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Transformed composite sequences for improved qubit addressing
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Selective laser addressing of a single atom or atomic ion qubit can be improved using narrow-band composite
pulse sequences. We describe a Lie-algebraic technique to generalize known narrow-band sequences and introduce
sequences related by dilation and rotation of sequence generators. Our method improves known narrow-band
sequences by decreasing both the pulse time and the residual error. Finally, we experimentally demonstrate these
composite sequences using 40Ca+ ions trapped in a surface-electrode ion trap.
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In ion traps [1,2] and neutral atom optical lattices [3,4],
single-qubit addressing typically requires focused lasers where
the beam waist is smaller than the interatom separation.
Closely spaced atoms are desirable to improve two-qubit
coupling rates, often demanding interatom spacings approach-
ing the diffraction limit. In practice, single-qubit addressing
requires precise focal alignment and ultrastable beam steering
to prevent unwanted excitations on neighboring atoms, a
significant challenge as the number of qubits increases [5].
Furthermore, achieving the required tight focus is often
made difficult by geometric constraints and restricted optical
access [6,7]. These factors combine to make single-qubit
addressing a challenge in many experimental systems.

Single-qubit addressing can be improved by the application
of auxiliary fields to generate spatially dependent Zeeman
and Stark shifts [8–13]. Quantum control has been used in
conjunction with these frequency shifts to achieve addressing
with inhomogeneous control fields [14]. A recent proposal also
examined spatial refocusing through precise laser positioning
coupled with controlled phase shifts [15]. These methods
require time-consuming calibrations to remove systematic
errors while adding to experimental complexity and are often
designed for a specific experimental implementation.

In this Rapid Communication we demonstrate an alternative
control scheme that replaces simple single-qubit gates with a
narrow-band composite sequence of laser pulses designed for
local addressing [16,17]. These sequences allow the exclusive
manipulation of a single qubit even when neighboring qubits
are subjected to significant laser intensity, without required
auxiliary fields. Such compensating sequences reduce system-
atic control errors at the cost of increasing gate times [17].
Our main result is a technique to generate fully compensating
narrow-band sequences using Lie-algebraic transformations
of other known sequences. We use numerical minimization
to identify sequences with superior error correction properties
and low operation times compared to the original sequence
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family. Further, we demonstrate the effectiveness of these
sequences in an experiment with 40Ca+ ion qubits in a
surface-electrode trap.

We consider a register of N identical spatially separated
qubits. A resonant laser in the rotating-wave limit illuminates
an addressed qubit i, but also illuminates neighboring qubits
j at a lower intensity, resulting in an addressing error. Control
over the qubits is implemented by applying a time-dependent
Hamiltonian

H (t) = ��i

2

⎧⎨
⎩σi(ϕ(t)) +

∑
j �=i

εjσj (ϕ(t))

⎫⎬
⎭ , (1)

where ϕ(t) is the laser phase, �i is the Rabi frequency for
the addressed qubit i, and σ (ϕ(t)) = X cos ϕ(t) + Y sin ϕ(t),
where X and Y are Pauli operators. For simplicity we fix
|�i |2 to a maximal value corresponding to the intensity peak
of the laser field. The terms εjσj (ϕ(t)) induce undesired
correlated rotations on neighboring qubits. Here the ratio
εj = �j/�i < 1, where �j is the Rabi frequency at the
neighboring qubit j . The frequency �j parametrizes the
magnitude of the addressing error and is assumed to be fixed
over the entire duration of the control. The time dependence
of H (t) is entirely due to the temporal modulation of the
phase ϕ(t).

Compensating pulse sequences choose ϕ(t) to yield a
net evolution robust against a particular class of systematic
errors. A common simplification for ϕ(t) is to divide the
time coordinate into L time intervals (�t1,�t2, . . . ,�tL) for
which the phase is a constant angle (ϕ1,ϕ2, . . . ,ϕL). Each pulse
applies a spin rotation controlled by the generator of rotations
r� = −iθ�σ (ϕ�)/2, where θ� = �i�t� is the pulse area or rota-
tion angle applied to the addressed qubit. The total propagator
for the entire sequence is U (r) = Ui(r)[

⊗
j �=i Uj (r)] where

Ui(r) =
L∏

�=1

exp(r�), Uj (r) =
L∏

�=1

exp(εj r�) (2)

are the gates applied to the addressed qubit i and the neighbor
qubit j , respectively, and r = (r1,r2, . . . ,rL) is the ordered
set of rotation generators. With a careful choice of rotation
generators, it is possible to produce propagators that apply
a nontrivial gate Ui(r) = UT to the addressed qubit while
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simultaneously approximating the identity Uj (r) = I +
O(εn+1

j ) on all neighboring qubits. Sequences with this
property are called nth-order fully compensating narrow-band
sequences [16–19]. So long as �j � �i these sequences
reduce errors on all unintentionally illuminated qubits.

