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Quantum mechanics without state vectors
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Because the state vectors of isolated systems can be changed in entangled states by processes in other isolated
systems, keeping only the density matrix fixed, it is proposed to give up the description of physical states in
terms of ensembles of state vectors with various probabilities, relying only on density matrices. The density
matrix is defined here by the formula giving the mean values of physical quantities, which implies the same
properties as the usual definition in terms of state vectors and their probabilities. This change in the description
of physical states opens up a large variety of new ways that the density matrix may transform under various
symmetries, different from the unitary transformations of ordinary quantum mechanics. Such new transformation
properties have been explored before, but so far only for the symmetry of time translations into the future, treated
as a semigroup. Here, new transformation properties are studied for general symmetry transformations forming
groups, not just semigroups. Arguments that such symmetries should act on the density matrix as in ordinary
quantum mechanics are presented, but all of these arguments are found to be inconclusive.
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I. A MODEST PROPOSAL

One of the most disturbing aspects of quantum mechanics
arises from entanglement [1]. In an entangled state in ordinary
quantum mechanics an intervention in the state vector affecting
one part of a system can instantaneously affect the state
vector describing a distant isolated part of the system. It is
true that in ordinary quantum mechanics no measurement in
one subsystem can reveal what measurement was done in a
different isolated subsystem, but the susceptibility of the state
vector to instantaneous change from a distance casts doubts
on its physical significance.

Entanglement is much more of a problem in some modi-
fications of quantum mechanics that are intended to resolve
the problem of measurement, such as the general nonlinear
stochastic evolution studied in [2]. It is difficult in these
theories even to formulate what we mean by isolated sub-
systems, much less to prevent instantaneous communication
between them [3,4]. Polchinski [4] has shown that unless
nonlinearities are constrained to depend only on the density
matrix, such modified versions of quantum mechanics even
allow communication between the different worlds of the
many-worlds description of quantum mechanics.

The problem of instantaneous communication between
distant isolated systems has been nicely summarized in a
theorem of Gisin [3]. It states that in a system consisting of
two isolated subsystems I and II, with a prescribed density
matrix ρI for subsystem I, it is always possible in a suitable
entangled state of the two subsystems to make measurements
on subsystem II that put subsystem I in any set of states
�I

r (not necessarily orthogonal) with any probabilities Pr ,
provided only that

∑
r Pr�

I
r = ρI , where �I

r is the projection
operator on the state �I

r . Since any statement that a system
is in an ensemble of states with definite probabilities can thus
be changed instantaneously by a measurement at an arbitrary
distance, keeping only the density matrix fixed, it seems
reasonable to infer that such statements are meaningless, and
that only the density matrix has meaning.
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Taking the density matrix as the description of physical
states is very different from giving the same status to an
ensemble of state vectors with various probabilities because
the density matrix contains much less information. If we know
that a system is in any one of a number of states �r , with
probabilities Pr , then we know that the density matrix is
ρ = ∑

r Pr�r , where �r is the projection operator on state
�r , but this does not work in reverse. As is well known, for a
given density matrix ρ there are any number of ensembles of
not necessarily orthogonal or even independent state vectors
and their probabilities that give the same density matrix. (An
exception is discussed in Sec. II.) The density matrix is of
course a Hermitian operator on Hilbert space, a vector space. In
speaking of “quantum mechanics without state vectors” I mean
only that a statement that a system is in any one of various state
vectors with various probabilities is to be regarded as having no
meaning, except for what it tells us about the density matrix [5].

For example, suppose the density matrix of a spin- 1
2

particle, in a basis provided by states with the north component
of spin equal to + 1

2 or − 1
2 , takes the form

ρ =
(

0.69 0.17

0.17 0.31

)
.

By diagonalizing this matrix, we might conclude that this
particle has a 75% probability of being in a pure state with
spin pointing northeast and a 25% probability of being in an
orthogonal pure state with spin pointing southwest. But, we get
the same density matrix if the particle has a 50% probability of
being in a pure state with spin pointing north, a 15% probability
of being in a pure state with spin pointing south, and a 35%
probability of being in a pure state with spin pointing east.
These two ensembles sound different, but in fact they are
indistinguishable. Indeed, they had better be indistinguishable
because otherwise we could communicate instantaneously at
an arbitrary distance by acting on a distant isolated system
with which this particle’s state vector is entangled so as to
change the spin states from the first to the second ensemble.
It is better just to specify the density matrix, and give up
its description in terms of an ensemble of state vectors with
various probabilities.
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If the density matrix is not to be defined in terms of
ensembles of state vectors, then what is it? We may define
it by postulating a physical interpretation: The average value
A of any physical quantity represented by a Hermitian operator
A is Tr(Aρ), which since it applies also to powers of A allows
us to find from the density matrix the probability distribution
for values of the quantity represented by A. This postulate
leads to all the properties of the density matrix that are usually
derived from its interpretation in terms of an ensemble of
state vectors with various probabilities. The density matrix
must be Hermitian in order that Tr(Aρ) should be real for an
arbitrary Hermitian operator A. The density matrix must have
unit trace in order that Tr(αρ) = α for any c number α. The
density matrix must be positive in order that Tr(Aρ) should
be positive for any positive Hermitian operator A. Also, a
physical quantity represented by a Hermitian operator A will
have a definite value α (in the sense that the mean value of An

is αn for all integers n) if and only if Aρ = αρ.
It may seem like a mere matter of language to say that it is

the density matrix rather than an ensemble of state vectors with
various probabilities that should be taken as the description of
a physical system. Already, many studies of the interpretation
of quantum mechanics and of quantum information theory
are based on the density matrix rather than the state vector,
without needing a new interpretation of quantum mechanics.
What difference does it make?

There is one big difference, which is our chief concern in
this paper. Giving up the definition of the density matrix in
terms of state vectors opens up a much larger variety of ways
that the density matrix might respond to various symmetry
transformations. In ordinary quantum mechanics, a symmetry
transformation takes a density matrix ρ into UρU †, where U is
a unitary (or, for time reversal, antiunitary) operator belonging
to one of the representations of the symmetry group. This
is certainly not the only way that a Hermitian matrix could
transform. For instance, we may consider a system with an
SU(3) symmetry and a Hilbert space of three dimensions,
in which the density matrix transforms under SU(3) as the
reducible representation 3 + 3 + 1 + 1 + 1. In a suitable basis,
we would have

ρ =

⎛
⎜⎝

a1 b3 b∗
2

b∗
3 a2 b1

b2 b∗
1 a3

⎞
⎟⎠ ,

where under SU(3) the real diagonal elements an transform
as singlets, with a1 + a2 + a3 = 1, and the triplet (b1,b2,b3)
transforms as the representation 3. This SU(3) transformation
of ρ cannot be put in the form ρ �→ UρU † required in ordinary
quantum mechanics because if the 3×3 matrix U belonged to
the representations 3 or 3, then ρ would transform as 3×3 =
1 + 8, not 3 + 3 + 1 + 1 + 1. (The other possibility is that U

belongs to the representation 1 + 1 + 1, in which case ρ would
transform as a sum of singlets, again not including 3 + 3.) The
question of the positivity of a density matrix transforming in
this way is discussed in Sec. VII.

