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Linear and nonlinear (especially coherent) electromagnetic interactions of moving many-electron atoms
are investigated using a reduced-density-matrix description, which is applied to electromagnetically induced
transparency and related resonant pump-probe optical phenomena. External magnetic fields are included
on an equal footing with the electromagnetic fields and spin-Zeeman interactions are taken into account.
Complimentary time-domain (equation-of-motion) and frequency-domain (resolvent-operator) formulations
of the reduced-density-matrix description are self-consistently developed. The general nonperturbative and
non-Markovian formulations provide a fundamental framework for systematic evaluations of corrections to the
standard Born (lowest-order-perturbation) and Markov (short-memory-time) approximations. The macroscopic
electromagnetic response is described semiclassically, employing a perturbation expansion of the reduced-density
operator in powers of the classical electromagnetic field. Our primary results are compact Liouville-space operator
expressions for the linear and general (nth-order) nonlinear macroscopic electromagnetic-response tensors, which
can be evaluated for nonlocal and nonstationary optical media described by multilevel atomic-system representa-
tions. Interactions among atoms and with environmental photons are treated as line-broadening effects by means
of a general Liouville-space self-energy operator, for which the tetradic-matrix elements are explicitly evaluated
in the diagonal, lowest-order, and Markov approximations. The compact Liouville-space operator expressions that
are derived for the macroscopic electromagnetic-response tensors are introduced into the dynamical description
of the electromagnetic-field propagation. It is pointed out that a quantized-electromagnetic-field approach will be
required for a fully self-consistent quantum-mechanical treatment of local-field effects and radiative corrections.
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I. INTRODUCTION

Nonlinear electromagnetic interactions can significantly
influence the propagation of (probe or signal) light pulses in en-
sembles of many-electron atomic systems that are simultane-
ously undergoing resonant and coherent excitations by intense
(pump or control) electromagnetic fields [1,2]. The fundamen-
tal, microscopic description of coherent optical processes in
quantized electronic systems and the precise evaluation of the
linear and the nonlinear macroscopic electromagnetic response
are the primary objectives of our investigation. A brief and
preliminary account of our reduce-density-matrix description
of pump-probe optical phenomena in moving many-electron
atomic systems has been reported in Ref. [3]. We now report
more details and further developments of our investigation.

A. Quantized electronic systems

We have been developing a general reduced-density-matrix
approach for electromagnetic interactions of quantized elec-
tronic systems [4]. Our primary goal is a comprehensive
fundamental framework for detailed and systematic theoretical
and computational investigations of a wide variety of electro-
magnetic phenomena. Moving many-electron atomic systems
in warm vapors are treated in this paper. Electromagnetic
processes in solid-state systems, including metamaterials and
quantum-confinement structures, are beyond the scope of the
present investigation.

B. Electromagnetically induced transparency and related
pump-probe optical phenomena

Harris et al. [5] presented the original description of
electromagnetically induced transparency (EIT), in which a

rapid frequency variation of the index of refraction within a
narrow spectral range leads to a reduction in the group velocity
of a propagating electromagnetic pulse within a coherently
excited optical medium. Slow light produced by EIT, as
well as by related resonant pump-probe optical phenomena,
offers promising applications for optical communication [6,7].
Electromagnetically induced transparency in moving many-
electron atomic systems and slow light are the primary
applications of interest in this investigation. However, our
general reduced-density-matrix description is applicable to a
wide variety of resonant pump-probe optical phenomena and
a diverse class of modified light-propagation characteristics.

C. Applications of the reduced-density-operator approach
to atomic systems

Figure 1 schematically illustrates a pump-probe optical
process, such as EIT, for a three-state � atomic-system
model. Our reduced-density-operator description is applicable
to electromagnetic processes involving an intense (pump or
control) electromagnetic field and a weak (probe or signal)
electromagnetic field, as well as to processes involving three
or more different electromagnetic fields. We present the deriva-
tion of a compact Liouville-space operator expression for the
general (nth-order) macroscopic electromagnetic response,
which can be readily evaluated for a larger, more extensive
manifold of many-electron atomic states, including bound
excited, autoionizing, and nonresonant continuum states from
the complete basis set.

