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Maximal incompatibility of locally classical behavior and global causal order in multiparty scenarios
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Quantum theory in a global spacetime gives rise to nonlocal correlations, which cannot be explained causally
in a satisfactory way; this motivates the study of theories with reduced global assumptions. Oreshkov, Costa,
and Brukner [Nat. Commun. 3, 1092 (2012)] proposed a framework in which quantum theory is valid locally but
where, at the same time, no global spacetime, i.e., predefined causal order, is assumed beyond the absence of
logical paradoxes. It was shown for the two-party case, however, that a global causal order always emerges in the
classical limit. Quite naturally, it has been conjectured that the same also holds in the multiparty setting. We show
that, counter to this belief, classical correlations locally compatible with classical probability theory exist that
allow for deterministic signaling between three or more parties incompatible with any predefined causal order.
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I. MOTIVATION AND MAIN RESULT

According to Bell [1], correlations cry out for explanation.
In such a spirit, already Einstein, Podolsky, and Rosen
(EPR) [2] had asked for an extension of quantum theory that
incorporates a causal explanation [3,4] of the correlations
arising when two parts of an entangled quantum state are
measured. Such an explanation can describe the emergence
of the correlations either through preshared information
or through influences. Because of relativity, EPR argued
further, the latter cannot be the cause of such correlations.
Later, (finite-speed) influences were ruled out by theory [5,6]
and experiments [7–13]. Therefore, still according to EPR’s
reasoning, physical quantities need to be predefined. This,
however, had been rejected by Bell [14] under the assumption
that spatially separated settings can be chosen (at least
partially [15–17]) freely and independently; such correlations
are called nonlocal. Remarkably, this means that there are
not predefined yet correlated physical quantities emerging
in a spacelike separated way. However, although the EPR
program as such may have failed, it seems natural to continue
to ask for a causal explanation of nonlocal correlations.
A possible approach is to refrain from considering space-
time as fundamental, treating it as emerging (potentially
along with other macroscopic quantities) from a deeper
fundament [18–21]—comparably to temperature. A step in
this direction was taken by Hardy [22,23] with his program
of merging general relativity with quantum theory, in which
he proposes to extend the latter to dynamical causal orders,
a feature of relativity (see Ref. [24] for a recent review on
quantum theory and causality). Chiribella, D’Ariano, and
Perinotti [25,26] studied quantum supermaps called “quantum
combs” that allow for superpositions of causal orders. Based on
Hardy’s idea, Oreshkov, Costa, and Brukner [27] developed a
framework for quantum correlations without predefined causal
order by dropping the assumption of a global background
time while keeping the assumptions that locally, nature is
described by quantum theory and that no logical paradoxes
arise. Some causal structures emerging from this framework
cannot be predefined [27–29]—just like physical quantities
exhibiting nonlocal correlations [14,30–32]. If, in the two-
party case, we consider the classical limit of the quantum

systems, i.e., enforce both parties’ physics to be described
by classical probability theory (instead of quantum theory),
then a predefined causal order always emerges [27]. This is
in accordance with our experience and, hence, natural and
unsurprising; it strongly indicates that the same may hold in
the multiparty case [33]. This, however, fails to be true, as we
show in the present work.

II. INPUT-OUTPUT SYSTEMS AND CAUSAL ORDER

By definition, measurement settings and outcomes are
classical, i.e., perfectly distinguishable. Therefore, we think
of physical systems as black boxes which we probe with
classical inputs and that respond with classical outputs. When
taking this perspective, we describe all physical quantities, i.e.,
outputs, as functions of inputs. The party S is described by a
set of inputs V (S) = {Ai}I chosen freely by S, and by a set of
outputs Q(S) = {Xj }J the party can access (instantiations of
the inputs and outputs are denoted by the same letters but in
lowercase). Since we refrain from assuming global spacetime
as given a priori, we cannot define free randomness based on
such a causal structure, as done elsewhere [34,35]. Instead,
we take the concept of free randomness as fundamental—in
accordance with a recent trend to derive properties of quantum
theory from information-theoretic principles [36–43]—and
postulate inputs as being free.

