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Motivated by a recent experiment by the Ecole Normale Supérieure de Lyon (ENS) group on the mixture
of Bose and Fermi superfluids [I. Ferrier-Barbut et al., Science 345, 1035 (2014)], we investigate the effective
scattering between a bosonic atom and a molecule (dimer) of fermion atoms. It is found that the mean-field
prediction of the atom-dimer scattering length (aad), as simply given by the boson-fermion scattering length (abf),
generically fails. Instead, aad crucially depends on the ratio between abf and aff (the fermion-fermion scattering
length), and in addition it log-periodically depends on the three-body parameter. We identify the universal
parameters in characterizing aad for a wide range of aff in the molecular side of the fermion-fermion Feshbach
resonance, and further demonstrate that the atom-dimer many-body system can become unstable against either
phase separation or collapse as tuning aff . Our results have some implications for the ENS experiment.

DOI: 10.1103/PhysRevA.90.041603 PACS number(s): 67.85.Pq, 05.30.−d, 34.50.−s

The dilute ultracold atomic gases with highly tunable
interactions provide an ideal platform for studying the funda-
mental yet challenging few-body problems, among which the
Efimov physics undoubtedly takes a prominent place due to its
intriguing properties [1,2]. In the 1970s, Efimov established
two important laws, the scaling law and the radial law, for
the bound states of three identical bosons interacting with
a single s-wave scattering length as [1]. The scaling law
predicts the discrete scaling symmetry, i.e., a change of as by
a scaling factor χ = eπ/s0 (where s0 = 1.00624) corresponds
to the energy changed by a factor χ−2. The radial law predicts
that at as > 0 side, the atom-dimer scattering length aad can
be parametrized by as and a three-body parameter measuring
the short-range interactions among the three particles, and
aad diverges periodically as varying as by a scaling factor χ .
These predictions have been successfully verified in cold-atom
experiments on various homo- and heteronuclear systems, by
observing the enhanced three-body recombination at as <

0 [3–11], the atom-dimer loss resonance at as > 0 [12–
15], the Efimov spectrum measured from radio-frequency
spectroscopy [16,17], and recently the successive three-body
loss peaks directly confirming the discrete scaling symmetry
[18–20].

Recently, the Ecole Normale Supérieure de Lyon (ENS)
group has reported a new breakthrough in realizing a mixture
of Bose-Einstein condensation and fermionic superfluidity
using lithium isotopes [21]. In this experiment, the fermion-
fermion scattering length (aff) can be tuned over several
orders of magnitude via a Feshbach resonance, while the
boson-fermion scattering length (abf) almost stays static. This
brings new challenges to the few-body physics as mainly
in the following two aspects. First, in the presence of more
than one scattering length, the original Efimov predictions
for single as could be greatly affected. Second, given the
realized extremely low temperature, the few-body physics will
no doubt fundamentally influence the low-energy collective
phenomena in a dilute many-body system, which have been
rarely discussed before in this setup. Also considering a
variety of multicomponent systems [4–6,13–15] that can be
potentially cooled down to a quantum degenerate regime,

it is thus imperative to investigate the few-body physics in
these systems and their general consequences in a many-body
environment.

With the above motivations, in this work we study the
effective scattering between a bosonic atom and a dimer of two
fermions, with tunable aff and nonvarying abf . By establishing
a generalized Efimov radial law, we show that the atom-dimer
scattering length aad sensitively depends on the ratio between
the two scattering lengths, x = abf/aff , and can even go across
resonance as tuning x. In addition, it log-periodically depends
on the three-body parameter κ∗, similar to that of identical
bosons. Its general formula is

aad

abf
= C1(x) + C2(x) cot[s0 ln(κ∗|abf|) + �(x)]. (1)

Here C1, C2, � are all universal functions in terms of x. We
numerically verify this formula and extract those universal
functions for a wide range of x (taking equal mass of
boson and fermion, for instance). Moreover, we show that
the mean-field prediction of aad, which is proportional to
abf as determined from the boson-fermion density-density
interaction, generically fails for typical cold-atom systems
with short-range interactions. Furthermore, based on Eq. (1),
we show that the stability of the atom-dimer many-body system
can be greatly altered by tuning x, where the homogenous
mixture can become unstable against phase separation or
collapse. We identify the according phase diagram for several
typical values of abf and κ∗. Finally we point out some
implications of our results for the ENS experiment [21].

Model. Considering two distinguishable fermions at posi-
tions r1, r2 with mass mf and one boson at r3 with mass mb,
the Hamiltonian can be written as Ĥ = Ĥ0 + Û ,

Ĥ0 = −∇2
r

2μ
− ∇2

ρ

2μρ

;

(2)
Û = Uffδ(r) + Ubf

[
δ
(
ρ + r

2

)
+ δ

(
ρ − r

2

)]
.