An explicitly time-dependent approach based on the equa-
tion of motion for the reduced density operator is expected
to be necessary for ultrafast optical excitation processes.
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FIG. 1. (Color online) A pump-probe process, such as electro-
magnetically induced transparency, is illustrated for a three-state �

atomic-system model and two distinct electromagnetic fields, which
are referred to as the pump and probe fields.

A multiple-mode Floquet-Fourier expansion of the reduced
density operator can provide the basis for a nonperturbative
dressed-state approach that would be applicable for intense
but stationary (continuous-wave) electromagnetic fields [8]. In
our approach, the reduced density operator can be expanded
in powers of either the weaker probe field alone or the
entire combined electromagnetic field. In our semiclassical
description, the ensemble of many-electron atomic systems
corresponding to the optical medium is treated as a quantum
system, while the electromagnetic field is assumed to be
governed by the Maxwell equations of classical electrody-
namics. However, we will point out that the development of
a quantized-field formulation will be necessary for a fully
self-consistent quantum-mechanical description.

D. External magnetic fields

We will treat pump-probe optical phenomena in the
presence of external magnetic fields. Slow light within an
enhanced spectral range has been produced in warm atomic
vapors by applying an external magnetic field in the light
propagation direction, with a transverse spatial dependence
[9,10]. When different frequency components enter the EIT
medium at suitably separated transverse locations, the required
two-photon resonance condition, involving the pump and
the probe electromagnetic fields, can be maintained at each
transverse spatial location by the Zeeman shifts that are
generated in the atomic systems. The individual Zeeman-
split EIT spectral patterns have been observed for spatially
homogeneous external magnetic fields [11,12].

E. Atomic collisions and other environmental interactions

The general expressions for the Liouville-space self-energy
operators, which are derived in the frequency-domain and
time-domain formulations of our reduced-density-operator
description, provide a fundamental framework for the sys-
tematic treatment of the effects of interactions among atoms,
on an equal footing with radiative processes. We point
out that an unambiguous treatment of binary atom-atom
collision processes can be most readily achieved for an
optical medium consisting of two different atomic species.
In many observations, a gas of different atomic systems has
been intentionally injected into the optical medium in order
to minimize the inhomogeneous (diffusion and transit-time)
broadening produced in the many-electron atomic systems that
can participate in the resonant electromagnetic interactions
[9,13]. The tetradic matrix elements of the Liouville-space

self-energy operators can be most simply evaluated in the
Born (lowest-order-perturbation), Markov (short-memory-
time), and diagonal-resolvent approximations. We explicitly
evaluate the lowest-order spectral linewidths and line shifts and
demonstrate that they can be expressed as sums of the conven-
tional frequency-independent binary-collision cross sections
and the radiative transition rates [14]. We emphasize that our
general nonperturbative and non-Markovian tetradic-matrix
expressions for the Liouville-space self-energy operators can
be systematically evaluated for complex spectra consisting
of a multitude of overlapping spectral lines, which may be
produced by radiative transitions between enormous sets of
closely spaced many-electron (fine-structure or hyperfine-
structure) atomic levels, and our approach is not restricted
to binary atomic interactions.

F. Organization of this paper

The remainder of this paper is organized in the follow-
ing manner. In Sec. II, we present the frequency-domain
(resolvent-operator) and time-domain (equation-of-motion)
formulations of our reduced-density-matrix approach. The
Liouville-space projection-operator formalism is exploited
to obtain the Markovian and non-Markovian descriptions
in compact Liouville-space operator forms. In Sec. III, a
preliminary semiclassical treatment of the electromagnetic
interaction is adopted. The reduced density operator, describ-
ing the ensemble of moving many-electron atomic systems
corresponding to the optical medium, is expanded in powers
of either the combined classical (pump and probe) electro-
magnetic field or the probe field alone. Time-domain and
frequency-domain hierarchies of coupled relationships for the
field components of the reduced density operator are obtained,
incorporating the classical center-of-mass motions of the
many-electron atomic systems in the presence of an external
magnetic field as well as the pump and probe electromagnetic
fields. Section IV is devoted to the precise evaluation of
the macroscopic electromagnetic response, with particular
emphasis on the frequency and wave-vector representation.
Compact Liouville-space operator expressions are derived
for the linear (n = 1) and the general (n > 1) nonlinear
macroscopic electromagnetic-response tensors. The classical
center-of-mass motions of the atomic systems are analytically
incorporated by means of a Doppler-shifted Liouville-space re-
solvent operator. The macroscopic electromagnetic-response
tensors can be evaluated for coherent initial atomic excitations
and for the full tetradic-matrix form of the Liouville-space self-
energy operator representing the environmental interactions
either in the Markov approximation or adopting a model for
non-Markovian behavior. In Sec. V, the tetradic-matrix ele-
ments of the Liouville-space self-energy operator are explicitly
evaluated in the Born (lowest-order-perturbation), Markov
(short-memory-time), and diagonal-resolvent approximations,
taking into account binary atomic collisions and environmental
radiative interactions. In Sec. VI, the linear and nonlinear
propagation characteristics of the electromagnetic field are
considered, based on the introduction of our general analytical
expressions for the macroscopic electromagnetic response ten-
sors into the macroscopic Maxwell field equations. It is pointed
out that, in a self-consistent treatment of the electromagnetic
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propagation, one would encounter the coupling with the
longitudinal fields arising from any electrostatic interactions
that are not included in the zeroth-order Hamiltonian operator.
The need for the development of a fully quantum-mechanical
description of the electromagnetic interaction is also empha-
sized. Our conclusions and future plans for various extensions
of this investigation are presented in Sec. VII.