Outputs are functions of inputs. Based on this relationship,
we define causal order. If an output Xj is a function of Ai , we
say that Xj depends causally on Ai and is in the causal future
of Ai or, equivalently, that Ai is in the causal past of Xj ,
denoted by Xj � Ai or Ai � Xj . The negations of these
relations are denoted by �� and ��. This definition neither
induces a causal order between outputs nor between inputs
nor between any output and the input it does not depend on.

Let us introduce a second party T described by the set
of inputs V (T ) = {Bk}K and with access to the outputs
Q(T ) = {Y�}L. Outputs can depend on inputs of both parties.
If party S has an output that depends on an inputs of T , then
we say that T can signal to S (see Fig. 1). In the following,
we will assume unidirectional signaling: If S can signal to T ,
then T cannot signal to S. This enables us to causally order
parties. If at least one output of S depends on an input of T ,
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FIG. 1. If party T can freely choose an input (here, visualized by
a knob), and party S can read off an output that depends on T ’s input,
then T can signal to S, which implies that S is in the causal future
of T (S � T ).

but no output of T depends on any input of S (which is the
condition for unidirectional signaling), then S is in the causal
future of T . Formally, if there exist X ∈ Q(S) and B ∈ V (T )
fulfilling X � B and if for all Y ∈ Q(T ) and for all A ∈ V (S),
the relation Y �� A holds, then we have S � T .

Consider a two-party scenario with parties S, T , each
having a single input A, B, a single output X, Y , respectively,
and a shared random variable �. We call a theory compatible
with predefined causal order if all achievable probability
distributions P (x,y|a,b) can be written as a convex mixture
of possible causal orders, i.e.,

P (x,y|a,b) = Pr (α)
∑

λ

Pr (λ|α) Pr (x|a,λ,α) Pr (y|a,b,λ,α)

+ Pr (¬α)
∑

λ

Pr (λ|¬α) Pr (x|a,b,λ,¬α)

× Pr(y|b,λ,¬α),

where α is the event S � T , and λ is an instantiation of � that
depends on a input not in either of the sets V (S) or V (T ). For
more than two parties, the definition of predefined causal order
becomes more subtle. Suppose we have three parties S, T ,
and U , where S is in the causal past of both T and U . We
call a causal order predefined even if S is free to choose
the causal order between T and U [44,45]. In general, in a
predefined causal order, a party is allowed to determine the
causal order between all parties in her causal future. Hence,
a theory with the parties S0, . . . ,Sn−1, inputs A0, . . . ,An−1

(shorthand �A), and outputs X0, . . . ,Xn−1 ( �X), respectively,
is compatible with predefined causal order if all achievable
probability distributions P (�x|�a) can be written as

P (�x|�a) =
n−1∑
i=0

Pr (αi ∧ ¬α0 ∧ · · · ∧ ¬αi−1)

× Pr (�x|�a,Si is first) ,

where αi is the event that each party Sj (�=i) either is in
the causal future of Si (Si � Sj ) or has no causal relation
with Si (Si �� Sj and Si �� Sj ). The term Pr(�x|�a,Si is first) is
a convex mixture of distributions compatible with the causal
structures in which Si is first and chooses the causal order
between the remaining parties.

III. GAME

The following multiparty game cannot be won in a scenario
with predefined causal order. Denote by S0, . . . ,Sn−1 the
parties that participate in the game. Each party Si has a
uniformly distributed binary input Ai as well as a binary
output Xi and access to the shared random variable M

uniformly distributed in the range {0, . . . ,n − 1}. The random

variable M belongs to a dummy party (we need her as a
source of shared randomness). For given M = m, the game
is won whenever Sm’s output Xm is the parity of the inputs to
all other parties, i.e., Xm = ⊕

i �=m Ai . Therefore, the success
probability for winning the game is

psucc = 1

n

n−1∑
m=0

Pr

(
Xm =

⊕
i �=m

Ai

∣∣∣∣M = m

)
. (1)

In a setup with predefined causal order, this success
probability is upper bounded by 1 − 1/(2n). To see this, note
that if, without loss of generality, S0 is first, she will remain
first. For n > 2, the last party can be specified by S0. Thus,
all the terms of the sum in expression (1) are 1 except for the
first summand, reflecting the fact that S0 herself has to guess
the parity of the other’s inputs, which is 1/2. By repeating the
experiment ω(n) times, one can bring the winning probability
arbitrarily closely to 0.