The possibility of an unusual transformation of the density
matrix has been widely considered, but up to now I believe
only for the symmetry of time translation. In this case, it is
known that the evolution of the density matrix with time is in

general governed by a first-order linear differential equation,
such as the Lindblad equation [6] (given here in Sec. VIII),
different from what is found in ordinary quantum mechanics.
The Lindblad equation is commonly used to study open
systems in ordinary quantum mechanics, with the effects of
the environment integrated out, but it has also been used to
deal with the problem of measurement [7] in closed systems. A
stochastic evolution of the state vector can be arranged to yield
a Lindblad equation for the density matrix, and with a suitable
choice of the details of this differential equation, its solutions
can reproduce the results of measurement according to the
Copenhagen interpretation, but through a smooth spontaneous
localization of the density matrix [7] rather than a sudden
intrusion of classical physics. (These matters are discussed in
a separate paper [8].) These theories share the well-known
feature of ordinary quantum mechanics, that entanglement
does not lead to communication at a distance between isolated
systems. This is because (as explained in Sec. III, in a more
general context) nothing that is done in one system can
instantaneously affect the density matrix of another isolated
system, although it can affect the state vector. Also, all
predictions can be derived from the density matrix, without
knowing anything about state vectors, and the evolution of the
density matrix in these theories depends only on the density
matrix, not on the state vector. But, from the point of view
explored in the present work, the study of the stochastic
evolution of the state vector is unnecessary; it is only the
differential equation for the density matrix that matters.

The time-translation symmetry transformations used in
deriving the Lindblad equation take us only into the future,
not the past, and hence form a semigroup, not a group. If we
are willing to consider new ways that the density matrix might
transform under time translation, then we ought to do the same
for general symmetry groups, not just semigroups.

This proposal runs into potential difficulties, each of which
can be escaped through a narrow loophole. As shown in Sec. II,
in order to allow for any new group transformation rules, we
would need to restrict the class of Hermitian operators that
represent physical quantities. In order for the transformation
of the density matrix under a continuous symmetry group to
take a form different from that of ordinary quantum mechanics,
it would also be necessary to restrict the class of physically
realizable density matrices, as described in Sec. VII. Finally,
using a requirement related to the condition of complete
positivity, it is shown in Sec. VIII that the same applies to
discrete symmetry groups. If further study shows that these
loopholes are not actually open, then on the basis of the
arguments of this paper, we could conclude that, even in a
quantum mechanics without state vectors, the density matrix
must transform under symmetry groups just as in ordinary
quantum mechanics.

II. PHYSICAL QUANTITIES AND
UNUSUAL SYMMETRIES

To explore unusual possibilities for symmetry transforma-
tions, we need first to say what we mean by a symmetry
transformation. We will take a symmetry transformation to
be a linear mapping ρ �→ g(ρ) of density matrices, which
preserve their Hermiticity, positivity, and unit trace. For
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any such transformation g, we further assume that there
is a corresponding linear transformation A �→ g(A) of any
Hermitian operator A representing a physical quantity, which
preserves its Hermiticity, such that the mean value of the
physical quantity is left invariant:

Tr[g(A) g(ρ)] = Tr(Aρ). (1)

With this definition of symmetry transformations, it is
important to decide just what operators can represent physical
quantities. Certainly, we want to include familiar quantities
such as momentum, angular momentum, etc., and functions
of these quantities. In particular, the projection operator on
a nondegenerate eigenstate of such a physical quantity, as for
instance the projection operator (1 ± 2sz)/2 on a state of a spin
1
2 with sz = ± 1

2 , represents a physical quantity. In ordinary
quantum mechanics, any Hermitian operator is assumed to
represent a physical quantity, but if state vectors are not to be
taken as a representation of reality, we can doubt whether
operators �� that are defined as the projection operators
on arbitrary state vectors � necessarily represent physical
quantities. If they did, then according to our interpretive
postulate Tr(�� ρ) would be the probability that a system
with density matrix ρ is in a state �, which is just the sort
of statement that we are here taking as generally meaningless.
In any case, it is hard to see how one could ever tell that
Schrödinger’s cat is in a state |alive〉 + |dead〉 rather than, say,
|alive〉 − |dead〉.

This point is important for us because if all Hermitian
operators including projection operators represent physical
quantities, then with our assumptions it can be shown that den-
sity matrices transform under any symmetry transformation g

with an inverse just as in ordinary quantum mechanics [9]:

g(ρ) = U ρ U †, (2)

with U unitary or antiunitary.
The first step in the proof is to show that if all projection

operators are physical quantities in the above sense, then any
symmetry transformation g with an inverse g−1 takes any
projection operator � (defined here as a Hermitian operator
with �2 = � and Tr� = 1) into another projection operator.
According to our definition of symmetries, any density matrix
ρ is mapped into a Hermitian positive matrix g(ρ) with unit
trace, which can therefore be expressed as

g(ρ) =
∑

n

Pn�n,

where �n are projection operators, satisfying �n�m = δnm�n

and Tr�n = 1, and the Pn are positive real numbers with∑
n Pn = 1. We then have

ρ =
∑

n

Pn g−1(�n).

If all projection operators represent physical quantities, then
we can use Eq. (1) with any �n in place of A, ρ taken as any
�m, and g replaced with g−1, so that

Tr[g−1(�n) g−1(�m)] = Tr(�n �m) = δnm.

Hence,

Tr(ρ2) =
∑

n

P 2
n .

Now, if ρ is a projection operator, then ρ2 = ρ, so Tr(ρ2) =
Tr(ρ) = 1, and therefore

∑
n P 2

n = 1. But the only way that
this can be satisfied by a set of real positive numbers Pn with∑

n Pn = 1 is to have all Pn vanish except for one, say P1, with
the value P1 = 1. Then, g(ρ) is itself a projection operator,
namely �1.

The rest of the proof is completed quickly. Any projection
operator � can be expressed as a dyad �� = ��†, where
� is a normalized state vector, unique up to a phase. (This
is the exception mentioned in Sec. I to the rule that density
matrices may be expressed in various different ways as
linear combinations of projection operators; the only such
representation of a projection operator is as a unique dyad.)
Since as we have seen any symmetry transformation g with
an inverse takes projection operators into projection operators,
we must have g(��) = �g(�), where the state vector g(�)
is unique up to a phase. Again, if these projection operators
are all to be taken as representing physical quantities, then in
Eq. (1) we can take A = �� and ρ = �� for any two state
vectors � and �, and find

Tr(�g(�) �g(�)) = Tr(�� ��)

and therefore

|(g(�),g(�))|2 = |(�,�)|2.
According to Wigner’s theorem [10], if this condition is
satisfied for all normalized state vectors � and � (which from
our present point of view does not need to be assumed), then
it must be possible to choose the phases of all g(�) so that

g(�) = Ug�,

where Ug is a unitary (or antiunitary) operator, the same for
all �. In this case, we have g(��) = Ug��U

†
g . Since any

density matrix can be expressed (though not uniquely) as a
linear combination of projection operators, they also transform
as in Eq. (2), as was to be proved.