II. GENERAL DENSITY-OPERATOR APPROACH

We adopt a density-operator approach to develop a gen-
eral nonperturbative and nonequilibrium quantum-statistical
description of (possible coherent) electromagnetic interactions
involving quantized many-electron systems. In order to pro-
vide a fundamental treatment for decoherence and relaxation
processes, together with spectral line broadening mecha-
nisms, we develop a quantum-open-systems (reduced-density-
operator) description [15–18] to incorporate the interactions
arising from a much larger system, which is designated as the
environment.

The environment is represented by a time-independent
density operator in the conventional reservoir approximation,
which is illustrated in Fig. 2. Accordingly, the environment is
assumed to remain essentially unaltered during its interactions
with the relevant quantum system. The influences of the
environment on the relevant quantum system are illustrated
in Fig. 3, in terms of decoherence and relaxation processes
together with spectral line broadening mechanisms. These
stochastic kinetics and spectral phenomena are systematically
and self-consistently incorporated by means of the Liouville-
space self-energy corrections that are derived in the compli-
mentary time-domain and frequency-domain formulations of
our reduced-density-operator description.

FIG. 2. (Color online) The reduced-density-operator description
is illustrated in terms of the partition of the entire interacting system
into a relevant quantum system (which may consist of an ensemble
of many-electron atomic systems and a set of emitted or observable
photons) and an environment (which may consist of many-electron
atoms, charged particles, and photons), which is treated using the
traditional reservoir approximation.

FIG. 3. (Color online) Time-domain (equation-of-motion) and
frequency-domain (resolvent-operator) formulations of the reduced-
density-operator approach can provide the fundamental framework
for a unified treatment of atomic-state kinetics and spectral line
shapes.

The partition of the entire interacting quantum system into
a relevant quantum system and an environment is inherently
arbitrary and by no means apparent. In the ordinary Hilbert-
space description, different divisions of the total Hamiltonian
operator into a zeroth-order (unperturbed) Hamiltonian op-
erator and an interaction (or perturbation) operator would be
equivalent if the interaction could be incorporated to all orders.
In contrast, different partitions in the reduced-density-operator
description are fundamentally inequivalent and will inevitably
lead to dissimilar predictions. In this investigation, we point
out the consequences of different partitions for ensembles
of interacting many-electron atomic systems in an optical
medium.

The statistical state of the combined, interacting (closed)
quantum system is conventionally assumed to be initially ex-
pressible in the uncorrelated tensor-product form ρ(t0) = ρS ⊗
ρE . The statistical state of the relevant quantum system at the
initial time t0 is represented by the density operator ρS , while
the quantum-statistical state of the environment is represented
by the time-independent (reservoir-approximation) density
operator ρE . In order to take into account the correlations
between the relevant quantum system and the environment
that will be generated by the environmental interactions, the
complete density operator ρ(t) representing the statistical state
of the combined interacting quantum system, at an arbitrary
time t > t0, must not be constrained to the simple uncorrelated
tensor-product form.