IV. FRAMEWORK FOR CLASSICAL CORRELATIONS
WITHOUT CAUSAL ORDER

Instead of assuming that locally, nature is described by
quantum theory [27], we take the classical limit of the
systems and thus assume that locally, nature is described by
classical probability theory. In addition to this, we require
the probabilities of the outcomes to be nonnegative and to
sum up to 1; this excludes logical paradoxes [26,27]. We
suppose that each party has a closed laboratory that can
be opened once—which is when the only interaction with
the environment happens. When a laboratory is opened, the
party receives, manipulates, and outputs a state. Thus, in
the setting of local validity of classical probability theory,
such a laboratory is described by a conditional probability
distribution PO|I , where I is the input to and O is the output
from the laboratory.

Let us consider the parties as described in the game.
We denote the input to Si by Ii and the output from Si

by Oi . Therefore, the ith local laboratory is described by
the distribution PXi,Oi |Ai,Ii

. Because we do not make global
assumptions other than that the overall picture should describe
a probability distribution, we describe everything outside the
laboratories by the distribution W (see Fig. 2) satisfying the

S0

X0

A0

. . . Sn−1

Xn−1

An−1

W

O0

I0

On−1

In−1

FIG. 2. Party Si is described by PXi,Oi |Ai ,Ii . Her output Oi is fed
to W , which describes everything outside the laboratories.
Therefore, W also provides the input Ii and is described
by W = PI0,...,In−1|O0,...,On−1 .
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condition that, for any choice of a0, . . . ,an−1, i.e., for any
probability distribution PX0,O0|I0 , . . . ,PXn−1,On−1|In−1 , the values
of the product with W , i.e., the values of

PX0,O0|I0 · · · · · PXn−1,On−1|In−1 · PI0,...,In−1|O0,...,On−1 ,

and in general of

PO0|I0 · · · · · POn−1|In−1 · PI0,...,In−1|O0,...,On−1 ,

are non-negative and sum up to 1. For tackling this condition
formally, we represent a probability distribution PX as a
real positive diagonal matrix P̂X with trace 1 and diagonal
entries PX(x). A conditional probability distribution PX|Y is a
collection of (unconditional) probability distributions PX|Y=y

for each value of y. Thus, we represent PX|Y similarly, yet
with trace |Y|, where Y is the set of values y can take, and
we use the symbol P̂X|Y . The values PX|Y=y(x) are ordered
with respect to the ordering of the subscripts of PX|Y , e.g., for
binary X and Y the matrix P̂X|Y is

⎛
⎜⎝

PX|Y=0(0) 0 0 0
0 PX|Y=1(0) 0 0
0 0 PX|Y=0(1) 0
0 0 0 PX|Y=1(1)

⎞
⎟⎠.

The condition that the probabilities PX|Y=y(x) sum up to 1 for
fixed y is reflected by the condition that if we trace out X

from the matrix P̂X|Y (denoted by TrXP̂X|Y ), we are left with
the identity. The product of two distributions P̂X and P̂Y in
the matrix representation corresponds to the tensor product
denoted by P̂X ⊗ P̂Y . To obtain the marginal distribution from
a joint distribution, we use the partial trace. This implies
that the output state of a laboratory POi |Ii

, given the input
state PIi

, is TrIi
(P̂Oi |Ii

· (1Oi
⊗ P̂Ii

)), where 1Oi
is the identity

matrix with the same dimension as P̂Oi
. This allows us to use

the framework of Oreshkov, Costa, and Brukner [27], where
we restrict ourselves to diagonal matrices, i.e., all objects
(W and local operations) are simultaneously diagonalizable
in the computational basis and can, hence, be expressed
using the identity 1 and the Pauli matrix σz. We know from
their framework [27] that if we express PI0,...,In−1|O0,...,On−1

as a matrix W = c
∑

i gi , where c is a normalization con-
stant and gi = Ri,0 ⊗ · · · ⊗ Ri,n−1 ⊗ Ti,0 ⊗ · · · ⊗ Ti,n−1. For
every i, the summand gi represents a channel from all Sj

with TrTi,j = 0 to all Sk with TrRi,k = 0. In order to avoid
logical paradoxes, gi must describe a channel where at least
one party is a recipient without being a sender [27]. In other
words, gi must either be the identity or there exists j such
that Ti,j = 1 and TrRi,j = 0.