We thus have a choice. We can assume that the invariance
condition (1) holds for all density matrices ρ and all Hermitian
operators A, in which case density matrices can only have the
same transformation properties (2) as in ordinary quantum
mechanics. Or, we can limit the validity of Eq. (1) to a class of
physical quantities that does not include projection operators
on every state vector, in which case density matrices may have
a much wider variety of symmetry transformation properties.
In this paper, we will explore the consequences of the latter
choice.

The behavior of the density matrix under general symmetry
transformations is outlined here in Sec. III. In Sec. IV, these
general results are applied and further explored for the case
of continuous symmetries. The group multiplication law is
found to impose severe constraints on the transformation
of the density matrix. Section V presents an example of a
class of continuous symmetries whose action on the density
matrix explicitly satisfies these constraints, but is different
from the transformation found in ordinary quantum mechanics.
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Section VI describes special features of the action of compact
groups on the density matrix. Section VII takes up the
important but difficult question of deciding what conditions
should be imposed on the transformation of the density
matrix under general symmetry operations so that these
transformations will preserve the positivity of the density
matrix. Section VIII shows that assuming the positivity of
the eigenvalues of the transformation kernel rules out the
possibility that the density matrix transforms differently than
in ordinary quantum mechanics, and suggests a reason why
these eigenvectors need not be positive.

III. GENERAL SYMMETRIES

We suppose that a general element g of the symmetry
group of a system induces on the density matrix a linear
transformation ρ �→ g(ρ), with

g(ρ)M ′N ′ =
∑
MN

KM ′M,N ′N [g] ρMN, (3)

where K[g] is some c-number kernel independent of ρ. We
will take the indices M , N , etc. to run here over a finite
number d of values, but will assume that the formalism can be
extended to Hilbert spaces of infinite dimensionality, on which
the matrices considered here become well-behaved operators.
(No attempt will be made here to apply this formalism to
relativistic theories [11].) Our reason for concentrating on
linear transformations is explained later in this section.

In order for g(ρ) to be Hermitian for an arbitrary Hermitian
ρ, it is necessary and sufficient that K be Hermitian, in the
sense that

KM ′M,N ′N [g]∗ = KN ′N,M ′M [g]. (4)

(This is why it proves convenient to put the subscripts on K[g]
in what may otherwise look like a peculiar order.) Also, in
order for g(ρ) to have unit trace for an arbitrary ρ with unit
trace, it is necessary and sufficient that∑

M ′
KM ′M,M ′N [g] = δMN. (5)

The difficult thing is to know what additional conditions should
be imposed on K[g] (or on ρ) so that g(ρ) will be positive.
This will be discussed in Secs. VII and VIII.

The great physical advantage of basing quantum mechanics
on the density matrix, with linear symmetry transformation
properties, is that the transformation properties of the density
matrix for an isolated subsystem do not depend on the
properties of any other distant isolated subsystem, even in
the case of entanglement, where the density matrix does not
factorize into density matrices for the individual subsystems.
Suppose that the system consists of two parts, subsystems I and
II, which are isolated in the sense that no physical influence
and no message can pass from one to the other. We replace the
indices M , N , etc. with compound indices ma, nb, etc., with
the first letter labeling the states of subsystem I and the second
the states of subsystem II. The possibility of entanglement does
not in general allow the density matrix to factor into a product
ρ(I )

mnρ
(II)
ab of density matrices for the two subsystems, but if the

subsystems are isolated they transform independently, in the

sense that the kernel in Eq. (3) does factorize:

Km′a′ma,n′b′nb[g] = K
(I )
m′m,n′n[g] K

(II)
a′a,b′b[g], (6)

where K (I )[g] and K (II)[g] are the kernels that would describe
the transformation of the density matrix in subsystems I
and II if the other subsystem did not exist. Equation (6)
is true in particular for the transformation (2) of ordinary
quantum mechanics, if the generator T of this transformation
(such as the Hamiltonian in the case of time translation) is
a sum T = T (I ) + T (II) of operators T (I ) and T (II) that act
respectively only on the indices m,n, . . . and a,b, . . . . Here,
we are taking Eq. (6) as the characteristic feature of isolated
systems even for more general transformation rules. [For a
nonlinear transformation it would be difficult to see what
could take the place of Eq. (6) as a statement of what we
mean by isolated subsystems.] Since both K (I )[g] and K (II)[g]
are possible physical kernels, they each satisfy the analog
of Eq. (5):∑

m′
K

(I )
m′m,m′n[g] = δmn,

∑
a′

K
(II)
a′a,a′b[g] = δab. (7)

The density matrix of subsystem I is related to the density
matrix of the whole system by

ρ(I )
mn =

∑
a

ρma,na. (8)

[This follows from the requirement that the mean value Tr(ρA)
of any physical quantity represented by an operator of the form
Ama,nb = A(I )

mnδab, which acts nontrivially only on subsystem
I, should be equal to Tr(ρ(I )A(I )).] According to Eqs. (3), (6),
and (8), its transformation is given by

ρ
(I )
m′n′ �→ g(I )(ρ)m′n′

=
∑
a′

∑
mnab

K
(I )
m′m,n′n[g] K

(II)
a′a,a′b[g] ρma,nb.

Using Eq. (7) for K (II) and Eq. (8) again, this is

g(I )(ρ)m′n′ =
∑
mn

K
(I )
m′m,n′n[g] ρ(I )

mn, (9)

so the transformation of ρ(I ) is independent of ρ(II). This
applies in particular to the symmetry of time translation, so as
well known even in entangled states the evolution of the density
matrix for subsystem I is unaffected by whatever happens in
an isolated subsystem II.