A. Reduced-density-operator description

The reduced relevant density operator defined by ρr (t) =
TrE{ρ(t)} provides a proper representation of the statistical
state of the relevant quantum system, at an arbitrary time t . The
partial-trace operation indicated by TrE introduces a quantum-
statistical average involving the large set of quantum numbers
specifying the environmental degrees of freedom.

The reduced-density-operator description can be presented
in compact forms by adopting the Liouville-space operator
representation [8,19–24], in which the density operators play
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the role of state vectors. We will make extensive use of
the complex inner product defined as the trace 〈〈ρ1| ρ2〉〉 =
Tr(ρ+

1 ρ2) of the two Liouville-space state vectors |ρ1〉 and
|ρ2〉, where the plus superscript indicates the adjoint.

B. Frequency-domain (resolvent-operator) formulation

In the frequency-domain (resolvent-operator) formulation
of the reduced-density-operator description, the transition rate
is given by the Liouville-space Fermi-golden-rule formula
[3,8]

AR(i → f ) = − i lim
ε→0

〈〈
P r

f

∣∣T̄ r (+iε)
∣∣ρr

i

〉〉
. (1)

The asymptotic boundary condition is introduced by the
ε → 0 limit. We will employ the Lippmann-Schwinger re-
lationship T̄ r (+iε) = V̄ r + V̄ r Ḡr (+iε) V̄ r to evaluate the
reduced relevant Liouville-space transition operator T̄ r (+iε).
The reduced relevant Liouville-space resolvent (or Green)
operator is defined by Ḡr (+iε) = [+iε − L̄r − �̄(+iε)]−1.
The Liouville-space operators, which are denoted by overbars,
must be specified by four indices in their matrix representa-
tions.

The relevant Liouvillian operator L̄r is defined by means
of the commutator relationship

L̄rρr = (1/�) [Hr,ρr ]. (2)

The relevant Hamiltonian operator Hr describes the many-
electron quantum system together with the restricted set of
relevant (observable) modes of the quantized electromagnetic
field. The relevant Liouvillian operator is given by L̄r =
L̄r

0 + V̄ r , where L̄r
0 is the zeroth-order (unperturbed) relevant

Liouvillian operator corresponding to the zeroth-order relevant
Hamiltonian operator Hr

0 and the Liouville-space operator V̄ r

includes the relevant electromagnetic interactions.
The initial statistical state of the relevant quantum system is

represented by the reduced density operator ρr
i . The final state

in the transition is specified by the relevant projection operator
P r

f . These operators act on the combined tensor-product
states of the many-electron quantum system and the relevant
(observable) modes of the quantized electromagnetic field.

1. Frequency-domain self-energy operator

The frequency-domain Liouville-space self-energy oper-
ator �̄(z) can be expressed, as a function of the complex
variable z, in terms of the Zwanzig Liouville-space projection
operators P̄ = |ρE〉〉〈〈IE | and Q̄ = 1 − P̄ , where IE denotes
the environmental identity operator [3,8]:

�̄(z) = P̄ V̄ irP̄ + P̄ V̄ Q̄
1

z − Q̄L̄Q̄
Q̄V̄ P̄

= TrE

[(
V̄ ir + V̄ Q̄

1

z − Q̄L̄Q̄
Q̄V̄

)
ρE

]
. (3)

The complete Liouvillian operator L̄ is obtained from the total
Hamiltonian operator H̄ for the entire interacting quantum
system. The total Liouville-space interaction operator V̄ is
decomposed as V̄ = V̄ r + V̄ ir, where the irrelevant Liouville-
space interaction operator V̄ ir includes the environmental
interactions. As a result of the quantum-statistical average
(partial-trace operation TrE) involving the quantum numbers

associated with the environmental degrees of freedom, the
projection operator P̄ projects onto the subspace of states
corresponding to the relevant-system degrees of freedom
(uncorrelated with the environmental degrees of freedom).
The complementary projection operator Q̄ projects onto the
orthogonal subspace of states corresponding to the irrelevant
(environmental) degrees of freedom (taking into account
the system-environment correlations). We emphasize that the
general reduced-density-operator description is applicable to
nonequilibrium quantum-statistical distributions and that our
fundamental quantum-mechanical treatment for the Liouville-
space self-energy corrections can provides a systematic micro-
scopic description of the environmental interactions, which are
almost always treated in the literature by the introduction of
phenomenological parameters.

