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Self-interactions as predicted by the Dirac-Maxwell equations
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We solve the Maxwell-Dirac equations to study the dynamics of a spatially localized charged particle in
one spatial dimension. While the coupling of the Maxwell equations to the Dirac equation predicts correctly
the attractive or repulsive interaction between different particles, it also reveals an unphysical interaction of a
single electron or positron with itself leading to an enhanced spatial spreading of the wave packet. Using a
comparison with a relativistic ensemble of mutually interacting classical quasiparticles, we suggest that this
quantum mechanical self-repulsion can be understood in terms of relativistic classical mechanics. We show that
due to the simple form of the Coulomb law in one spatial dimension it is possible to find analytical expressions of
the time-dependent spatial width for the interacting classical ensemble. A better understanding of the dynamical
impact of this unavoidable self-repulsion effect is relevant for recent studies of the field-induced pair creation
process from the vacuum.

DOI: 10.1103/PhysRevA.90.034101 PACS number(s): 12.20.Ds, 34.50.Rk, 03.65.−w

While the creation dynamics of electron-positron pairs in
supercritical electromagnetic fields in the quantum vacuum has
been widely studied [1–3], only recently has the contribution
of the mutual electron-positron attraction been investigated
[4–10]. A fundamentally accurate and space-time resolved
theory that would involve the force-intermediating photons
as dynamically coupled quantum particles is presently out of
the question for computational and also conceptual reasons.
To obtain some first qualitative ideas about the impact of these
forces, one can approximate the photons by self-consistent but
classical electromagnetic fields whose dynamics are governed
by the Maxwell equations, which contain the charge and
current densities of the created particles as source terms.
However, due to the absence of any quantum field theoretical
estimates it is presently rather difficult to evaluate the accuracy
of such an approximation for the pair-creation process. For
example, as neither the source terms in the Maxwell equation
nor the electromagnetic fields are described as field theoretical
operators, these equations predict that even portions within a
wave packet of a single particle can repel each other.

One could try to interpret this self-repulsion based on
Born’s statistical interpretation of a wave packet. A probability
density represents a temporal average of infinitely many
measurements of the same single particle. In an approach
where the Maxwell field is not second quantized, however,
the entire spatial density acts as a source term in the Maxwell
equations, which then produces a field with which all portions
of the wave function act simultaneously. In other words,
different portions of the same particle wave packet could
then interact with each other like particles in a classical
ensemble of many particles or in a charge cloud. If the field
is second-quantized, the electron is treated more like a real
inseparable particle, which cannot be divided into different
parts and thus the self-interaction should be absent.

We point out that at present it is not clear if this effect is
intrinsically quantum mechanical at all or how accurately it
could be modeled in terms of simple classical mechanics. A
better understanding of the self-repulsion mechanism would
also help us to distinguish it from the true (multiparticle)

repulsion between two equally charged particles. With respect
to the pair creation dynamics it is therefore important to obtain
a better estimate of the magnitude (and therefore dynamical
relevance) of this unphysical self-repulsion effect.

In this Brief Report we compare the effect on the enhance-
ment of wave packet spreading with the predictions from a
classical ensemble of fully interacting charged quasiparticles
[11,12] in the relativistic and nonrelativistic regime. The
quantum mechanical description for a particle with charge Q

and mass M interacting with a scalar and vector potential is
given by the coupled Maxwell-Dirac equations in one spatial
dimension [10]

i∂tψ(z, t) = [cσ1[p − QA(z, t)/c]

+ σ3Mc2 + QV (z, t)]ψ(z, t), (1)

(∂2
ct − ∂2

z )V (z, t) = 4πq(z, t), (2a)(
∂2
ct − ∂2

z

)
A(z, t) = 4πc−1j (z, t). (2b)

Here we have used the Lorenz gauge ∂zA = −∂ctV and
atomic and cgs units, where the four fundamental constants
[amount of the charge of the electron, its mass, and Coulomb’s
and Planck’s constants 1/(4πε0) and �] are all unity by
definition. The corresponding electric field is given as E =
−∂zV − ∂ctA. Also, c = 137.036 a.u. is the speed of light and
σ1 and σ3 are the two Pauli matrices. For a single particle,
the charge and current densities are obtained from the two-
component wave function ψ , as q(z, t) ≡ Qψ(z, t)†ψ(z, t)
and j (z, t)† ≡ cQψ(z, t)†σ1ψ(z, t). We have introduced the
(standard minimal coupling) parameter Q (which in one
dimension has the same units as the square root of the force)
to control the strength of the back reaction of the particle onto
the internal fields.