Now, let us return to the general case, and our former
notation. Because the kernel K[g] is Hermitian in the sense of
Eq. (4), it can be expanded as

KM ′M,N ′N [g] =
∑

i

η(i)[g] u
(i)
M ′M [g] u

(i)∗
N ′N [g], (10)

where the u
(i)
M ′M [g] and η(i)[g] are a complete set of normalized

eigenmatrices and eigenvalues of the kernel KM ′M,N ′N [g], in
the sense that∑

N ′N

KM ′M,N ′N [g] u
(i)
N ′N [g] = η(i)[g] u

(i)
M ′M [g], (11)

Tr(u(i)†[g] u(j )[g]) = δij . (12)
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[Note that Eq. (11) does not say that the map (3) takes u(i)[g]
into η(i)[g] u(i)[g].] The transformed density matrix (3) can
then be written more compactly as a sum of matrix products:

g(ρ) =
∑

i

η(i)[g] u(i)[g] ρ u(i)†[g]. (13)

The trace condition (5) here reads as∑
i

η(i)[g] u(i)†[g] u(i)[g] = 1, (14)

where 1 is the unit matrix. If there were only one eigenvector
u(1)[g] with a nonzero eigenvalue η(1)[g], then Eq. (14)
would require η(1)[g] > 0, and the transformation rule (13)
could be written g(ρ) = U [g] ρ U †[g], where according to
Eq. (14) the matrix U [g] ≡

√
η(1)[g]u(1)[g] appearing in

this transformation rule is unitary. But, in the general case,
where the kernel has several independent eigenmatrices with
nonzero eigenvalues, Eqs. (13) and (14) represent a nontrivial
generalization of the unitary transformations of ordinary
quantum mechanics.

We also need to impose on K[g] the group property, that
for any two symmetry transformations g and g, we have∑

M ′N ′
KM ′′M ′,N ′′N ′ [g] KM ′M,N ′N [g] = KM ′′M,N ′′N [gg]. (15)

(This condition is not usually mentioned in connection with
time translation because, as we shall see, it does not constrain
the differential equation that governs the temporal evolution
of the density matrix, but it does need to be imposed even for
time translation when that symmetry is combined with other
symmetries.) Using the representation (10), the group property
(15) may be written∑

M ′N ′

∑
ij

η(i)[g] η(j )[g] u
(i)
M ′′M ′ [g] u

(j )
M ′M [g] u

(i)†
N ′N ′′ [g] u

(j )†
NN ′ [g]

=
∑

k

η(k)[gg] u
(k)
M ′′M [gg] u

(k)†
NN ′′ [gg] (16)

or, in an abbreviated notation,∑
ij

η(i)[g] η(j )[g] u(i)[g] u(j )[g]⊗u(j )†[g] u(i)†[g]

=
∑

k

η(k)[gg] u(k)[gg]⊗u(k)†[gg], (17)

it being understood that for any two d×d matrices A and B,

[A⊗B]M ′M,N ′N ≡ AM ′M BNN ′ . (18)

In the next section, we will explore the implications of Eq. (17)
for continuous symmetries.

IV. CONTINUOUS SYMMETRIES

We now consider a group of transformations that includes
elements arbitrarily close to the identity I. For the identity, we
have of course

KM ′M,N ′N [I] = δM ′MδN ′N . (19)

This has one eigenmatrix u(1)[I] with nonzero eigenvalue

u
(1)
N ′N [I] = δN ′N/

√
d, η(1)[I] = d, (20)

and d2 − 1 eigenmatrices u(α)[I], a complete set of traceless
matrices, all with eigenvalues zero:

Tr u(α)[I] = 0, η(α)[I] = 0. (21)

Now, let us consider group elements g(εn), with g(0) = I,
where ε is infinitesimal, and nr is a real vector specifying
a fixed direction in the space of group parameters near the
origin. The kernel K[g(εn)] may be supposed to be analytic
in εn for εn near zero, but because the eigenvalues η(α)[g(εn)]
are degenerate for ε = 0, according to the familiar rules of
first-order perturbation theory the corresponding unperturbed
eigenmatrices must be chosen to diagonalize the first-order
perturbation to K[g(εn)], and therefore may remain functions
of the direction (but not of the magnitude) of n even for ε → 0.
That is, in the limit ε → 0, the u(α)[g(εn)] approach u(α)(n),
where ∑

M ′MN ′N

u
(α)∗
M ′M (n)

[
∂KM ′M,N ′N [g(εn)]

∂ε

]
ε=0

u
(β)
N ′N (n)

= δαβ �(α)(n), (22)

where �(α)(n) scales as �(α)(cn) = c�(α)(n), but like u(α)(n)
is not in general analytic in n at n = 0. To first order in ε, the
corresponding eigenvalues are

η(α)[g(εn)] → ε �(α)(n). (23)

On the other hand, the eigenvalue η(1)[g(εn)] is not
degenerate and does not vanish for ε = 0, so the quantity√

η(1)[g(εn)]u(1)[g(εn)], which appears in the terms in Eq. (10)
with i or j or k equal to 1, may be supposed to be given by a
power series in εn:√

η(1)[g(εn)]u(1)[g(εn)] → 1 − iε n · τ + O(ε2), (24)

with n · τ ≡ ∑
r nrτr , where [τr ]N ′N are constant matrices

(not necessarily Hermitian), independent of ε and n.
The trace condition (14) tells us the anti-Hermitian parts of

the matrices τr :

−in · τ + in · τ † +
∑

α

�(α)(n) u(α)†(n)u(α)(n) = 0. (25)

This shows that although �(α)(n) and u(α)†(n) are complicated
functions of the vector n that defines a infinitesimal group
element, the sum in Eq. (25) is simply linear in the components
of n, and since it is Hermitian, we can write∑

α

�(α)(n) u(α)†(n)u(α)(n) =
∑

r

nrθr , (26)

where θr is Hermitian and independent of n. We therefore have

τr = Tr − i

2
θr , (27)

where Tr too is Hermitian.
Using these results in Eq. (13), we find the first-order change

in the density matrix due to the transformation g[εn]:

δεnρ = iε [n · T ,ρ] + ε
∑

α

�(α)(n)

[
u(α)(n) ρ u(α)†(n)

− 1

2
u(α)†(n)u(α)(n) ρ − 1

2
ρ u(α)†(n)u(α)(n)

]
. (28)
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It is the set of matrices Tr that here play a role like the usual
Hermitian matrix representation of the Lie algebra, although
as we shall see it is only in special cases that they can be shown
to satisfy the same commutation relations.

We can use Eq. (28) to find the effect of any infinitesimal
symmetry transformation g on any physical quantity repre-
sented by an operator A. Writing g(A) = A + δεnA, to first
order in ε Eq. (1) gives

Tr(δεnA ρ) = −Tr(A δεnρ). (29)

For this to hold for all density matrices ρ, we must have

δεnA = iε [n · T ,A] − ε
∑

α

�(α)(n)

[
u(α)†(n) Au(α)(n)

− 1

2
u(α)†(n)u(α)(n) A − 1

2
Au(α)†(n)u(α)(n)

]
. (30)

In particular, the physical quantity represented by A is invariant
under this symmetry if δεnA vanishes. Unlike the density
matrix, this quantity is invariant if (although perhaps not only
if) A commutes with T · n and with all u(α)(n). In this case, all
powers of A and hence the whole probability distribution of A

are also invariant.
It may be noted that in itself the transformation rule (28)

does not uniquely fix the matrices Tr and u(α)(n). Without
changing δεnρ, we may shift these matrices by

�u(α)(n) = 1 Tr[Cu(α)(n)],

[�Tr ]M ′M = i

2

∑
N ′N

[Lr ]M ′M,NN ′CN ′N

− i

2

∑
N ′N

[Lr ]∗MM ′,NN ′C
∗
N ′N,

where C is an arbitrary complex matrix. This allows us to
make the trace of u(α)(n) anything we like, for if we take

C = ∑
cβu(β)†(n) with cβ arbitrary, then [using Eq. (12)] we

have Tr[�u(α)(n)] = cαd. However, in this paper we will stick
to the original definitions of Tr and u(α)(n), characterized by
the tracelessness of u(α)(n).