V. WINNING THE GAME PERFECTLY

To win the game using this framework, we need to
provide the distribution PI0,...,In−1|O0,...,On−1 and all distributions
describing the laboratories. For that purpose, we use the fact
that, if a set {gi}I of matrices with all eigenvalues in {−1,1}
forms an Abelian group with respect to matrix multiplication,
then

∑
i∈I gi is a positive semidefinite matrix. To prove

this, take the eigenvector �v which has the smallest

eigenvalue λmin, i.e.,∑
i∈I

gi �v =
∑
i∈I

λ�v
i �v = λmin�v,

where λ�v
i is the eigenvalue of gi with respect to the

eigenvector �v. Let gi0 be an element contributing negatively
to λmin, i.e., gi0 �v = −�v. As the set forms a group, for
every j there exists a k �= j such that gi0 · gj = gk . This
implies −λ�v

j = λ�v
k and

∑
i∈I λ�v

i = 0.

A. Construction of Wn for odd n

We construct the distribution PI0,...,In−1|O0,...,On−1 for
odd n > 2. Let {gi}I be the set of matrices that can be written
as gi = gi,1 ⊗ gi,2 ⊗ · · · ⊗ gi,n, with the objects gi,k ∈ {1,σz},
and with an even number of σz for each i ∈ I . We use the
notation gi,j :k to denote the matrix gi,j ⊗ gi,j+1 ⊗ · · · ⊗ gj,k .
The fact σ 2

z = 1 implies that the product gi · gj for
every i,j ∈ I is a tensor product of 1 and σz with an even
number of σz and is thus an element of {gi}I . Further-
more, all elements mutually commute, have all eigenval-
ues in {−1,1} and, hence, each element is an involution.
Therefore, their sum is a positive semidefinite matrix. The
distribution PI0,...,In−1|O0,...,On−1 as a matrix Wn is built by taking
the sum over all group elements, where the matrix gi,k of the
group element gi contributes to the input Ik of party Sk , and to
the output Ok−1 mod n of the party labeled by (k − 1 mod n),

Wn = P̂I0,...,In−1|O0,...,On−1 = 1

2n

∑
i∈I

gi ⊗ gi,2:n ⊗ gi,1.

By construction, Wn is positive semidefinite, i.e., all prob-
abilities are positive. Because n is odd, there exists for
each group element gi ( �= 1) at least one position k

such that gi,k ⊗ gi,k+1 mod n = σz ⊗ 1, which excludes logical
paradoxes. Furthermore, for every i ∈ {0,1, . . . ,n − 1} the
object Wn contains the channel from all parties Sj (�=i) to Si—a
condition to perfectly win the game.

B. Example: W3

For illustration, we construct W3. The group from
which W3 is constructed is {g0,g1,g2,g3} with the group
elements

g0 = 1 ⊗ 1 ⊗ 1,

g1 = 1 ⊗ σz ⊗ σz,

g2 = σz ⊗ 1 ⊗ σz,

g3 = σz ⊗ σz ⊗ 1.

The matrix W3 is thus

W3 = 1
8 (1⊗6 + 1 ⊗ σz ⊗ σz ⊗ σz ⊗ σz ⊗ 1

+ σz ⊗ 1 ⊗ σz ⊗ 1 ⊗ σz ⊗ σz

+ σz ⊗ σz ⊗ 1 ⊗ σz ⊗ 1 ⊗ σz).

The second summand of W3 represents a channel from S0, S1

to S2, the third summand represents a channel from S1, S2

to S0, and finally, the last summand represents a channel
from S0, S2 to S1.