Next we discuss the initial conditions. In order to model a
spatially localized particle that is initially centered at z = 0
and has a spatial width of �z0, we use the state

ψ(z, t = 0) = (
2�z2

0/π
)1/4

∫
dp exp

[−p2 �z2
0

]

×Wp(u; z), (3)
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where the two-component Wp(u;z) denotes the energy eigen-
state of the force-free Hamiltonian cσ1p + σ3Mc2 with
momentum p and positive energy wp ≡ [M2c4 + c2p2]1/2.
The energy eigenstates for positive (up) and negative (down)
energies are given in their spatial representation by

Wp(u; z) ≡ χ [1, cp/(Mc2 + wp)] exp[ipz], (4a)

Wp(d; z) ≡ χ [−cp/(Mc2 + wp), 1] exp[ipz], (4b)

where χ ≡ (2π )−1/2[1 + c2p2/(wp + Mc2)2]−1/2 denotes
the normalization factor. If the initial width exceeds the
Compton wavelength, the associated initial charge density
can be approximated by a Gaussian distribution q(z, t =
0) ≈ Q(2π )−1/2�z−1

0 exp[−(z/�z0)2/2]. Using Gauss’ law
[∂2

z V (z) = − 4πq(z, t = 0)] we further approximate the
initial conditions for the Maxwell equations as V (z, t = 0) =
−4π

∫ z

−∞ dz′ ∫ z′

−∞ dz′′q(z′′, t = 0) and A(z, t = 0) =
∂tA(z, t = 0) = ∂tV (z, t = 0) = 0. In order to have a
potential that satisfies initially the periodic boundaries
at z = ±L/2 of our numerical grid (of total length L)
V (z = −L/2, t = 0) = V (z = L/2, t = 0) = 0, we have
determined the coefficients α and β such that the new potential
V (z) + αz + β can vanish at the boundaries. In order to
solve the coupled Maxwell-Dirac equations, we have used an
FFT-based split-operator technique [13–15] for the Dirac and
Maxwell equations. The algorithmic details are presented in
Ref. [10].

The corresponding relativistic but classical ensemble of N

mutually (and instantaneously) interacting quasiparticles (of
effective charge qeff = Q/N and effective mass meff = M/N

each) is modeled here by the Hamilton function

H = �N
i=1

[(
m2

effc
4 + c2p2

i

)1/2 + qeff�
N
j=1V (zi, zj )

]
, (5)

where zi(t) and pi(t) are the position and momentum of the
ith quasiparticle. Here we use a gauge where A is zero.
The quantum mechanical wave packet has the same total
charge Q (given by the minimum coupling constant in the
underlying QED Hamiltonian [16]), as the corresponding
classical ensemble of N particles. Due to our choice of meff

both systems have also the same total mass M , which we chose
to be unity in our numerical simulations.

The form of the pairwise interaction potential V (zi, zj )
can be obtained from the Maxwell equations in one spatial
dimension [Eqs. (2)]. For a single (positive) unit charge
at rest that is localized at z = 0 [i.e. , q(z) = δ(z)] Gauss’
law predicts a steady state potential V (z) = −2π |z|, corre-
sponding to an electric field E(z) = 2πz/|z| that is spatially
constant to the left and right of the charge. We therefore
use V (zi, zj ) = −2πqeff|zi − zj | in Eq. (5). The resulting
Hamilton equations of motion for the ith particle are

∂tzi(t) = ∂H/∂pi = c2pi

[
m2

effc
4 + c2p2

i

]−1/2
, (6a)

∂tpi(t) = −∂H/∂zi = q2
eff2π�N

j=1(zi − zj )/|zi − zj |. (6b)

To be consistent with the quantum initial conditions, we
choose independently Gaussian distributed initial positions
and momenta, centered at zero and with initial widths �z0

and �z−1
0 /2, respectively.

