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Control of populations of two-level systems by a single resonant laser pulse
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We present a simple approach allowing one to obtain analytical expressions for laser pulses that can drive a
two-level system in an arbitrarily chosen way. The proposed scheme relates every desired population-evolution
path to a single resonant laser pulse. It allows one to drive the system from any initial superposition of the
two states to a final state having the desired distribution of the populations. We exemplify the scheme with a
concrete example, where the system is driven from a nonstationary superposition of states to one of its eigenstates.
We argue that the proposed approach may have interesting applications for designing pulses that can control
ultrafast charge-migration processes in molecules. Although focused on laser-driven population control, the
results obtained are general and could be applied for designing other types of control fields.
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Two-level systems, quantum systems possessing only two
eigenstates, have played an important role in quantum me-
chanics since its advent. Although rarely existing in nature
in their pure form, they often serve as models in many
areas of physics and are used successfully for describing
a large variety of physical phenomena. A special class of
problems are the driven two-level systems, i.e., situations
when an external field is applied with the aim to control
the quantum evolution of the system. Such situations can be
encountered in nuclear magnetic resonance techniques [1],
Josephson-junction circuits [2], spin rotations in quantum dots
[3], and qubit control in general, as well as in laser-induced
population transfer in atoms and molecules [4,5].

At the same time, designing laser fields for reaching a
selected state of a quantum system has attracted a lot of efforts
in the last few decades. Different schemes for control of the
quantum dynamics were proposed, like π and chirped pulses
[6], stimulated Raman adiabatic passage (STIRAP) [4,7], and
coherent [5,8] and optimal control [9,10], to name a few. It
is usually supposed that before the interaction with the laser
field the system is in a particular state and the scheme is
designed such that after the interaction it is found in another
(the desired) state. In the case of two-level systems one talks
about population inversion—at the beginning the system is
in one of the two states (usually the ground state) and after
the manipulation it is completely transferred to the other one
(usually an excited state).

There are many interesting situations, however, when at the
beginning the system is in a superposition of quantum states
and we want to drive it to a new superposed state but controlling
the weights with which each quantum state participates in the
mixing. Therefore, we need a scheme which brings the system
from |S1〉 = a|1〉 + b|2〉 to |S2〉 = c|1〉 + d|2〉 controlling the
populations, i.e., |c|2 and |d|2. Obviously, the population
inversion, i.e., going from |1〉 to |2〉, is a special case of this
more general scheme.

An interesting example for a situation in which such a
control protocol will be very useful can be realized when
molecules are exposed to ultrashort laser pulses. In this case,
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due to the broad bandwidth of the pulse, more than one
electronic state can be coherently populated creating in that
way an electronic wave packet and therefore triggering pure
electron dynamics. In the case of ionization of the molecule,
it has been shown [11] that due to the electron correlation
the initially created hole charge can migrate throughout the
molecule within just a few femtoseconds. This phenomenon,
known as charge migration, has since been intensively studied
theoretically [12–17] and currently is the subject of increasing
interest also from experimentalists (see, e.g., Refs. [18–20]).
The ultimate goal for the scientific efforts is to find schemes
to control the charge migration. Ideally, an ultrashort pulse
triggers electron dynamics and a delayed pulse is used for
controlling the migration process.

Although most of the known schemes or protocols are
applicable also to systems being in a superposition of quantum
states, they do not allow for control of the final state mixture.
Being designed for achieving a population inversion, applied
to two-level systems in a superposed state these schemes will
bring the system to a new superposed state in which the weights
with which each eigenstate participates are just swapped. In
this paper we show how one can obtain an analytic expression
for a resonant pulse which is able to control not only the final
state superposition, but also the exact path of the transition.