It can easily be verified that if the three parties S0, S1,
and S2 input PO0,O1,O2 (o0,o1,o2) = 1 into W3, then W3 outputs
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+1
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1
2

FIG. 3. The conditional probability distribution W3 is a mixture
of a circular identity channel with a circular bit-flip channel.

the distribution

PI0,I1,I2 (i0,i1,i2) =

⎧⎪⎨
⎪⎩

1
2 , i0 = o2, i1 = o0, i2 = o1

1
2 , i0 = ō2, i1 = ō0, i2 = ō1

0, otherwise,

where ōi = oi ⊕ 1. Therefore, W3 implements a uniform
mixture of the loops where the input of party Si mod 3 is sent
to party Si+1 mod 3, and where the input of party Si mod 3 is
flipped and sent to Si+1 mod 3 (see Fig. 3) [46]. It is evident from
Fig. 3 that logical paradoxes are not possible. If all intermediate
parties forward what they receive (by applying any reversible
transformation), both loops (see Fig. 3) cancel each other out,
i.e., the correlations interfere destructively. Then again, if one
intermediate party does not forward what she receives, the loop
is broken. Conversely, any party can signal to her predecessor
in the loop, because then an even number of bit-flips are
applied, and thus the correlations interfere constructively. The
same reasoning holds for any Wn for odd n > 2.

C. Construction of Wn for even n

The above construction works for odd n > 2. For even n,
the group contains the element σ⊗n

z , which leads to a logical
paradox since all inputs are correlated to all outputs [27]. This

can also be seen in Fig. 3 where, for even n, the sum of both
channels leads to a logical paradox. In this case (n even), we
double the dimensions of the output of the second-to-last party
and of the input of the last party and construct the distribution
based on the group of matrices for the case of n − 1. Let {gi}I
be the group used to construct Wn−1. The set for n

parties is the Abelian subgroup {gi ⊗ g′
i}I ∪ {ḡi ⊗ g′

i}I ,
where g′

i = gi,1 ⊗ gi,2 and ḡi = gi · σ⊗(n−1)
z .

The distribution PI0,...,In−1|O0,...,On−1 as a matrix Wn is
constructed as before, with the exception that g′

i is considered
a single submatrix,

Wn = 1

2n+1

∑
i∈I

(gi ⊗ g′
i ⊗ gi,2:n−1 ⊗ g′

i ⊗ gi,1

+ ḡi ⊗ g′
i ⊗ ḡi,2:n−1 ⊗ g′

i ⊗ ḡi,1).

Again, by construction, Wn fulfills all requirements and
contains all channels required to perfectly win the game.

D. Example: W4

As an example, we construct the matrix W4. The
group {h0,h1,h2,h3,h4,h5,h6,h7} for W4 is constructed from
the group {g0,g1,g2,g3} and has the elements

h0 = g0 ⊗ g′
0 = (1 ⊗ 1 ⊗ 1) ⊗ (1 ⊗ 1),

h1 = g1 ⊗ g′
1 = (1 ⊗ σz ⊗ σz) ⊗ (1 ⊗ σz),

h2 = g2 ⊗ g′
2 = (σz ⊗ 1 ⊗ σz) ⊗ (σz ⊗ 1),

h3 = g3 ⊗ g′
3 = (σz ⊗ σz ⊗ 1) ⊗ (σz ⊗ σz),

h4 = ḡ0 ⊗ g′
0 = (σz ⊗ σz ⊗ σz) ⊗ (1 ⊗ 1),

h5 = ḡ1 ⊗ g′
1 = (σz ⊗ 1 ⊗ 1) ⊗ (1 ⊗ σz),

h6 = ḡ2 ⊗ g′
2 = (1 ⊗ σz ⊗ 1) ⊗ (σz ⊗ 1),

h7 = ḡ3 ⊗ g′
3 = (1 ⊗ 1 ⊗ σz) ⊗ (σz ⊗ σz).

The matrix W4 is thus

W4 = 1
32 (1⊗10 + 1 ⊗ σz ⊗ σz ⊗ 1 ⊗ σz ⊗ σz ⊗ σz ⊗ 1 ⊗ σz ⊗ 1 + σz ⊗ 1 ⊗ σz ⊗ σz ⊗ 1 ⊗ 1 ⊗ σz ⊗ σz ⊗ 1 ⊗ σz

+ σz ⊗ σz ⊗ 1 ⊗ σz ⊗ σz ⊗ σz ⊗ 1 ⊗ σz ⊗ σz ⊗ σz + σz ⊗ σz ⊗ σz ⊗ 1 ⊗ 1 ⊗ σz ⊗ σz ⊗ 1 ⊗ 1 ⊗ σz

+ σz ⊗ 1 ⊗ 1 ⊗ 1 ⊗ σz ⊗ 1 ⊗ 1 ⊗ 1 ⊗ σz ⊗ σz + 1 ⊗ σz ⊗ 1 ⊗ σz ⊗ 1 ⊗ σz ⊗ 1 ⊗ σz ⊗ 1 ⊗ 1

+ 1 ⊗ 1 ⊗ σz ⊗ σz ⊗ σz ⊗ 1 ⊗ σz ⊗ σz ⊗ σz ⊗ 1).