We remark that an nth-order narrow-band sequence must
satisfy a set of n Lie-algebraic constraints on the rotation
generators. Applying the Baker-Campbell-Hausdorff lemma
we find that Uj (r) = exp{∑∞

m=1 εm
j Fm(r)}, where Fm(r) is

given by the generators and their commutators and is related
to the mth-order average Hamiltonian. Explicitly the first two
terms are

F1(r) =
L∑

�=1

r�, F2(r) = 1

2

L∑
�=1

�∑
k=1

[r�,rk]. (3)

To satisfy Uj = I + O(εn+1
j ) for all values of εj , each Fm(r)

with m � n must independently equal zero. Frequently it is
possible to assign a geometric interpretation to each constraint.
For example, F1(r) = 0 requires the generators r to form a
closed figure on the Lie algebra, and F2(r) = 0 requires that the
figure encloses signed areas of equal magnitude but opposite
sign.

We introduce a method to generalize existing narrow-band
sequences by identifying Lie-algebraic transformations on
the generators which leave the constraint equations satis-
fied. These transformations yield derivative sequences which
achieve the same order of error suppression, but may offer
substantial improvements in the total composite gate time
as well as the gate accuracy. Our method can be described
as follows. Let Tλ : su(2) �→ su(2) be a map between Lie
algebra elements with the condition that if Fm(r) = 0, then
Fm(Tλ ◦ r) = 0 for all m � n. This ensures that if r generates
an nth-order compensating sequence, then r(λ) = Tλ ◦ r
also generates a sequence of the same order; however, in
general, Ui(r(λ)) �= Ui(r). To find sequences that implement
a particular target gate UT , we perform an optimization over
the mapped sequences to minimize a cost functional while
constraining Ui(r(λ)) = UT . Two cost functionals we consider
are the total pulse area θTotal = ∑L

� |θ�|, related to the total
time required to perform a composite gate, and the infidelity
of the effective identity gate on the neighboring qubits
I(I ) = 1 − F(I,Uj (r(λ))), where F(V,U ) = |tr[V †U ]/2| is
the fidelity between gates V and U .

Maps that satisfy the constraint condition are common
affine transformations. For arbitrary sequences, compositions
of rotations and dilations fulfill the requirement: Fm(RrR†) =
RFm(r)R† and Fm(λr) = λmFm(r). Independent dilation of
each axis Tλx

◦ X = λxX and Tλy
◦ Y = λyY will also satisfy

this criteria for n � 2, and in our case, where the controls are
restricted to the X-Y plane, for n � 3. Starting with an initial
seed sequence r we generate a family of related sequences
r(λx,λy,R) by the composition of dilations and rotations
(Fig. 1).

As an example, consider the first-order pass-band
SK1 pulse sequences, produced by the generators
rSK1(θ ) = (−iθσ (0)/2, − iπσ (ϕSK1), − iπσ (−ϕSK1)) where
cos ϕSK1 = θ/(4π ) [18]. On the addressed qubit SK1 applies
Ui(rSK1(θ )) = exp(−iθX/2) and it approximates the identity
on neighboring qubits, Uj (rSK1(θ )) = I + O(ε2

j ). To illustrate

FIG. 1. (Color online) Construction of rASK1(λx,λy) by compo-
sitions of dilation and rotation maps applied to rSK1(2π ).

our transformation method, we start with the specific case
rSK1(2π ) and identify a map which recovers the entire SK1
family. Let Tθ be the one parameter map that contracts
the X components by λx = θ/(2π ) and expands the Y

components by λy = √
(4 − λ2

x)/3. This map satisfies F1(Tθ ◦
rSK1(2π )) = 0 and rSK1(θ ) = Tθ ◦ rSK1(2π ).

SK1 can implement an arbitrary single-qubit gate using
extra rotations, UT = RUi(rSK1(θ ))R†. Alternatively, one
simply changes the sequence generators using the similarity
transformation rSK1(θ,R) = RrSK1(θ )R†. For a target in-plane
rotation UT = exp ( − iθσ (ϕT )/2) this can be achieved by
advancing all the ϕl in SK1 by ϕT .