Let us briefly review the general formalism for describing
the electric dipole interaction between a two-level system and
a classical monochromatic field. The Hamiltonian in this case
has the following form:

H = ε1|1〉〈1| + ε2|2〉〈2| − �d · �E(t), (1)

where |1〉, |2〉 and ε1, ε2 are the two eigenstates and
eigenenergies, respectively, of the field-free Hamiltonian; �d
is the electric dipole operator given by

�d = �ed (d|1〉〈2| + d∗|2〉〈1|), (2)

with �ed being a unit vector in the direction of the dipole and d

denoting the matrix element of the dipole operator between |1〉
and |2〉. In the case of a laser pulse with carrier frequency ω,
the electric field �E(t) can be written as

�E(t) = �E(t)e−iωt + �E∗(t)eiωt , (3)
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where �E(t) contains the polarization, amplitude, and envelope
of the pulse. For simplicity, in the following we will take
the dipole transition matrix element as real (d = d∗) and
will remove the vector notations by taking the scalar product
between �d and �E(t), denoting by μ the projection of the dipole
operator on the polarization axis of the electric field.

The general form of the wave function describing the
evolution of the system is given by (atomic units are used
throughout the text unless otherwise specified)

|�(t)〉 = c1(t)e−iε1t |1〉 + c2(t)e−iε2t |2〉, (4)

where c1(t) and c2(t) are the time-dependent (in general
complex) amplitudes of the eigenstates |1〉 and |2〉, which,
due to the orthonormality of the field-free states satisfy the
condition |c1(t)|2 + |c2(t)|2 = 1 at all times.

Inserting this wave function in the time-dependent
Schrödinger equation i|�̇(t)〉 = H |�(t)〉, one obtains the
following set of coupled equations:

ċ1(t) = ic2(t)μ(E(t)e−i(ω+ω0)t + E∗(t)ei(ω−ω0)t ), (5a)

ċ2(t) = ic1(t)μ(E(t)e−i(ω−ω0)t + E∗(t)ei(ω+ω0)t ), (5b)

where ω0 = ε2 − ε1 denotes the resonance frequency.
Since these equations are generally not solvable in ana-

lytical closed form, one usually introduces at this point the
so-called rotating-wave approximation (RWA), meaning that
the “rapidly oscillating terms,” i.e., the exponentials e±i(ω+ω0)t

in Eq. (5), are neglected. This approximation usually works
well if ω ≈ ω0 (near resonance) and the coupling to the field
is not very strong. We note that we need the RWA only for
obtaining an analytical expression for the control field. As
we will see, this field will give the desired results also when
the exact equations [Eq. (5)] for the system evolution are
used. Within the RWA, Eq. (5) turns into the following set
of equations:

ċ1(t) = ic2(t)μE∗(t)eiδt , (6a)

ċ2(t) = ic1(t)μE(t)e−iδt , (6b)

where δ = ω − ω0 denotes the detuning. Equation (6) can be
integrated exactly for arbitrary initial conditions to obtain a
closed analytical solution.

Our purpose is, however, to find pulses which will bring
the system into a state with a desired proportion of the final
populations, given by the modulus square of the amplitudes c1

and c2. In order to find such solutions we can view Eq. (6) as
equations for E(t) and E∗(t), i.e.,

E∗(t) = − i

μ

ċ1(t)

c2(t)
e−iδt , (7a)

E(t) = − i

μ

ċ2(t)

c1(t)
eiδt . (7b)

Substituting these expressions into Eq. (3) one obtains

E(t) = − i

μ

(
ċ2(t)

c1(t)
e−iω0t + ċ1(t)

c2(t)
eiω0t

)
. (8)

Note that due to the RWA the dependence on ω cancels
out. Now we have an expression that connects the evolution
of the amplitudes with the driving field. Therefore, if we want

the system to evolve in a particular way, we can obtain through
Eq. (8) the field which can drive this evolution.

As we mentioned, the amplitudes c1(t) and c2(t) are in
principle complex functions, so we can write them in the form,

ck(t) = c̃k(t)eiϕk , k = 1,2, (9)

where c̃k(t) are real positive functions. In principle, ϕk can
be time dependent. As we will see below, this would lead to
a chirped pulse. Let us concentrate first on the solution for
time-independent ϕk . In this case, Eq. (8) takes the form,

E(t) = − i

μ

( ˙̃c2(t)

c̃1(t)
e−i(ω0t+ϕ) +

˙̃c1(t)

c̃2(t)
ei(ω0t+ϕ)

)
, (10)

where ϕ = ϕ1 − ϕ2 is the relative phase between the ampli-
tudes c1(t) and c2(t).