So far, this section has closely followed the usual treatment
of the symmetry of time translation, especially as in Ref. [12].
This symmetry yields the Lindblad equation [6] for the time
dependence of the density matrix (given here in Sec. VIII),
which applies in some extended versions of quantum mechan-
ics [7]. In that case, there is just one matrix Tr , which can be
identified with minus the Hamiltonian of the system.

We will now see what can be learned from the multiplication
rule (17) for general continuous groups, when g = g(εn)
and g = g(εn) are both near the identity. Equation (17) is
automatically satisfied if either g = I or g = I, so the lowest-
order nontrivial terms in Eq. (17) are of order ε2. The resulting
condition is a terrible mess, involving many coefficients
that only reflect how group elements are parametrized. To
focus only on physically interesting quantities, we will ignore
everything but the part of Eq. (17) that is antisymmetric in
n and n, which must be satisfied separately from the rest.
Equation (17) would be symmetric in n and n if it were not for
the nonvanishing commutators of the matrices u(i) on the left
side of the equation and of the group elements themselves on
the right side. To calculate the latter terms, we may write

g(εn)g(εn) = g[εn + εn + ε2 f (n,n) + · · · ],

f r = 1

2

∑
st

Cr
stn

snt , (31)

where Cr
st = −Cr

ts are the structure constants of the group’s
Lie algebra, and the dots in Eq. (31) denote second-order terms
that are symmetric in n and n, as well as terms of higher order
in ε. The antisymmetric part of the terms in Eq. (17) of order
ε2 now gives

[n · τ,n · τ ] ⊗ 1 + 1 ⊗ [n · τ,n · τ ]†

+ i
∑

α

�(α)(n) [τ · n,u(α)(n)] ⊗ u(α)†(n) − i
∑

α

�(α)(n) u(α)(n) ⊗ [τ · n,u(α)(n)]†

− i
∑

α

�(α)(n) [τ · n,u(α)(n)] ⊗ u(α)†(n) + i
∑

α

�(α)(n) u(α)(n) ⊗ [τ · n,u(α)(n)]†

− 1

2

∑
αβ

�(α)(n) �(β)(n) [u(α)(n),u(β)(n)] ⊗ {u(α)(n),u(β)(n)}†

− 1

2

∑
αβ

�(α)(n) �(β)(n) {u(α)(n),u(β)(n)} ⊗ [u(α)(n),u(β)(n)]†

= i
∑
rst

τr Cr
stn

snt ⊗ 1 − i1 ⊗
∑
rst

τ †
r Cr

stn
snt −

∑
rst

[
∂

∂(n + n)r
∑

α

�(α)(n + n)u(α)(n + n) ⊗ u(α)†(n + n)

]
n+n=0

Cr
stn

snt ,

(32)

where curly brackets denote an anticommutator.
Inspection of Eq. (28) shows that if all �(α) vanish, then

δεnρ = iε[n · T ,ρ]. Further, Eqs. (26) and (27) show in this
case that τr = Tr . Equation (32) then shows also that in
this case the Hermitian matrices Tr satisfy the commutation

relations [Ts,Tt ] = i
∑

r Cr
stTt of the symmetry group’s Lie al-

gebra. So, if all �α were zero, the transformation of the density
matrix would be the same as in ordinary quantum mechanics.

But, these familiar results do not hold if the density matrix
transforms in a more general way, with nonvanishing values
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for some �(α), in which case the terms in Eqs. (28), (26),
and (32) with nonzero �(α) represent a departure from ordinary
quantum mechanics. In ordinary quantum mechanics, the
structure of the Hamiltonian and other operators representing
symmetry generators is largely fixed by the condition that they
satisfy the Lie algebra of the symmetry group, as for instance
the form of the kinetic energy terms in the nonrelativistic
Hamiltonian is fixed by the commutators of the generator of
time translation with the other generators of the Galilean group.
In the generalization of quantum mechanics considered here,
it is Eqs. (32) and (27) that must be used to constrain the
operators Tr and u(α)(n) that define the transformation of the
density matrix.

V. AN EXAMPLE

The condition (32) sets constraints on the sorts of matrices
Tr and u(α)(n) that can enter in the transformation (28) of
the density matrix for a given set of structure constants Ct

rs .
This section will give an explicit example showing how these
constraints can be satisfied, in a way different from that of
ordinary quantum mechanics.

We will consider a group containing (perhaps among other
things) two commuting symmetry operations, characterized
by vectors nr and nr in the space of group parameters, for
which

∑
rs nrnsCt

rs = 0. (One of these symmetry operations
may be time translation.) To satisfy the constraints, let us try
the assumption that the matrices n · T , n · T , and the relevant
u(α)(n), u(α)†(n), u(β)(n), and u(β)†(n) all here commute with
one another [where by relevant we mean that �(α)(n) and
�(β)(n) are not all zero]. Then, the definition (26) and (27)
shows that the matrices n · τ and n · τ commute with each
other and with the relevant u(α)(n), u(α)†(n), u(β)(n), and
u(β)†(n). The constraint (32) is then satisfied, as every term
in this constraint simply vanishes.

As simple as this example is, it represents a nontrivial
generalization of ordinary quantum mechanics. Since the
Hermitian n · T and the relevant u(α)(n) and u(α)†(n) all here
commute with one another, we can choose a basis in which
they are all diagonal, with

[u(α)(n)]MN = δMN uαM (n), [n · T ]MN = δMN n · TM.

The transformation (28) then reads as

[δεnρ]MN = ε

{
in · (TM − TN ) +

∑
α

�(α)(n)

[
uαM (n) uαN (n)∗

− 1

2
|uαM (n)|2 − 1

2
|uαN (n)|2

]}
ρMN,

so that ρMN is not simply multiplied by a difference
f (M) − f (N ) for some function f , as in ordinary quantum
mechanics. In the absence of any other symmetries, the pa-
rameters �(α)(n), n · TM , and uαM (n) would be unconstrained,
except that �(α)(n) and TM are real.