When the system-environment interactions are sufficiently
weak, the Liouville-space self-energy operator �̄ may be
expanded in a perturbation series involving increasing powers
of the total Liouville-space interaction operator V̄ . Retaining
only the lowest-order nonvanishing contribution, which corre-
sponds to the Born approximation, we show in Sec. V that the
total spectral line shift and linewidth in the diagonal-resolvent
approximation can be reduced to the sums of the partial con-
tributions from elementary collisional and radiative processes
acting alone. Interference between transition amplitudes can
occur in the high-order contributions to the linewidth and shift,
as well as in our general tetradic-matrix expression valid for
overlapping spectral lines.

2. Initial-state coherences

Coherent excitations of the many-electron quantum system
are manifest by nondiagonal elements of the initial-state re-
duced density operator ρr

i in the tensor-product representation
|α〉 = |a〉 ⊗ |{n�kλ}〉 based on the unperturbed many-electron
eigenstates |a〉 and the relevant photon states |{n�kλ}〉. For
a single-photon spontaneous-emission process, the relevant
final-state projection operator P r

f projects onto the manifold
of tensor-product states corresponding to the unperturbed
many-electron eigenstates |b〉 that can be created by the
spontaneous emission of a single photon with momentum ��k
(and energy �ω) and polarization (or helicity) λ. Using the
Liouville-space Dirac notation |α〉 〈β| = |α,β〉〉, the operator
eigenstate decompositions appropriate for a single-photon
spontaneous-emission process can be expressed as follows:

∣∣ρr
i

〉〉 =
∑

a

∑
a′

|aa′,00〉〉〈〈aa′,00
∣∣ρr

i

〉〉
, (4)

∣∣P r
f

〉〉 =
∑

b

|bb, 11〉〉. (5)

Our general formalism can be employed for single-photon
absorption processes and for multiphoton (nonlinear opti-
cal) transitions, which involve photon-occupation numbers
n�k,λ > 1.

C. Time-domain (equation-of-motion) formulation

The time-domain (equation-of-motion) formulation of
the reduced-density-operator description is based on the
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generalized master equation [3,8,25]

∂

∂t
ρr (t) = − i L̄r (t)ρr (t) − i

∫ t

t0

dt ′ �̄(t, t ′)ρr (t ′) . (6)

This closed-form equation of motion for the reduced, relevant
density operator ρr (t) = P̄ ρ(t) has been derived by neglect-
ing the initial-state correlations. Initial-state correlations are
automatically excluded by the conventional assumption that
the entire initial-state density operator for the combined
interacting system can be represented as an uncorrelated tensor
product of individual density operators for the separate isolated
subsystems.

1. Time-domain self-energy operator

The time-domain Liouville-space self-energy operator ker-
nel �̄(t, t ′) can be expressed in terms of the Q-subspace
projection of the Liouville-space propagator and related to
the Liouville-space self-energy operator �̄(z) in Eq. (1) by
a Fourier transformation [3,8,25]. The self-energy operator
�̄(t, t ′) is independent of time in the traditional Markov
(short-memory-time) approximation [8]

�̄(t,t ′) = lim
z→i0

�̄(z)δ(t − t ′). (7)

The frequency-domain Liouville-space self-energy operator
�̄(i0), which subsequently will be denoted simply by �̄, is
independent of the frequency. For a completely consistent
treatment of the non-Markovian dynamics, which may be
important in ultrafast electromagnetic interactions, a suitable
model should be introduced for the initial-state correlation
term that was excluded in the derivation of the closed-form
equation of motion for the reduced relevant density operator.

2. Many-electron-system and electromagnetic-field equations

An equation of motion for the density operator describing
the ensemble of many-electron atomic systems can be derived
from Eq. (6) by performing the additional quantum-statistical
average (partial-trace operation) involving the relevant (ob-
servable) photon states. The dynamical equation for the density
operator representing the quantum-statistical state of the
electromagnetic field can be obtained from Eq. (6) by carrying
out the complimentary additional quantum-statistical average
(partial-trace operation) pertaining to the states representing
the ensemble of many-electron atomic systems.