The second to the fifth summands represent the channels that are used to perfectly win the game.
The conditional probability distribution W4 responds to input PO0,O1,O2,O3 (o0,o1,o2,1,o2,2,o3) = 1 with the following output

PI0,I1,I2,I3 (i0,i1,i2,i3,1,i3,2) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1
4 , i0 = o3, i1 = o0, i2 = o1, i3,1 = o2,1, i3,2 = o2,2
1
4 , i0 = ō3, i1 = o0, i2 = ō1, i3,1 = o2,1, i3,2 = ō2,2
1
4 , i0 = o3, i1 = ō0, i2 = ō1, i3,1 = ō2,1, i3,2 = o2,2
1
4 , i0 = ō3, i1 = ō0, i2 = o1, i3,1 = ō2,1, i3,2 = ō2,2

0, otherwise,

where o2,1,o2,2 are both bits of the random
variable O2; i3,1,i3,2 are both bits of the random variable I3,
and where ōi = oi ⊕ 1. Therefore, W4 implements a uniform
distribution of four circular channels (see Fig. 4).

By construction of W4, no logical paradox arises. More
intuitively, in any strategy that does not break any of the four
circular channels of Fig. 4 (i.e., every party’s output depends
on its input), parties S2 and S3 use the first bit, the second,
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S3

S0

S1
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S3

⊕1

⊕1

⊕1

S0

S1

S2

S3

⊕1

⊕1⊕1

S0

S1

S2

S3

⊕1

⊕1

⊕1

⊕1

+1
4

1
4

+1
4

1
4+

FIG. 4. The conditional probability distribution W4 is a mixture
of four circular channels. The channel from S2 to S3 is a two-bit
channel (double line). If the ⊕1 operation for the channel from S2

to S3 is outside the circle, then the ⊕1 operation is applied to the
first channel, i.e., the first bit is flipped, if it is inside the circle, then
the ⊕1 operation is applied to the second channel, i.e., the second bit
is flipped.

or both bits to communicate. If they use the first bit, then the
correlations arising from the first two loops and the last two
loops of Fig. 4 interfere constructively. Both pairs together,
however, break the loop. If they use the second bit, then the
first and the third loop, and the second with the last loop yield
the same output in every cycle. In total, all loops cancel each
other out. For the last case as well, where both bits are used
for communication, the correlations from the first and the last
loop interfere constructively, and so do the second and the
third. Ultimately, again, all loops cancel each other out, and
no logical paradox can be created.

For larger even n, the conditional probability
distribution Wn as well is constructed out of four loops,
as in Fig. 4, that cancel each other out when one tries to
build a logical paradox. For n = 2, the same construction
does not work, because the two-bit channel cannot be used to
signal from its source to its destination—it can only be used
when combined with other channels. In a two-party scenario,
however, in order to win the game, each party needs to signal
to the other.

E. Winning strategy

For odd n, the strategy Qm
i = P̂Xi=xi ,Oi |Ai=ai ,Ii

for party Si

to win the game is

Qm
i = Qm

i,O ⊗ Qm
i,I

=
(
1 + (−1)a

′
i σz

2

)
⊗

(
1 + (−1)xi σz

2

)
,

where a′
i = ai for i ≡ m + 1 (mod n), and a′

i = ai + xi oth-
erwise. The strategies for even n are equivalent to the strategies
for odd n, except that Sn−2 has a two-bit output and Sn−1 has
a two-bit input. Depending on M , they use the first, second,
or both bit(s) to receive or send the desired bit. All local
operations are classical since they are diagonal, i.e., consist
only of measuring and preparing states in the σz basis.