VI. COMPACT GROUPS

A well-known theorem tells us that with a suitable choice of
basis, all finite-dimensional representations of compact groups
are unitary. The density matrix furnishes a d2-dimensional

representation of any symmetry group, so for compact groups
it should transform unitarily. As we will now see, this does
not mean that it undergoes the transformation ρ �→ UρU †

of ordinary quantum mechanics, but it does constrain its
transformation properties in interesting ways, one of which
will be important in dealing with the issue of positivity.

The unitarity of the transformation (3) requires that∑
M ′′N ′′

KMM ′′,NN ′′ [g] K∗
M ′M ′′,N ′N ′′ [g]

=
∑

M ′′N ′′
K∗

M ′′M ′,N ′′N ′ [g] KM ′′M,N ′′N [g] = δM ′MδN ′N . (33)

One immediate consequence that we will need in Sec. VII is
that the density matrix ρ = 1/d is invariant. We can see this
by contracting the first equation (33) with δMN and using the
trace condition Eq. (5). This gives∑

M ′′
K∗

M ′M ′′,N ′M ′′ [g] = δM ′N ′ .

Taking the complex conjugate and dividing by d then gives
the statement of invariance:

g(1/d) = 1/d. (34)

In the notation (18), Eq. (33) reads as

1 ⊗ 1 =
∑
ij

η(i)[g]η(j )[g]u(i)[g]u(j )†[g] ⊗ u(j )[g]u(i)†[g]

=
∑
ij

η(i)[g]η(j )[g]u(i)†[g]u(j )[g] ⊗ u(j )†[g]u(i)[g].

(35)

For elements of continuous groups with parameters εnr near
the origin, we use Eqs. (23), (24), and (27) in Eq. (35), and
find that

n · θ ⊗ 1 + 1 ⊗ n · θ =
∑

α

�(α)[n] u(α)(n) ⊗ u(α)†(n)

+
∑

α

�(α)[n] u(α)†(n) ⊗ u(α)(n). (36)

Taking the trace of the matrices on the right of the direct
products then gives

d n · θ + 1 Tr(n · θ ) = 0.

The trace of this equation gives 2d Tr(n · θ ) = 0, so n · θ = 0,
and therefore for compact groups

τr = Tr . (37)

VII. POSITIVITY

Finally, we come to the issue of positivity. It is clearly
necessary that the linear mapping (3) corresponding to a
symmetry transformation should take the density matrices of
physical states into other density matrices that are positive
as well as being Hermitian and having unit trace. A linear
mapping is itself called positive if takes all positive Hermitian
matrices into positive Hermitian matrices with the same trace.
It would simplify matters if we could just assume that all
symmetry mappings are positive, but this is not indispensable
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because the density matrices of physical states may be limited
in some way that ensures that they are mapped into positive
matrices, even if some other positive matrices are not mapped
into positive matrices [13].

The existence of constraints on physical density matrices
that ensure that they transform into other positive density
matrices is particularly plausible for compact symmetry
groups, for which for any ρ, g(ρ) varies only over a compact
manifold. For instance, in the SU(3) example of Sec. I, the
density matrix is positive if (though not only if) all diagonal
elements ai are positive and the off-diagonal elements bi are
subject to the inequality

|b1|2 + |b2|2 + |b3|2 � 1
4a1a2a3.

This condition is SU(3) invariant, so under SU(3) transfor-
mations any density matrix satisfying this condition will be
transformed into another density matrix satisfying the same
condition, and will therefore also be positive.

This is an important point because, as we shall now show.
if the mapping associated with any invertible continuous
symmetry acts on all density matrices as a positive mapping,
then this mapping must take the same form (2) as in ordinary
quantum mechanics. For the purposes of this theorem, we
only need to show that for any invertible mapping that is not
of the form (2) there is some positive density matrix ρ that
is transformed into a nonpositive matrix, so we are free to
choose ρ here pretty much as we like. We will choose the
density matrix ρ to have one eigenvector v with eigenvalue
zero:

ρv = v†ρ = 0. (38)

When we take the expectation value of Eq. (28) in the “state”
v, as a consequence of Eq. (38) we find that only the first term
in the quantity summed over α makes a nonzero contribution:

(v† [ρ + δεnρ]v) = (v† δεnρ v )

= ε
∑

α

�(α)(n) [v†u(α)(n) ρ u(α)†(n)v]. (39)

It is immediately obvious that if the coefficient of ε is nonzero,
then for some sign of ε the expectation value (39) will be
negative, so that ρ + δεnρ cannot be positive.

It only remains to show that unless all �(α)(n) vanish, for
some vector v there will be some positive Hermitian matrix ρ

satisfying Eq. (38) for which the coefficient of ε in Eq. (39)
is nonzero. [This is obvious if all �(α)(n) have the same sign,
but we want also to consider the case where some are positive
and some are negative.] Let us suppose the contrary; that is,
for some n and for all v we have∑

α

�(α)(n) [v†u(α)(n) ρ u(α)†(n)v] = 0 (40)

for all positive Hermitian matrices ρ satisfying Eq. (38). We
will show that in this case, we must have �(α)(n) = 0 for
all α.

We are free to take ρ to have no eigenvectors with
eigenvalue zero other than v. In this case, the condition that ρ

is positive puts no constraints on infinitesimal variations of ρ,

so the assumption that Eq. (40) holds for all positive Hermitian
ρ satisfying Eq. (38) requires that∑

α

�(α)(n) [v†u(α)(n)]M [u(α)†(n)v]N = c∗
MvN + v∗

McN (41)

for all N and M , and for some vector cN which may depend
on n and v. In fact, cN must depend on v because Eq. (41) is
supposed to hold for all v, so there have to be the same numbers
of v’s and v∗’s on both sides of the equation. Specifically, we
must have cN = ∑

L CNLvL, where CNL is independent of v,
and the coefficient of v∗

P vQ in Eq. (41) must vanish:∑
α

�(α)(n) u
(α)
PM (n) u

(α)†
NQ(n) = C∗

MP δNQ + δMP CNQ. (42)

Now, we can use some of the properties of the u(α)(n) obtained
in Sec. IV. Consider any β, and contract Eq. (42) with

u
(β)†

MP (n)u(β)
QN (n). Because the u(β)(n) are traceless, the right-

hand side of the contracted equation vanishes, and because
they satisfy the orthonormality condition Tr(u(β)†u(α)) = δβα ,
the left-hand side of the contracted equation is �(β)(n), so
�(β)(n) = 0 for all β, as was to be shown.