In the Born (lowest-order) and Markov (short-memory-
time) approximations, the set of dynamical equations involv-
ing only the electronic-state population densities (diagonal
reduced-density-matrix elements) can be expressed in terms
of the familiar (lowest-order) radiative and nonradiative
transition rates that are obtained from an evaluation of the
standard Fermi-golden-rule formula of ordinary Hilbert-space
perturbation theory. We will treat electromagnetic interac-
tions in terms of the complete set of reduced-density-matrix
equations, taking into account the electronic-state coherences
(nondiagonal reduced-density-matrix elements).

III. SEMICLASSICAL REDUCED-DENSITY-OPERATOR
DESCRIPTION

The reduced relevant density operator describing the
ensemble of moving many-electron atomic systems will be
assumed to satisfy a semiclassical equation of motion of the
form [26]

∂ρr (�r,�v,t)/∂t + �v · �∇ρr (�r,�v,t)

= −i
[
L̄r

0 + V̄ r (t)
]
ρr (�r,�v,t)

− i

∫ t

t0

dt ′ �̄(t, t ′)ρr (�r,�v,t ′)

→ − i
[
L̄r

0 + V̄ r (t)
]
ρr (�r,�v,t) − i �̄ρr (�r,�v,t). (8)

Our general non-Markovian form is indicated by the equality,
while the Markovian result is indicated by the arrow. The
zeroth-order relevant Liouvillian operator L̄r

0 now describes
the entire unperturbed many-electron quantum system alone.
The explicit dependences of the reduced density operator
ρr (�r,�v,t) on the laboratory-frame position vector �r and veloc-
ity vector �v have been introduced to incorporate the classical
translational (center-of-mass) motions of the many-electron
atomic systems. The Liouville-space operators in Eq. (8) may
also depend on these vectors. In the remainder of our analysis,
the superscript r will be omitted.

For a completely consistent treatment of the quantum-
statistical and quantum-coherence properties, the electro-
magnetic field must be included as an integral part of the
relevant quantum system. This will also be necessary for a
fully consistent treatment of local-field effects and radiative
corrections. The quantization and relativistic treatment of the
translational degrees of freedom will also be necessary for a
full quantum-electrodynamics (QED) description.

A. Nonrelativistic electromagnetic interaction
in the Coulomb gauge

We treat the atom-field interaction using a nonrelativistic
approximation in the Coulomb gauge, for which the elec-
tromagnetic scalar potential may be set equal to zero in
the absence of free charges. However, we will incorporate
the magnetization due to the electron spins by including
a lowest-order relativistic correction corresponding to the
spin-Zeeman interaction. The interaction of the many-electron
atomic system with an external magnetic field �Bext(�r,t) will
be included by expressing the combined vector potential as
the sum of the electromagnetic vector potential �A(�r,t) and
the external vector potential Aext(�r,t). The total atomic-field
interaction operator can be expressed as a sum of linear and
quadratic contributions as follows:

VAF(t) = V 1
AF(t) + V 2

AF(t). (9)

1. Linear and quadratic atom-field interactions

The manifestly Hermitian form of the total linear contri-
bution V 1

AF(t) to the atom-field interaction can be written as
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follows:

V 1
AF(t) =

(
e

2mc

) ∑
j

[ �pj · �A(�rj ,t) + �A(�rj ,t) · �pj ]

+
(

egs

4mc

) ∑
j

[�sj · �∇j× �A(�rj ,t)+�∇j× �A(�rj ,t) · �sj ]

+
(

e

4mc

) ∑
j

[ �pj · �Bext(�rj ,t) × �rj

+ �Bext(�rj ,t) × �rj · �pj ] +
(

egs

4mc

)

×
∑

j

[�sj · �Bext(�rj ,t) + �Bext(�rj ,t) · �sj ]. (10)

Our detailed expression for the single-electron canonical-
momentum operators �pj is given by

�pj = −i� �∇j

= m

(
d�rj

dt

)
−

(
e

c

)
�A(�rj ,t) −

(
e

2c

)
�Bext(�rj ,t) × �rj .