Here r = r2 − r1 and ρ = r3 − (r1 + r2)/2, respectively, de-
scribe the relative motion between two fermions and between
the boson and the center of mass of fermions; the correspond-
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ing masses are μ = mf /2 and μρ = 2mf mb/(2mf + mb). Ubf

(Uff) is the bare interaction between boson-fermion (fermion-
fermion) and can be related to abf (aff) via 1

Ubf
= μ̄

2πabf
−

1
V

∑
k

2μ̄

k2 ( 1
Uff

= μ

2πaff
− 1

V

∑
k

2μ

k2 ), where μ̄ = mbmf /(mb +
mf ), and V is the volume.

Now we study the atom-dimer elastic scattering between
the boson and the dimer of fermions. The associated energy is
E = −εff , where εff = 1/(2μa2

ff) is the dimer binding energy.
We solve the wave function 	 using the Lippmann-Schwinger
equation |	〉 = Ĝ0Û |	〉, with Ĝ0 = 1/(E − Ĥ0 + iε) the
noninteracting Green’s function. Introducing three auxiliary
functions in

〈r,ρ|Û |	〉 = f (ρ)δ(r) + g+(r)δ

(
ρ + r

2

)

+g−(−r)δ

(
ρ − r

2

)
, (3)

we arrive at three coupled equations in terms of f, g+, and g−,
which correspond to implementing the boundary conditions to
	 respectively at r → 0, ρ + r

2 → 0, and ρ − r
2 → 0 [22].

For instance, we have

lim
r→0

	(r,ρ) ∼ f (ρ)(1/r − 1/aff ). (4)

The physical meaning of the f function is thus transpar-
ent; it effectively describes the relative motion between
the atom (boson) and the dimer (fermions) and can be
referred to as an atom-dimer scattering wave function.
The atom-dimer scattering length aad can be extracted
from the Fourier transformation of the f function in k
space,

f (k) = (2π )3δ(k) − 4πaad(k)

k2
, (5)

with aad ≡ aad(0) given by the on-shell atom-dimer T-matrix
element at zero momentum.

Atom-dimer scattering with unequal scattering lengths has
been studied before in a three-component Li6 system [23].
For our system, where the boson-fermion interactions are
described by a single abf , we have g+ = g− ≡ g and finally
we obtain two coupled integral equations for aad(k) and g(k):

−4πaad(k)

k2

⎛
⎝ 1

Uff
− 1

V

∑
q

1

E − q2

2μ
− k2

2μρ
+ iε

⎞
⎠

= 1

V

∑
p

2g(p)

E − (k/2+p)2

2μ
− k2

2μρ
+ iε

; (6)

g(p)

⎛
⎝ 1

Ubf
− 1

V

∑
k

1

E − (k/2+p)2

2μ
− k2

2μρ
+ iε

⎞
⎠

= 1

E − p2

2μ

+ 1

V

∑
k

⎛
⎝ −4πaad(k)

k2
(
E − (k/2+p)2

2μ
− k2

2μρ
+ iε

)

+ g(k)

E − (p−k)2

8μ
− (p+k)2

2μρ
+ iε

⎞
⎠ . (7)

Equations (6) and (7) generally apply to arbitrary mass
ratios η = mf /mb and arbitrary x = abf/aff . In this work we

consider mb = mf = m (η = 1), for instance, and mainly
focus on the region x ∈ (1, + ∞)

⋃
(−∞,0), where the

fermion-fermion dimer is the ground-state dimer in the three-
body system [24].

Generalized Efimov radial law. Before proceeding with
numerical solutions from Eqs. (6) and (7), we first prove
that aad can be parametrized explicitly by a few parameters
and follows the universal form as in Eq. (1). This is a
straightforward generalization of the Efimov radial law [1]
to the case of multiple scattering lengths. For the proof, we
only illustrate the main idea here, which contains two essential

ingredients (here R ∼
√∑

i<j |ri − rj |2 is the hyperradius; r0

is the range of interaction potential):
(A) In the scale-invariant regime r0 � R � |abf|, |aff|, the

three-body potential is identical to that with three divergent
scattering lengths and follows an attractive 1/R2 form. The
resulting wave function is formulated as sin(s0 ln R + θ ),
where θ is determined by the boundary condition at short-range
R ∼ r0 and thus incorporates the three-body parameter κ∗.
This formulation is unchanged in the presence of multiple
scattering lengths.