The composition of independent X and Y dilation maps
applied to rSK1(2π ) generates a larger family of narrow-band
sequences that we call ASK1, rASK1(λx,λy) = Tλy

◦ Tλx
◦

rSK1(2π ). Figure 1 illustrates the construction of ASK1
sequences. Note that ASK1 usually applies a net rotation
Ui(rASK1(λx,λy)) about an axis outside of the X-Y plane; such
a sequence cannot replace an in-plane rotation implemented
by a single resonant pulse with a constant phase. To achieve
a target in-plane gate UT , we introduce the similarity trans-
formation rASK1(λx,λy,R) = RrASK1(λx,λy)R†, where UT =
Ui(rASK1(λx,λy,R)). We decompose R = exp(r ′)T , where
exp(r ′) applies the minimum-angle rotation to match the polar
angle of the rotation axis; T is a rotation about Z which
can be implemented by a uniform phase advance on the
inner ASK1 pulses. This transformed sequence construction,
which we call TASK1, sets the net rotation angle with the
innermost pulses. In terms of rotation generators the sequence
is rTASK1(λx,λy,R) = (r ′,T rASK1(λx,λy)T †,−r ′). A global
phase advance controls the azimuthal angle of the net rotation
axis.

Despite the inclusion of two additional pulses, the TASK1
sequences outperform SK1. Figure 2(a) shows the TASK1
family in terms of (λx,λy) and plots contours of the net rotation
angle and total pulse area. Using constrained optimization
we identify a subfamily of sequences that minimize the total
pulse area, TASK1 (Tmin), and the infidelity, TASK1 (Emin)
for a fixed net rotation angle. The error-minimal sequences
correspond to λx = λy and result in ASK1 sequences homol-
ogous to equilateral triangles in su(2). Figure 2(b) compares
the infidelity and total pulse area for each sequence subfamily.
TASK1 (Tmin) and TASK1 (Emin) outperform SK1 in both the
required time and the minimization of the residual rotation
on the neighboring qubit and both sequences yield similar
performance for most net rotation angles. In particular, for
a target rotation UT = exp(−iπX/2), the error-minimal and
time-minimal sequences are identical, λx = λy = 1/2, and
TASK1 performs the gate using 3/5 of the total pulse area and
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(a) (b)

(c)

FIG. 2. (Color online) (a) Narrow-band TASK1 family in terms
of the scale parameters (λx,λy). TASK1 sequences implement UT =
exp(−iθX/2) on addressed qubits; θ is the net rotation angle.
Contours of θ (solid) and θTotal (dashed) are plotted in intervals of
π/4. SK1 sequences (blue, thick solid) are a subfamily of TASK1.
(b) TASK1 (Tmin) (red, dashed) is the subfamily which minimizes
θTotal. (c) TASK1 (Emin) (green, solid) minimizes I(I ).

with 1/5 of the residual infidelity compared to SK1. Explicit
descriptions of the pulses can be found in the Supplemental
Material [20].

We demonstrate these sequences by addressing individual
40Ca+ ions confined in a microfabricated surface-electrode
trap [7]; details of our surface trap setup can be found
in [21]. We use a 397 nm laser to Doppler cool and optically
pump ions into the |1〉 = 2S1/2 (mj = −1/2) state. A narrow
linewidth (γ ∼ 150 Hz) 729 nm laser tuned to the |1〉 → |0〉 =
2D5/2 (mj = −5/2) qubit transition is used to sideband cool
the ion to �0.1 phonons in all motional modes and to perform
subsequent qubit rotations. The 729 nm beam propagates
parallel to the trap surface, intersecting the trap symmetry
plane at a 45◦ angle with a w0 = 44.2 ± 0.8 μm 1/e2 diameter
waist. Laser switching and phase control is achieved using
an acousto-optic modulator driven by a 16-bit direct-digital
synthesizer with 20 ns timing resolution. After applying a
sequence of laser pulses, we measure the |1〉 state population
using laser-induced fluorescence.

We verify our theoretical predictions for TASK1 sequences
by measuring the qubit state transfer for differing pulse areas,
controlled by adjusting the timings of each laser pulse to
scale the energy-time product by a constant multiple εj . The
resulting propagation is equivalent to the evolution that would
be experienced during an addressing error by neighboring ions
over differing laser intensities. Figures 3(a) and 3(b) compare
the measured response for pulse sequences applying UT =
−iX and UT = exp(−iπX/4), respectively, to a target ion.
We observe that unwanted population inversion is suppressed
when εj < 1, as desired and when εj � 1 the observed state
transfer is consistent with the expected gate. We find excellent
agreement between the calculated and measured responses as
a function of pulse area.

We observe addressing error compensation by measuring
the state transfer as a function of ion position relative to the cen-
ter of the addressing beam [Fig. 3(c)]. The ion position along
the trap axis is controlled to better than ±0.5 μm by biasing
a subset of 46 segmented dc trap electrodes [7]. We find that
TASK1 sequences exhibit predicted narrow-band behavior:
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FIG. 3. (Color online) Population inversion as a function of
normalized pulse area εj for (a) UT = −iX and in (b) UT =
exp(−iπX/4), and as a function of ion position for (c) UT = −iX.
Shown are simple rotations (black, dotted), SK1 (blue, thick solid),
TASK1 (Tmin) (red, dashed), and TASK1 (Emin) (green, solid).
Curves are theoretical predictions with a single, common adjustable
parameter accounting for experimental qubit detection fidelity.