The distribution P (xm|a0, . . . ,an−1,M = m) is∑
xi ∈ {0,1}

i �= m

P (�x|�a,M = m)

=
∑

xi ∈ {0,1}
i �= m

Tr
((

Qm
0,I ⊗ · · · ⊗ Qm

n−1,I

⊗ Qm
0,O ⊗ · · · ⊗ Qm

n−1,O

) · Wn

)

= 1

2
(1 + (−1)Xm+∑

i �=m Ai ),

where we rearranged the submatrices of Qm
i in the trace ex-

pression such that the ordering of the conditional probabilities
in Wn match. This result is obtained because, after taking
the trace, each term except 1 and (−1)Xm+∑

i �=m Ai is either
zero or depends on a variable Xi(�=m) which, in the process
of marginalization over Xi(�=m), cancels out. For each m, the
winning probability is

Pr

(
Xm =

⊕
i �=m

Ai

∣∣∣∣M = m

)
= 1.

Therefore, the game is won with certainty.

F. Example: n = 3

The probability of obtaining x0 in the case M = 0 is

P (x0|a0,a1,a2,M = 0)

=
∑

x1,x2∈{0,1}
Tr

((
Q0

0,I ⊗ Q0
1,I ⊗ Q0

2,I

⊗Q0
0,O ⊗ Q0

1,O ⊗ Q0
2,O

) · W3
)

= 1

8

Tr(1⊗6)

26

∑
x1,x2∈{0,1}

(1 + (−1)x0+x1+x2+a0+a1

+ (−1)x0+a1+a2 + (−1)x1+x2+a0+a2 )

= 1

2
(1 + (−1)x0+a1+a2 ).

Therefore, the probability of the event X0 = A1 ⊕ A2 is 1. The
distribution of X1 in the case M = 1 is

P (x1|a0,a1,a2,M = 1)

= 1

8

∑
x0,x2∈{0,1}

(1 + (−1)x0+x2+a0+a1

+ (−1)x0+x1+x2+a1+a2 + (−1)x1+a0+a2 )

= 1

2
(1 + (−1)x1+a0+a2 ),

and, finally, the distribution of X2 in the case M = 2 is

P (x2|a0,a1,a2,M = 2)

= 1

8

∑
x0,x1∈{0,1}

(1 + (−1)x2+a0+a1

+ (−1)x0+x1+a1+a2 + (−1)x0+x1+x2+a0+a2 )

= 1

2
(1 + (−1)x2+a0+a1 ).
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The probabilities of the events X1 = A0 ⊕ A2

and X2 = A0 ⊕ A1 are both 1. Therefore, the game is
won with certainty.

Intuitively, in the case M = m, party Sm+1 mod 3

sends Om+1 mod 3 = am+1 mod 3 on both circular
channels of Fig. 3. Thus, party Sm+2 mod 3 receives
the uniform mixture of Im+2 mod 3 = am+1 mod 3 (left
channel of Fig. 3) and Im+2 mod 3 = am+1 mod 3 ⊕ 1 (right
channel of Fig. 3). Party Sm+2 mod 3 thereafter sends
Om+2 mod 3 = Im+2 mod 3 ⊕ am+2 mod 3, i.e., the uniform
mixture of Om+2 mod 3 = am+1 mod 3 ⊕ am+2 mod 3 and
Om+2 mod 3 = am+1 mod 3 ⊕ am+2 mod 3 ⊕ 1, on both
circular channels, yielding the deterministic input
Im = am+1 mod 3 ⊕ am+2 mod 3 to party Sm.

G. Example: n = 4

In the example n = 4, we explicitly write the local opera-
tions for the third and fourth parties, as the third party has a
two-bit output, and the fourth party has a two-bit input. The
local operations for the third party (S2) are

Qm=0
2 =

(
1 ⊗ 1 + (−1)a2+x2σz ⊗ 1

4

)
⊗ Q′

2,

Qm=1
2 =

(
1 ⊗ 1 + (−1)a2σz ⊗ σz

4

)
⊗ Q′

2,

Qm=2
2 =

(
1 ⊗ 1

4

)
⊗ Q′

2,

Qm=3
2 =

(
1 ⊗ 1 + (−1)a2+x21 ⊗ σz

4

)
⊗ Q′

2,

with

Q′
2 =

(
1 + (−1)x2 σz

2

)
.