(B) The atom-dimer elastic scattering is given by the
asymptotic behavior of above three-body wave function at
R � |abf|, |aff|. In order to identify that, one has to consider
the intermediate regime of R ∼ |abf|, |aff|. The interaction
in this regime can be effectively considered as a certain
potential barrier and thus is characterized by reflection and
transmission coefficients, which are dimensionless numbers
and can be parametrized by scattering lengths and the wave
vector of the wave function. Given the barrier characteristics,
one can formulate explicitly the evolution of the wave function
from R � |abf|, |aff| to R � |abf|, |aff|, and extract the
atom-dimer phase shift or aad in the latter regime. The
general form is as in Eq. (1). Compared to the original
Efimov radial law [1], here the specialty is that we need
multiple scattering lengths, abf and aff , to characterize the
barrier, and this leads to the dependence of those charac-
terization coefficients (C1, C2, �) on the scattering length
ratio x.

The universal formula of aad as in Eq. (1) can be numerically
verified by exactly solving Eqs. (6) and (7) for different
momentum cutoffs κ∗. In Fig. 1, we show aad/abf as functions
of κ∗abf for a typical value of x(= 2), and the log-periodic
fit to Eq. (1) is excellent (especially at large κ∗abf). We have
also computed for other positive and negative x and equally
verified Eq. (1).

The validity of Eq. (1) in turn implies the breakdown
of mean-field theory, which gives aad = 8/3abf by equating
the density-density interaction between bosons and fermions
with that between bosons and dimers [22]. In fact, this result
corresponds to approximating g(p) as 2πabf/μ̄

E−p2/(2μ) in Eq. (7) and
also enforcing κ∗ � 1/aff in Eq. (6) [22]. Overall it requires
|abf| � 1/κ∗ � aff , where 1/κ∗ ∼ r0 is typically the range of
interacting potential. Apparently under this requirement the
system cannot be in the scale-invariant regime [which violates
(A)] and one must take into account the finite-range effect.
Given typical cold-atom systems with r0 much shorter than the
scattering lengths, we conclude that the mean-field prediction
to aad generically fails.
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FIG. 1. (Color online) Verification of universal formula for aad

[in units of abf , see Eq. (1)] at x = abf/aff = 2. The square points
show numerical results by solving Eqs. (6) and (7) for different
momentum cutoffs κ∗. The green curve is the fit to Eq. (1) with
s0 = 1.00624, C1 = 0.29, C2 = 0.41, � = −0.34π . The fit gets
more accurate for larger κ∗abf .

Universal functions. After establishing Eq. (1), one can
numerically extract the three universal parameters C1, C2, �

as functions of x. The results for both negative and positive
x are shown in Fig. 2. Several conclusions can be drawn as
follows.

First, Figs. 2(a1) and 2(a2) show that the amplitudes of
both C1 and C2 decay at large |x|, which means that |aad/abf|
is generally very small (except near resonance) in the limit of
|abf| � aff (|x| � 1). This actually indicates a unitary regime
when abf → ±∞, where aad approaches a universal value that
only depends on aff and κ∗ but not abf any more. The existence
of this regime is verified in Fig. 3(a), by plotting aad for fixed
κ∗ and aff while changing abf to −∞ or +∞. Exactly at

FIG. 2. Universal parameters C1, C2 (upper panel), and � (lower
panel) as functions of x. In (a1) and (b1), x < 0; in (a2) and (b2),
x > 1.

FIG. 3. (Color online) aad in the unitary limit of abf . The length
unit here is aff . (a) aad as changing abf to +∞ (black square) or −∞
(red circle) for fixed κ∗aff = 100. The dashed horizontal line denotes
the universal value aad/aff = −0.513 at unitarity (|abf | = ∞). (b) aad

as a function of κ∗ at |abf | = ∞. The green curve is the fit to Eq. (8).

|abf| = ∞, aad can be formulated as

aad

aff
= c1 + c2 cot[s0 ln(κ∗aff) + φ], (|abf| = ∞). (8)

In Fig. 3(b), we show the log-periodic dependence of aad/aff on
κ∗, and extract the three universal parameters as (c1, c2, φ) =
(−0.15, −0.31, −0.25π ). A similar formula as Eq. (8)
was obtained previously in Li6 system with three scattering
lengths [2].

Second, the dependence of the phase � on x, as shown in
Figs. 2(b1) and 2(b2), implies that aad can also be tuned to
resonance by changing x while fixing κ∗. Near the resonance
position xres, we have

aad

abf
= W

x − xres
+ const, (9)

where W = C2(xres)/�′(xres) is the resonance width. In
Fig. 4(a), we show a typical resonance structure of aad as
tuning x with a fixed κ∗. Accordingly, the width W is plotted
in Fig. 4(b) for both positive and negative resonance position
x = xres. It is readily seen that the absolute value of W is of
the order of 1 or even larger for most values of x, thus these
resonances should be easy to resolve in cold-atom experiments
given not so small abf . Such resonance structure of aad

would significantly influence the stability of the atom-dimer
many-body system, as demonstrated below.