Let the evolution of the system proceed according to
the function f (t), i.e., let |c̃1(t)|2 = f (t). From the total
population conservation condition we automatically have
|c̃2(t)|2 = 1 − f (t). Since c̃k(t) are both real and positive, we
can write that c̃1(t) = √

f (t) and c̃2(t) = √
1 − f (t). From

Eq. (10) we get the following field:

E(t) = 1

μ

ḟ (t)√
f (t)(1 − f (t))

sin (ω0t + ϕ), (11)

which has a carrier frequency exactly on resonance with the
transition between the two states ω0.

We see that if we want to drive the system in a particular
way, we just need to describe this evolution via an appropriate
control function f (t). The control field obtained via Eq. (11)
will then “force” the system to follow the quantum path given
by f (t). We note that the control field derived in Eq. (11) will
keep the relative phase between the amplitudes constant.

If one allows for the phases in Eq. (9) to be time dependent,
an additional term would appear in Eq. (10) containing the
time derivatives of the individual phases. Since the field has
to be real, one can, in principle, obtain conditions for an
additional control function which can fix the way the relative
phase evolves in time. However, the discussion of this more
complicated construct is out of the scope of the present paper,
since we would like to concentrate here only on the problem
of population control.

Let us now illustrate the above reverse-engineering ap-
proach with a concrete analytical and numerical example.
Suppose that initially our system is in a (superposed) state
in which the population of |1〉 is equal to ai and we want to
drive the system to a state in which the population of |1〉 will
be af . A convenient choice for the function controlling this
transition is

f (t) = ai(1 − g(t)) + af g(t), (12)

where g(t) is a function which goes smoothly from 0 to 1

and never exceeds 1, i.e., 0 � g(t) � 1, g(t)
t→−∞−−−−→ 0, and

g(t)
t→∞−−−→ 1. A possible choice for such a function is the

following:

g(t) = 1

1 + e−αt
, (13)

where the parameter α controls the duration of the transition
from ai to af .
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FIG. 1. (Color online) (Upper panel) Laser pulse obtained
through Eq. (14) using the following parameters: μ = 6 a.u., ω0 =
0.02 a.u., ai = 0.4, af = 1, α = 0.01, and φ = 0. (Lower panel)
Evolution of the populations of the states |1〉 (red dotted) and |2〉
(green dash-dotted) of a two-level system driven by such a laser
pulse. The control function f (t) used to obtain the driving field
is depicted in blue solid. We see that the system is driven from a
coherent superposition of states |1〉 (40%) and |2〉 (60%) to a system
being only in state |1〉.

If we use this particular choice of control function f (t) in
Eq. (11), we obtain the following control field:

E(t) = 1

μ

α(af − ai)eαt

(1 + eαt )
√

(1 − ai + (1 − af )eαt )(ai + af eαt )

× sin (ω0t + ϕ). (14)

The parameter α connects the speed of transition with the
field intensity. For a faster transition we will naturally need to
apply a stronger field.

Let us now perform a numerical test on this particular
control field, taking the following numerical values for the
parameters: μ = 6 a.u., ω0 = 0.02 a.u., ai = 0.4, af = 1,
α = 0.01, and ϕ = 0.

The pulse corresponding to the above parameters is shown
in the upper panel of Fig. 1 . We see that it is slightly asymmet-
ric with respect to the maximum intensity but otherwise very
regular. The asymmetry actually reflects the “asymmetric” way
we want to drive the system. The chosen parameters describe
the situation in which the system is initially in a nonstationary
state (a superposition of |1〉 and |2〉, with |1〉 containing 40%
of the total population) and we drive it to a stationary state,
i.e., after the pulse the system is in state |1〉 (see the blue
solid curve in lower panel of Fig. 1). The special case of
population inversion, i.e., when the populations of the states
|1〉 and |2〉 before and after the pulse are swapped, will require
a symmetric pulse. If we take af to be 0.6, Eq. (14) will give
us a symmetric pulse.