This theorem leaves open the possibility of limiting the
density matrix to a special class of positive Hermitian matrices,
for which any symmetry transformation takes any member of
this class into another positive member of the same class, as in
the SU(3) example given above. But, does such a special class
always exist? A hand-waving argument suggests that it does, at
least for compact groups. We saw in the previous section that
in a suitable basis, such symmetries leave invariant the positive
density matrix 1/d. Suppose we shift this density matrix by
some traceless Hermitian matrix η. The new density matrix
1/d + η will generally not be invariant, but as long as η is
sufficiently small, the symmetry transformations belonging to
a compact group will take 1/d + η into density matrices whose
eigenvalues are all sufficiently close to the original common
eigenvalue 1/d so that they are still all positive. Thus, acting on
a density matrix 1/d + η with all symmetries g belonging to a
compact group, and with η running over all traceless Hermitian
matrices that are sufficiently small so that all g(1/d + η) are
positive, provides the sort of special class of density matrices
we need, which can transform in a way that is different from
the transformation (2) of ordinary quantum mechanics without
raising problems with positivity.

VIII. MAPPINGS WITH POSITIVE EIGENVALUES

There is a class of mappings that are obviously positive,
in the sense of taking all positive Hermitian matrices into
positive Hermitian matrices. Inspection of Eq. (13) shows
immediately that a mapping is positive if (though not only
if) all its eigenvalues η(i) are positive. In this case, we can
write the general mapping (13) in the Kraus form [14]:

g(ρ) =
∑

i

U (i)[g] ρ U (i)†[g], (43)

where U (i)[g] ≡ η(i)[g]1/2u(i)[g] and
∑

i U (i)†[g]U (i)[g] = 1.
The unitary transformations ρ �→ U [g] ρ U [g]† of ordinary
quantum mechanics are a special case of the more general
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transformations (43), distinguished by the sum in (43) having
just a single term.

The assumption that all eigenvalues of the kernel are posi-
tive would be an effective way of guaranteeing that all positive
density matrices are mapped into positive density matrices, but
it would have the consequence that the transformation of the
density matrix under any symmetry group, whether continuous
or discrete, would reduce to the same unitary transformation
rule (2) as in ordinary quantum mechanics.

We can see this immediately for continuous groups. If
for some infinitesimal continuous symmetry transformation
g[εn] we were to require the positivity of the eigenvalues
(23) whatever the sign of ε, we would have to assume that
�(α)(n) = 0 for all α. As already mentioned in Sec. IV, any
continuous symmetry for which �(α)(n) vanishes for all α

is necessarily realized by the unitary transformation (2) of
ordinary quantum mechanics. Of course, we already knew this.
With all eigenvalues positive, mappings preserve the positivity
of any density matrix, and as shown in the previous section, any
invertible continuous symmetry that preserves the positivity of
all density matrices must act as in Eq. (2).

As already mentioned in Sec. I, in various extended versions
of quantum mechanics [7] the assumption of positive mapping
of the density matrix is commonly made for the continuous
symmetry of time translation, but only prospectively, not
retrospectively. It is usually assumed in these theories that
the kernel for time translation by an amount τ has positive
eigenvalues if τ > 0, but this is not assumed (and in fact is
not generally true) when τ < 0. For this reason, the positive
time-translation mappings usually considered in these theories
form a semigroup, not a group. With this weaker assumption,
Eq. (23) simply requires that �(α)(nT ) � 0 for all α, where nT
denotes the direction in the space of group parameters for time
translation. The transformation rule (28) then immediately
yields the Lindblad equation

d

dt
ρ= − i[H,ρ] +

∑
α

[
Lα ρ L†

α − 1

2
L†

α Lα ρ − 1

2
ρ L†

α Lα

]
,

where H ≡ −nT · T and Lα ≡ �(α)1/2(nT ) u(α)(nT ). This
implies that the observable represented by an operator A is
conserved, in the sense that A = Tr(Aρ) is time independent
for all ρ, if

0 = i[H,A] −
∑

α

[
L†

α ALα − 1

2
L†

α Lα A − 1

2
AL†

α Lα

]
.

Unfortunately, for the general symmetry transformations con-
sidered here, there does not seem to be any connection between
such conserved quantities and the generators of symmetries.

If ρ(t) is positive for some initial time t , then the Lindblad
equation gives a positive ρ(t ′) for all t ′ > t but, as illustrated
in Ref. [8], in these theories one can usually find an earlier
time t ′ < t for which ρ(t ′) is not positive. As I understand it,
this is tolerated in extended versions of quantum mechanics
in which the Lindblad equation is applied to closed systems
because unless we tackle the description of the whole universe,
the differential equation for the time dependence of the density
matrix is only supposed in these theories to apply for systems
that become closed at some initial time t , so one does not have
to worry about what happens for times t ′ < t .

One can argue about whether this is satisfactory for time
translation, but we would certainly not want to assume that
the eigenvalues of K[g] are all positive when the symmetry
transformation g is a spatial translation to the north but not
to the south, or is a rotation that is clockwise around the
vertical but not counterclockwise, or is a boost that increases
the velocity to the eastward but not to the westward. Such
symmetry transformations must be assumed to form a group,
not merely a semigroup.

With a little more effort, we can show that for all symmetry
groups, discrete as well as continuous, the assumption of
positive eigenvalues rules out the possibility that the density
matrix will have an unusual transformation rule, one different
from Eq. (2). To prove this, we use one of the defining
properties of groups, that for every element g of a group there
is an inverse g−1. From Eq. (16) and Eqs. (19)–(21), with g

taken as g−1, we have∑
ij

η(i)[g] η(j )[g−1] u(i)[g] u(j )[g−1] ρ u(j )†[g−1] u(i)†[g] = ρ

(44)
for any matrix ρ. In particular, for a Hermitian matrix ρ, we can
find a unitary matrix � such that ρ(D) = �ρ�−1 is diagonal,
[ρ(D)]MN = PMδMN . Equation (44) then applies if we replace
ρ with ρ(D) and replace all u(i)[g] and u(j )[g−1] with u(iD)[g] ≡
�u(i)[g]�−1 and u(jD)[g−1] ≡ �u(j )[g−1]�−1. This gives∑

ij

η(i)[g] η(j )[g−1]
∑
L

[
u(iD)[g] u(jD)[g−1]

]
ML

×PL

[
u(iD)[g] u(jD)[g−1]

]∗
NL

= PMδMN. (45)

This must hold for all real numbers PN , so it follows that, for
all L, M , and N ,∑

ij

η(i)[g] η(j )
[
g−1] [u(iD)[g] u(jD)[g−1]

]
ML

× [
u(iD)[g] u(jD)[g−1]

]∗
NL

= δMLδNL. (46)

In particular, if M = N 
= L, then∑
ij

η(i)[g] η(j )[g−1] |[u(iD)[g] u(jD)[g−1]
]
ML

∣∣2 = 0. (47)