As a consequence of the scaling of each particle’s effective
charge qeff = Q/N , not only the ensemble’s total charge but

FIG. 1. The spatial probability density at various instants of time
(n − 1) 0.0013 a.u. for the quantum (solid) and classical mechanical
(open circles) system. (Parameters are L = 6.4 a.u., Nz = 2048 spatial
grid points, initial width �z0 = 0.05 a.u. The number of particles in
the classical ensemble was 10 000, Q = −100, M = 1.)

also the total interaction energy �N
i=1qeff�

N
j=1V (zi, zj ) is

finite. If for simplicity we assume that the particles’ spatial
distribution is uniform and extended from 0 to �z0, i.e.,
zi = i�z0/N (where i = 1, 2, . . . , N ), we can estimate the
total interaction energy as −2πq2

eff�z0/N�N
i=1 �N

i=1|i − j | =
−(2πq2

eff�z0/N)N (N2 − 1)/3 → −2π/3Q2�z0 for the
large N limit. As we have assumed a mass meff for each
particle, also the total kinetic energy �N

i=1 [m2
effc

4 + c2p2
i ]1/2

is finite. The average energy per quasiparticle, however, is
inversely proportional to N .

In Fig. 1 we present six snapshots of the spatial proba-
bility density ρ(z, t) ≡ ψ(z, t)†ψ(z, t). To illustrate the self-
repulsion for comparison we have also shown by the dashed
line the corresponding final density in the absence of any
interaction (Q = 0), reflecting simply the usual quantum
mechanical spreading associated with the nonvanishing vari-
ance in the momentum �p0 = 1/(2�z0). The open circles are
the spatial distribution associated with the fully interacting
classical ensemble. The agreement between the quantum and
classical systems is superb.

If the initial conditions for the Maxwell equations had
been chosen as V (z, t = 0) = A(z, t = 0) = ∂tA(z, t = 0) =
∂tV (z, t = 0) = 0, the resulting long-time spatial distribution
would be unchanged. In this case the charge density would
first induce the corresponding electric field. After a time delay,
however, the self-spreading would evolve similarly as shown
in Fig. 1.

Below we will examine the time dependence of the spatial
width �z(t) more directly. It turns out that due to the special
properties of Coulomb’s law in one spatial dimension, the
temporal growth of the spatial width of the entire classical
ensemble �z(t) can be obtained analytically if we assume that
the initial velocity of each particle is negligible. As the amount
of the electric field between the particles is independent of the
interparticle distance, the particles can maintain their relative
ordering of their positions in time. As a result each particle
experiences a different but temporally constant force due to the
other particles. The trajectory for the ith particle can therefore
be obtained from the Hamilton equations (6) of motion as
zi(t) = z0, i + [m2

effc
4f −2

i + c2t2]1/2 − meffc
2/fi , where the
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force fi for each particle does not change in time and is
therefore determined from all initial positions zj (t = 0) ≡ z0, j

as

fi = q2
eff2π�N

i=1 (z0, i − z0, j )/|z0, i − z0, j |. (7)

The nonrelativistic limit (c → �) of each trajectory is, of
course, zi(t) = z0, i + ait

2/2, where ai ≡ (fi/meff) is the (N -
independent) acceleration of each particle.

We will use this particular solution for the ith particle to
compute the time-dependent standard deviation of the position,
whose square is defined as �z(t)2 ≡ 〈z(t)2〉 − 〈z(t)〉2. From
now on 〈· · · 〉 denotes the average over all particle positions
and momenta in phase space. Using that 〈a〉 = 0 we obtain

�z(t)2 = �z2
0 + 〈z0(c4a−2 + c2t2)1/2〉

− c2〈z0/a〉 + 〈[(c4a−2 + c2t2)1/2 − c2/a]2〉. (8)

The corresponding nonrelativistic limit can be expressed
directly in the terms of the variance of the initial accelerations
�a as

�z(t)2 = �z2
0 + �a2t4/4 + 〈z0 a〉t2. (9)

While the usual (velocity variance-induced) nonrelativistic
spreading (for Q = 0)

�z(t)2 = �z2
0 + �v2

0 t
2 (10)

grows asymptotically linearly in time, �z(t) → �v0t , the
spreading induced by an acceleration variance grows quadrat-
ically, �z(t) → �a t2/2.