(11)

The single-electron spin operators may be expressed in the
form �sj = (�/2)�σj . The external magnetic field �Bext(�r,t) will
be assumed to be spatially uniform on the scale of the
atomic dimensions and stationary relative to the relevant
interaction times. The external vector potential is then given
by Aext(�r, t) = 1

2Bext(�r, t) × �r . The magnetic field associated
with the electromagnetic vector potential �A(�r,t) is given by
�B(�r, t) = �∇ × �A(�r, t). The sums over j include all elec-
trons (with charge −e) in the many-electron system. For
long-wavelength (e.g., infrared) radiation, the contributions
involving the nuclear canonical momentum and spin operators
can play an important role. The nuclear contributions are
beyond the scope of the present paper. The total quadratic
(diamagnetic) contribution is given in the manifestly Hermitian
form

V 2
AF(t) =

(
e2

2mc2

)∑
j

[
�A(�rj ,t) + 1

2
�Bext(�rj ,t) × �rj

]

·
[

�A(�rj ,t) + 1

2
�Bext(�rj ,t) × �rj

]
. (12)

2. Perturbation operator for the electromagnetic interaction

The zeroth-order Hamiltonian operator H0 will now be
redefined to include the external-magnetic-field-dependent
but electromagnetic-field-independent interactions, which are
given by

H0

=
(

e

4mc

)
[( �L + gs

⇀

S) · �Bext(�r,t) + �Bext(�r,t) · ( �L + gs

⇀

S)]

+
(

e2

8mc2

) ∑
j

[ �Bext(�rj ,t) × �rj ] · [ �Bext(�rj ,t) × �rj ]. (13)

The total orbital angular momentum operator is defined by �L =∑
j �rj × �pj and the total spin angular momentum operator

is defined by �S = ∑
j �sj . The redefined zeroth-order atomic

eigenstates must be determined by taking into account both
the linear and the quadratic external-field interactions.

We can now introduce a more convenient perturbation
expansion of the (reduced) density operator, in powers of the
electromagnetic field, by redefining the linear and quadratic
components of the relevant interaction (or perturbation)
operator as follows:

V 1(t) =
(

e

2mc

) ∑
j

[ �pj · �A(�rj ,t) + �A(�rj ,t) · �pj ]

+
(

egs

4mc

) ∑
j

[�sj · �∇j × �A(�rj ,t) + �∇j × �A(�rj ,t) · �sj ]

+
(

e2

4mc2

) ∑
j

[ �A(�rj ,t) · �Bext(�rj ,t) × �rj

+ �Bext(�rj ,t) × �rj · �A(�rj ,t)] (14)

and

V 2(t) =
(

e2

2mc2

) ∑
j

�A(�rj ,t) · �A(�rj ,t). (15)

Alternatively, H0 can be redefined to include the intense-
field electromagnetic interaction, in addition to the external-
magnetic-field interaction. These alternatively redefined
zeroth-order atomic eigenstates would then correspond to
dressed-atom Zeeman states and the perturbation expansion
would then involve powers of the weak electromagnetic field
alone.

3. Hyperfine interaction

The hyperfine interaction, which can play an important
role in high-resolution spectroscopic investigations, will be
included in the zeroth-order Hamiltonian operator H0, to-
gether with the external-magnetic-field interaction. For a self-
consistent treatment, the nuclear-spin contributions should be
included in the electromagnetic interaction. If the external
magnetic field is neglected, the electromagnetic interaction
(or perturbation) operator can be treated in a zeroth-order
representation based on atomic eigenstates corresponding to
the total (combined electronic and nuclear) angular momentum
operator �F = �J + �I and the total z component Fz. Only the
total z component Fz remains conserved in the presence of an
external magnetic field.

4. Electron-electron interactions

In accurate atomic-structure calculations, a correlated basis
set is usually acquired, in which the zeroth-order many-
electron atomic eigenstates are represented as superpositions
of antisymmetrized products (Slater determinants) of single-
electron atomic basis states. The component of the electrostatic
electron-electron interaction operator that incorporates the
longitudinal field pertaining to an isolated atomic system
is then explicitly included in the zeroth-order Hamiltonian
operator H0. However, electrostatic interactions involving
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different many-electron atomic systems of the ensemble
are neglected. In Sec. VI, an equation for the longitudinal
field associated with these electrostatic interactions will be
included in the set of equations describing the dynamics of
the electromagnetic-field propagation. The systematic and
self-consistent incorporation of relativistic contributions to
both the electron-electron and the electromagnetic interactions
within the framework of a fully relativistic many-electron QED
formulation is reserved for future investigation.

B. Perturbation expansion of the reduced density
operator in the time domain

The traditional perturbation expansion of the (reduced)
density operator has the form

ρ(�r,�v,t) =
∞∑

n=0

ρn(�r,�v,t) =ρ0(�r,�v,t) + ρ1(�r,�v,t) + · · · .