Here is where the positivity of the eigenvalues becomes
important. If all the eigenvalues η(i)[g] and η(j )[g−1] are
positive, then it follows from Eq. (47) that for all relevant
i and j (that is, for all i and j for which η(i)[g] and η(j )[g−1],
respectively, do not vanish) we have[

u(iD)[g] u(jD)[g−1]
]
ML

= 0 (48)

for any unequal indices M and L. Since the matrix
u(iD)[g] u(jD)[g−1] is thus diagonal, it commutes with the
diagonal matrix ρ(D). But then also u(i)[g] u(j )[g−1] commutes
with the arbitrary Hermitian matrix ρ. The only matrices that
commute with all Hermitian matrices are proportional to the
unit matrix, so we can conclude that for all relevant i and j

u(i)[g] u(j )[g−1] = cij [g]1 (49)

for some complex numerical coefficients cij [g]. Taking
the determinant of Eq. (49) gives (cij [g])d = Detu(i)[g]
Detu(j )[g−1]. Now, there must be at least one relevant j
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for which Detu(j )[g−1] 
= 0 since otherwise we would have
u(i)[g] u(j )[g−1] = 0 for all relevant i and j , contradicting
Eq. (44). Taking j to have any value for which Detu(j )[g−1] 
=
0, Eq. (49) then tells us that all relevant u(i)[g] are proportional
to a single u[g]; specifically,

u(i)[g] = (
Detu(i)[g]

)1/d
u[g], (50)

where u[g] = u(j )−1[g−1](Detu(j )[g−1])1/d . The trace
condition (14) then reads as∑

i

η(i)[g]
∣∣Detu(i)[g]

∣∣2/d
u†[g]u[g] = 1,

so the matrix U [g] ≡ [
∑

i η
(i)[g] |Detu(i)[g]|2/d ]1/2u[g] is

unitary, and the transformation rule (13) takes the familiar
form g(ρ) = U [g] ρ U †[g] of ordinary quantum mechanics,
as was to be proved.

But, do we need to require that the kernels for general
symmetries have only positive eigenvalues? There are well-
known examples of positive mappings that have some negative
eigenvalues. The standard example is the transposition map

KM ′M,N ′N = δM ′NδN ′M.

This has two eigenvalues, one positive and one negative. (Any
symmetric or antisymmetric matrix is an eigenmatrix with
eigenvalue +1 or −1, respectively.) Nevertheless, K is positive
because g(ρ) = ρT, which is positive if ρ is positive.

There is a widely cited argument for the requirement that
all eigenvalues of the kernel K must be positive, based on the
possibility of entanglement. Consider an arbitrary system S (I ),
and an arbitrary linear mapping K (I ) of the density matrix of
this system, which preserves its Hermiticity, unit trace, and
positivity. We can imagine adding an isolated system S (II) of
finite dimensionality dII, and extending K (I ) to a kernel K that
acts as K (I ) on S (I ), and acts trivially on S (II). That is, if we
label the basis vectors of S (I ) with indices m, n, etc. and the
basis vectors of S (II) with indices a, b, etc., the kernel of the
mapping [in the notation of Eqs. (3) and (6)] on the combined
system is

Km′a′ma,n′b′nb = K
(I )
m′m,n′nδa′aδb′b. (51)

The original mapping K (I ) is said to be completely positive [15]
if K is positive (in the sense of mapping all positive
density matrices for the combined system into positive density
matrices) for all finite dimensionalities dII. A theorem due
to Choi [16] states that if K (I ) is completely positive in this
sense, then all its eigenvalues are positive. [As usually stated,
the theorem says that any completely positive mapping takes
the Kraus form (43), but as we have seen this form follows
from the positivity of the eigenvalues, and it is obvious that
any kernel that induces a transformation of this form has only
positive eigenvalues, so the two statements of the theorem are
equivalent.]

Although there is no doubt of the mathematical correctness
of the Choi theorem, it is not clear that it is relevant physically.
It should be noted that the vacuum is the only physical system
that is invariant under Galilean (or Lorentz) transformations
and time translations. Since the dimensionality of the Hilbert
space of the vacuum is unity, this does not fulfill the conditions
of the Choi theorem, that there should be isolated systems S (II)

with arbitrary finite dimensionality on which the symmetry
acts trivially. There seems to be a widespread impression
that this does not matter, at least for the only symmetry that
has been previously studied in this context, the symmetry
of time translation. It is supposed that, even if a symmetry
transformation K acts nontrivially on S (II), we may be able to
undo it by inventing a transformation L that acts on S (II) as
the inverse of K , and leaves S (I ) unchanged, so that LK does
have the form (51). (I have not been able to find a published
reference to this argument.) But, in general, except in the
uninteresting case in which S (I ) is the vacuum, L will not
be a symmetry transformation, so neither will be LK . Or, if
we take L as a symmetry transformation that acts nontrivially
on SI , then the action of LK on the Hilbert space of SI is a
completely positive mapping, but it is not the same mapping as
K (I ). There are some continuous symmetry transformations,
such as rotations, for which there are invariant physical systems
with Hilbert spaces of arbitrary dimensionality which therefore
might be taken as the isolated system S (II) in the assumptions
of the Choi theorem. Even so, in the real world there are
no disembodied spins, only particles with spins. The Hilbert
space of any physical system other than the vacuum has infinite
dimensionality, and it is not clear that the Choi theorem can
be extended to realistic cases.

Even though it may be doubted whether complete positivity
in the sense of Choi is physically necessary, there is another
requirement that does seem to be inescapably necessary, and
that leads to the same conclusion about positive eigenvalues. If
some system S is physically realizable, then the system S⊗S
consisting of two isolated copies of S will presumably also be
realizable. Any symmetry that acts on the density matrix of S
with a kernel K will act on the density matrix of the combined
system with a kernel given by a direct product K⊗K , as
in Eq. (6), with K (I ) = K (II) = K . Benatti, Floreanini, and
Romano [17] have shown that, in this case, in order for K⊗K

to be positive (in the sense of transforming all entangled
positive Hermitian density matrices for S⊗S into positive
Hermitian density matrices) it is necessary not only that K be
positive, but also completely positive, so that all eigenvalues
of K are positive.

This might seem to rule out any transformation rules for
the density matrix different from those of ordinary quantum
mechanics. But, we have already seen in Sec. VII that it is
necessary to limit physically allowable density matrices in
order to maintain their positivity under continuous symmetry
group transformations different from those of ordinary quan-
tum mechanics. Similarly, we may have to restrict the allowed
density matrices in a way that rules out the density matrices
for combined systems S⊗S that are considered in the theorem
of Benatti et al.

Despite these skeptical comments, it may turn out to be
physically necessary for the kernels K[g] for all elements
g of symmetry transformation groups to have only positive
eigenvalues. In that case, the main point of this paper
would be the proof that such symmetry transformations act
on the density matrix as in ordinary quantum mechanics.
It would be much more interesting if for some symmetry
groups it will turn out to be unnecessary for all eigenvalues
to be positive, in which case the much richer variety of
symmetry transformations discussed in Secs. II and III would
be physically possible.
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