
(

|A(t)|2 A(t)C(0)∗

A(t)∗C(0) 1 − |A(t)|2
)

(A4)

which satisfies Eq. (4).
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