Unwanted rotations on ions far from the beam are suppressed,
while at the beam center the desired rotation is executed. SK1
sequences are pass-band [18] and simultaneously reduce the
sensitivities of the target gate to position uncertainty and the
unwanted rotation on the neighboring qubit [17].

To quantify the gain of these techniques in terms of ion
spacing, we calculate the theoretical fidelity of the applied
gate with respect to both the I gate [Fig. 4(a)] and the −iX

gate [Fig. 4(b)] as a function of position from the center of
a Gaussian beam with waist w0. For a target infidelity on the
neighboring ion I(I ) � 10−4, we find the ion separation must
be greater than 2.172w0 for the simple pulse, 1.704w0 for SK1,
and 1.584w0 for TASK1 (Tmin).

We also compare pulse sequence techniques to addressing
methods that uses auxiliary field gradients [8–10]. To facilitate
comparison between the methods, we require a gradient as
large as �/z � 1.137 �/w0, where � is the applied shift in
the qubit resonance frequency. At this strength, the gradient
method produces an identity gate with infidelity I(I ) � 10−4

on the neighboring qubits while simultaneously performing
−iX on the addressed qubit with the same ion separation and
gate time as TASK1 (Tmin). For our setup, where the beam waist
is intentionally large to reduce the fractional positioning error

(a) (b)

FIG. 4. (Color online) Gate infidelity as a function of ion position
compared to (a) the identity operation and (b) UT = −iX gates
composed of a simple rotation, TASK1 family pulses, or a simple
rotation with a qubit frequency gradient (see text).
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in z/w0, this corresponds to a modest magnetic field gradient of
90 mT/m. However with diffraction limited optical beams and
� = 1 MHz Rabi frequency the required gradient is as large
as 111 T/m. As a point of comparison, strong gradients of
20 T/m have been achieved with permanent magnets [22] and
on-chip currents have yielded static gradients of 0.06 T/m [10]
and microwave gradients of 35 T/m [13]. Gates performed
using the gradient technique are also more sensitive to ion
positioning errors. To apply a −iX gate to the target ion
with infidelity I(−iX) � 10−4 requires positioning the ion
to z/w0 � 0.0071 for the gradient technique but for TASK1
(Tmin) the ion positioning tolerance is z/w0 � 0.072.

Throughout our analysis we have assumed the laser beam
position is fixed. Fluctuations in laser beam position lead to
errors on the addressed qubit, where the amplitude depends
quadratically on the beam displacement ζ , and reduce the
error cancellation properties of the composite pulse on the
neighboring qubits, where the amplitude has a linear depen-
dence on ζ . For slow fluctuations relative to the pulse time, the
cancellation properties of composite pulses are retained [23].
For an adversarial noise that switches the laser position in
time with the pulses, the infidelity of the addressed qubit
scales as (ζ/w0)4 and the infidelity of the neighboring qubit
at position z scales as (εj zζ/w2

0)2. With adversarial noise to
achieve an infidelity dominated by the residual term of the
composite pulse, ∝ε4

j , then ζ/w0 < εjw0/z. The fidelity of
the neighboring qubit places a fractionally tighter bound on
the pointing stability than the fidelity of the addressed qubit.
We emphasize that this is a worst-case scenario and that for
position instabilities uncorrelated with the pulse sequence this
error will be significantly averaged away.

In conclusion, we introduced a Lie-algebraic transform
method to produce narrow-band sequences from other known
sequences. Using the technique, we developed the TASK1
family from transformations of SK1 and demonstrated their
suitability for single-qubit addressing in an experiment with
trapped ions. The TASK1 family results in improved total pulse
area and error suppression. Our transformation method is well
suited for narrow-band sequences, where there is no desired
unitary operation on the neighboring qubits. Application of the
mapping technique to other narrow-band sequences, e.g., NB1
and the N2j family [18,24], is straightforward. Applying the
technique to sequences where the errors occur on the addressed
qubit, e.g., detuning and amplitude errors, should also be possi-
ble; however, there is additional complexity due to the control
rotating the errors to a toggled frame [17]. In these cases Lie-
algebraic maps cannot consist only of dilations but must also
account for the frame transformation. Further, it is possible to
concatenate these pulses with additional sequences that correct
detuning errors. These concatenated sequences should also
assist with addressability concerns in systems with variable
splitting frequencies, such as superconducting qubits [25].
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