Party 4 (S3) uses

Qm=0
3 = Q′

3 ⊗
(
1 ⊗ 1 + (−1)x3σz ⊗ 1

2

)
,

Qm=1
3 = Q′

3 ⊗
(
1 ⊗ 1 + (−1)x3σz ⊗ σz

2

)
,

Qm=2
3 =

(
1 + (−1)a3σz

2

)
⊗

(
1 ⊗ 1

2

)
,

Qm=3
3 = Q′

3 ⊗
(
1 ⊗ 1 + (−1)x31 ⊗ σz

2

)
,

where we use shorthand Q′
3 for

Q′
3 =

(
1 + (−1)a3+x3σz

2

)
.

The distributions of X0, X1, X2, X3, under the condition
M = 0, M = 1, M = 2, M = 3, respectively, are

P (x0|a0,a1,a2,a3,M = 0) = 1
2 (1 + (−1)x0+a1+a2+a3 ),

P (x1|a0,a1,a2,a3,M = 1) = 1
2 (1 + (−1)x1+a0+a2+a3 ),

P (x2|a0,a1,a2,a3,M = 2) = 1
2 (1 + (−1)x2+a0+a1+a3 ),

P (x3|a0,a1,a2,a3,M = 3) = 1
2 (1 + (−1)x3+a0+a1+a2 ).

Therefore, the event X0 = A1 ⊕ A2 ⊕ A3 given M = 0, the
event X1 = A0 ⊕ A2 ⊕ A3 in the case M = 1, the event
X2 = A0 ⊕ A1 ⊕ A3 if M = 2, and the event
X3 = A0 ⊕ A1 ⊕ A2 in the case M = 3 have probability 1.
Which implies that the game is won with certainty.

By consulting Fig. 4, we can describe the strategy in the fol-
lowing way. If M = m, then party Sm+1 mod 4 sends am+1 mod 4

to the next party by using all four channels of Fig. 4. Each of the
next two parties in clockwise orientation, i.e., party Sm+2 mod 4

and party Sm+3 mod 4, sends the parity of what she receives
from the previous party and her input (am+2 mod 4, am+3 mod 4,
respectively). Depending on M , parties S2 and S3 use the first,
the second, or both single-bit channels. In particular, if M = 0,
then S2 uses the first channel to communicate to S3—the
second cannel is ignored. For M = 1 they use both channels,
i.e., the parity of the inputs to both channels is equal to the bit S2

sends. For M = 2, the two-bit channel between S2 and S3

is ignored. Finally, for M = 3 they use the second channel.
By doing so, Sm obtains am+1 mod 4 + am+2 mod 4 + am+3 mod 4,
as the introduced bit-flips from the four channels (see Fig. 4)
cancel each other out.

VI. CONCLUSION

In an attempt to construct a theory that combines aspects of
general relativity and quantum theory, Oreshkov, Costa, and
Brukner [27] proposed a framework for quantum correlations
without causal order. They proved that some correlations are
incompatible with any a priori causal order and, therefore, are
not compatible with predefined causal order although they sat-
isfy quantum theory locally. We consider the classical limit of
this framework and show that in sharp contrast to the two-party
scenario [27], classical and logically consistent multiparty
correlations can be incompatible with any predefined causal
order. To show this, we propose a game that cannot be won
in a scenario with predefined causal order, but is won with
certainty when no causal order is fixed.

Recently, the ideas of indefinite causal order and of
superpositions of causal orders were applied to quantum
computation [26,47–51]. Furthermore, Aaronson and Wa-
trous [52] showed that closed timelike curves render classical
and quantum computing equivalent. Our result is similar in the
sense that the winning probability of the game is the same for
the quantum and for the classical framework. Since the W

object in Fig. 2 can be thought of as a channel back in
time, closed timelike curves can be interpreted as being
part of the framework. Closed timelike curves per se are
consistent with general relativity [53]. However, Aaronson
and Watrous take Deutsch’s approach [54] to closed timelike
curves which, as opposed to the framework studied here, is a
nonlinear extension of quantum theory—such extensions are
known to allow for communication faster than at the speed
of light [55].
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