Many-body phase diagram. For a many-body system
composed of the boson condensate and the dimer (fermion-

FIG. 4. (Color online) Resonance of aad by tuning x. (a) aad/abf

as functions of x for fixed κ∗abf = 100. The resonance position is
x = 2.7. (b) Resonance width W for positive (black line) and negative
(red line) resonance position x.
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FIG. 5. (Color online) Many-body phase diagram of atom-dimer
system for negative(a) and positive(b) abf and with a fixed κ∗|abf | =
100. Three phases are shown: homogenous mixture (MIX), phase
separation (PS), and collapse phase (CL). Black solid lines denote the
phase boundaries between MIX and PS/CL. Gray vertical lines mark
the atom-dimer resonances at x = −1.21(a), 2.7(b), which also serve
as PS-CL phase boundaries. Red dashed lines shows phase boundaries
based on the mean-field prediction of aad; above the boundary is MIX
phase and below is CL (a) or PS (b) phase.

fermion) superfluid, the total energy density E = E/V can be
written as [25]

E = n2
b

2

4πabb

m
+ n2

d

2

2πadd

m
+ nbnd

3πaad

m
, (10)

where nb, nd are respectively the density of bosons and dimers,
and abb, add (= 0.6aff [26]) are the boson-boson and dimer-
dimer scattering lengths. The stability of a homogeneous
mixture system can be examined through the second-order
variation of the energy functional E with respect to the
density fluctuations of the atoms and dimers [27]. Following
the standard analysis, we arrive at three phases in different
parameter regimes: (i) homogenous mixture (MIX) at |aad| <

ξ ; (ii) phase separation (PS) at aad > ξ ; and (iii) collapse
(CL) at aad < −ξ , where ξ = 0.73

√
abbaff . The system is

unstable in (ii) and (iii) toward a spatial separation of atoms
and dimers and the formation of a denser state containing both

components [28]. The phase diagram can be deduced ac-
cordingly in the (abb,aff ) plane given that aad is known from
few-body solutions [Eq. (1)].

In Fig. 5, we present the phase diagrams for both positive
and negative abf with a fixed κ∗. Due to the resonance structure
of aad as tuning x [as shown in Fig. 4(a)], the phase diagram
is very rich. Typically, at a given abb and by increasing |x|,
the system can go through four phases in the order MIX-PS-
CL-MIX [29]. This is in distinct contrast to the phase diagram
based on the mean-field prediction aad = 8/3abf , where only
one phase boundary exists between MIX-PS or MIX-CL (see
red dashed lines). Note that the reentrance of the MIX phase at
large |x| in Fig. 5 is due to the universal behavior of aad when
abf → ∞, which scales as aff rather than keeps growing with
abf as mean-field predicted. In this limit, the phase diagram
can be straightforwardly obtained in the (abb,aff ) plane based
on Eq. (8), which will not be shown here.

Implications for the ENS experiment [21]. Our results
have some implications for the ENS experiment. We have
shown that the mean-field evaluation of aad generically fails.
Therefore at the deep molecular side of fermions, the dipole
mode frequency shift of the bosons, δωb, has to employ the
exact solution of aad [our Eq. (1)] rather than Eq. (10) in
Ref. [21]. Given the resonance structure of aad as tuning aff

[our Fig. 4(a)], δωb is also expected to exhibit similar intriguing
features in this regime. It is promising that by measuring the
deviation of δωb from mean-field evaluations (based on the
density-density interaction of bosons and fermions), one could
see clearly how the mean-field theory breaks down as fermions
gradually approach the molecule limit and the atom-dimer
picture starts to develop.

Concluding remarks. In conclusion, we have established a
general formula [Eq. (1)] for the atom-dimer elastic scattering
in the Bose and Fermi mixture, and pointed out its significant
effect on the stability of a many-body system. Remarkably,
by tuning the ratio between the boson-fermion and fermion-
fermion scattering lengths, we show that the atom-dimer scat-
tering length aad can vary dramatically and even go across res-
onance. This invalidates the mean-field prediction of aad, and
suggests there should be more sophisticated treatment of the in-
teraction energy as the system approaching the strong coupling
limit of fermions. Moreover, our results show the possibility of
tuning the effective interaction between a particle and a com-
posite one simply by adjusting the internal interaction within
the latter. This scheme can be generally applied to a vast class
of ultracold boson and fermion mixtures [30] and is expected
to significantly influence the many-body physics therein.
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