The self-spreading dominates the long-time behavior. How-
ever, the analytical solutions can be used to estimate for which
parameters the self-repulsion can be neglected for short times
in the nonrelativistic regime. The ratio of the linear terms in
Eqs. (9) and (10) is given by the dimensionless parameter � ≡
〈z0a〉/�v2

0 . Only if � 	 1 the self repulsion can be neglected
relative to the natural spreading. If we assume that the particle
positions are uniformly distributed in space, we can compute
the average 〈z0a〉 = (1/N)�N

i=1 z0, iq
2
eff/meff2π�N

j=1(z0, i −
z0, j )/|z0, i − z0, j |. This expression can be simplified to
〈z0a〉 = (1/N )3Q2/M 2π �z0 �N

i=1 �N
j=1i(i − j )/|i − j |. In

the large N limit we obtain 〈z0 a〉 = Q2π�z0/(3M). If we
further assume that the initial quantum state minimizes the
Heisenberg uncertainty relationship, i.e, �v0 = 1/(2M�z0)
the parameter � becomes � = (4π/3) Q2M �z0

3. For
example, for the data displayed in Figs. 1 and 2 (Q = −100,
M = 1, �z0 = 0.05) we obtain � � 5.2, which explains why
the analytical formula (for which we had to assume �v0 = 0)
worked so accurately. This also means, if the initial particle
distribution is sufficiently narrow, �z0 	 [(4π/3)Q2M]−1/3,
the self-spreading can be neglected compared to the natural
spreading.

In Fig. 2 we compare the time evolution of the spatial width
obtained from various models. The first graph is the quantum
mechanical width �z(t) obtained from the coupled Dirac-
Maxwell equations. This graph is indistinguishable from the
one obtained from the classical ensemble given by Eq. (8). The
agreement is again rather good suggesting that the initial width
in the momentum distribution �p0 (which we neglected in our
analytical derivation) is not so important here. To illustrate the
importance of the interparticle forces, for comparison we have

FIG. 2. The spatial width �z(t) of the charged particle as a
function of time. The lowest curve/circles are the quantum/classical
data for Q = 0. For Q = −100, the quantum calculation is compared
with the analytical formula. (Parameters are L = 6.4 a.u., Nz = 2048
spatial grid points, initial width �z0 = 0.05 a.u. 10 000 particles in
the classical ensemble.)

also shown the spreading behavior for a particle that is not
coupled to the Maxwell equation, coresponding to Q = 0, and
given by Eq. (10). We see that at the final time the natural
spreading has only increased the width by a factor of 1.65,
while the self-interaction increased the width by a factor of
10.3 during the same time interval.

Finally, by comparing with the nonrelativistic limit Eq. (9),
we see that the dynamics is highly relativistic, especially
at long interaction times when all particles (except the one
exactly in the middle of the distribution) approach the speed
of light c. While for early times when the particles have
speeds significantly less than c, the agreement is rather
good as expected, however, at longer times the width grows
quadratically in time leading to a width that can exceed the
relativistic limit �z(t) ∼ ct .

In summary, we have shown that the unavoidable self-
repulsion of a charged quantum particle when described by
the coupled Maxwell-Dirac equation can be modeled very
accurately and therefore understood in terms of a classical
mechanical ensemble of mutually interacting quasiparticles,
for which analytical solutions are available. This agreement
permits us now to estimate the impact of this effect, which is
unavoidable unless the photon field is second quantized or the
source terms in the Maxwell equations are not chosen ab initio
but modified phenomenologically, such as done for example
in the Vlasov equation [4–7].

This finding suggests that in a focal region where the
electron’s and positron’s probability density overlap the mag-
nitude of the (unphysical) electron self-repulsion is equal to the
amount of the (physical) attractive force between an electron
and a positron. This is supported by the fact that in the present
formalism two parts of the same electron contribute to the total
charge and current densities in the same way in the Maxwell
equation as two different electrons or an electron and a positron
would contribute. In other words, studies that investigate
ab initio the effect of the electron-positron interaction on the
pair creation process without the required second quantization
of the photon field have to be rather carefully examined [8–10].
The predictions of the pair creation process might be rather

034101-3



BRIEF REPORTS PHYSICAL REVIEW A 90, 034101 (2014)

different, when the internally generated field is described with
the required second quantization.

While these conclusions are based on the spatially
restricted Coulomb law, we would expect that the impact of
the self-repulsion in ab initio approaches will also be a serious
issue in higher dimensions. While the availability of a fully
analytical solution for the spreading behavior relied on the
spatial restriction of our system, the agreement between the
quantum and classical dynamics should also prevail in higher
dimensions, for which only numerical solutions might be
available.
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