To check the validity of the above procedure, we can use
the field obtained via Eq. (14) and solve numerically Eq. (5),
i.e., the equations before introducing the rotating-wave ap-
proximation. We remind that within the dipole approximation
for the interaction with the field, these are the exact equations
describing the evolution of the system. The result is depicted

in the lower panel of Fig. 1, together with the control function
f (t) giving the evolution of the system within the RWA. We
see that the system indeed follows the desired evolution and
that the RWA is a quite good approximation in this case.
The neglected rapidly oscillating terms introduce only small
variations in the transition path.

We note in passing that the parameters in this example are
not taken arbitrarily. They describe the situation realized in the
outer-valence ionization of the molecule MePeNNA [15]. Ul-
trafast ionization out of the highest occupied molecular orbital
of MePeNNA coherently populates two ionic states, which are
each composed of two configurations: charge located on the
amine site (corresponding to state |1〉) and charge located on
the chromophore site (corresponding to state |2〉). The coherent
population of the two ionic states triggers charge-migration
dynamics—the created hole charge oscillates between the
chromophore and the amine site of the molecule with a period
of about 7.5 fs [15] (see also Ref. [21]). Applying the laser
pulse shown in the upper panel of Fig. 1 will stop the quantum
beating and localize the charge on the amine site. One can, of
course, design a pulse which can terminate the oscillation and
localize the charge on the chromophore, or create any desired
superposition of the two states involved. We, therefore, have a
tool to control the ultrafast charge-migration dynamics.

It is important to know what is the regime in which the
above approach for obtaining the driving field works well,
i.e., when the RWA is a good approximation. The condition
for the validity of the RWA is that the envelop of the pulse
varies slowly with time in comparison to the field oscillations,
determined by the carrier frequency ω0. To exemplify this let
us take the same parameters as above but reduce the time for
which we want to drive the system to the chosen final state.
The transition time is governed by the parameter α which also
determines the width of the pulse envelope. The result for the
pulse obtained with α = 0.05 (all other parameters were kept
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FIG. 2. (Color online) (Upper panel) Laser pulse obtained
through Eq. (14) using the same parameters as in Fig. 1 except
α = 0.05. (Lower panel) Evolution of the populations of the states |1〉
(red dotted) and |2〉 (green dash-dotted) of a two-level system driven
by such a laser pulse. The control function f (t) used to obtain the
driving field is depicted in blue solid. We see that the full solution
start to deviate from the RWA and the pulse is not able to bring the
system 100% to state |1〉.
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the same) is shown in Fig. 2 together with the evolution of
the system. With these parameters we obtain a single-cycle
pulse with which, as we see in the lower panel of Fig. 2, the
full solution starts to deviate more substantially from the one
obtained within the RWA and we are no longer able to bring
the system 100% to state |1〉. However, even for such a limiting
pulse the RWA still gives reasonable results.

At the end we would like to note that although focused on
laser-driven population control, the scheme presented in the
present paper is general and could be applied for designing
other types of control fields. For example, systems often
studied for the purposes of quantum computing are spin
systems interacting with a magnetic field. In this case, the
Hamiltonian has the same form as in Eq. (1), just the interaction
term has to be replaced by −�μ · �B, where �μ stands here
for the magnetic moment and �B for the magnetic field. As
far as the resulting dynamical problem is the same, one
may use the reverse-engineering approach presented here for
obtaining magnetic fields that can drive a spin system in a
desired way. The possibility to choose the way the system is
driven from its initial to its final state is the main (and very
important) difference between the scheme proposed in the
present paper and other protocols for optimal control (see, e.g.,

Refs. [22,23]). In these schemes the control fields are obtained
either by minimizing the transition time, or by minimizing the
area of the pulse. In this respect, the present procedure is more
general.

In summary, we proposed a simple method allowing one
to obtain laser pulses that can drive a two-level system in
a desired way. Importantly, not only the final populations
can be controlled. By choosing the function f (t), we can
exactly predetermine the evolution of the system and control
the population of each state at any moment of time during
the interaction with the field. We exemplified this on a system
being in a superposition of the two states and showed that
the analytically obtained resonant laser pulse can smoothly
drive the system such that it lends on only one of the states.
This protocol may find an interesting application in con-
trolling the ultrafast charge-migration process in molecules,
but it is not restricted to systems interacting with laser
fields.
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