(16)

The dependence on the nth power of the classical electro-
magnetic field is contained in the component ρn(�r,�v,t). This
expansion is advantageous when only sufficiently weak elec-
tromagnetic fields are included in the perturbation operator.
The initial-state (reduced) density operator ρ0(�r,�v,t) specifies
the quantum-statistical state of the unperturbed many-electron
quantum system, in the absence of the classical electro-
magnetic field that is included in the perturbation operator.
As a first approximation, the initial-state (reduced) many-
electron-system density operator may include a Maxwellian
(thermodynamic-equilibrium) center-of-mass velocity distri-
bution ρ0(�v), which is independent of the position vector �r as
well as of the time t .

1. Time-domain hierarchy of coupled
reduced-density-operator equations

An infinite set (hierarchy) of coupled integral-differential
equations for the field components ρn(�r,�v,t) can be obtained
by substituting the perturbation expansion given by Eq. (16) for
the (reduced) density operator ρ(�r,�v,t) into our semiclassical
equation of motion expressed by means of Eq. (8). The
following detailed matrix-element form is thereby obtained for
a general member of this set of coupled integral-differential
equations:

[∂/∂t + �v · �∇ + i(ωa − ωb)]ρn
ab(�r,�v,t)

+ i
∑

c

∑
d

∫ t

t0

dt ′ �̄ab,cd (t, t ′)ρn
cd (�r,�v,t ′)

=
(−i

�

) ∑
c

[
V 1

ac(t)ρn−1
cb (�r,�v,t) − ρn−1

ac (�r,�v,t)V 1
cb(t)

+V 2
ac(t)ρn−2

cb (�r,�v,t) − ρn−2
ac (�r,�v,t)V 2

cb(t)
]
. (17)

The lowercase latin letters a, b, c, and d are used
to designate members of the complete set of zeroth-order
many-electron-system eigenstates. The frequency variables

corresponding to the eigenvalues of our redefined zeroth-order
Hamiltonian operator H0, which are given by Ea = �ωa and
Eb = �ωb, are understood to be functions of the external
magnetic field and will also be functions of the intense (pump
or control) electromagnetic field if this field is included in our
alternatively redefined zeroth-order Hamiltonian operator H0.
A formal solution for the various field components ρn(�r,�v,t) of
the (reduced) many-electron-system density operator ρ(�r,�v,t)
can be obtained by means of a natural generalization of the
procedure described by Mukamel [27] and by Tanaka et al.
[28].

2. Alternative forms of the electromagnetic interaction

Our semiclassical perturbation-theory approach is related to
that introduced by Bloembergen and Shen [29], who presented
a pioneering investigation of linear and nonlinear optical phe-
nomena based on the equivalent of a reduced-density-matrix
formulation. However, they employed a phenomenological
treatment of the rates occurring in the Markovian description
of environmental decoherence and relaxation processes. In
addition, they adopted an alternative form of the semiclassical
electromagnetic interaction, which involves the electric and
magnetic fields together with the various dipole and multipole
moments. We provide a systematic microscopic description of
the Liouville-space self-energy corrections. Furthermore, the
multipole expansion is not required in our treatment of the
electromagnetic interaction.

Horsley and Babiker [30] utilized a gauge transformation
of the electromagnetic vector and scalar potentials to obtain
relativistic corrections to the electromagnetic interaction that
depend on the center-of-mass velocity. This alternative form of
the electromagnetic interaction is expressed in terms of closed
integral forms of the polarization and magnetization, repre-
senting the entire electric and magnetic multipole expansions
to all orders.

C. Perturbation expansion of the reduced density operator in
the continuous frequency and wave-vector representation

We obtain the perturbation expansion of the (reduced)
density operator in the continuous frequency and wave-vector
representation by introducing the Fourier transformation

ρn(�r,�v,t)

=
(

1

2π

)4 ∫
d3q

∫
dωρn(�q,�v,ω) exp[i(�q · �r − ωt)].

(18)

It should be noted that the frequency and the wave vector
are treated as independent variables.

1. Hierarchy of coupled equations in the frequency and
wave-vector representation

Our complimentary set (hierarchy) of coupled equa-
tions for the field components ρn(�q,�v,ω) of the (reduced)
many-electron-system density operator, in the continuous
frequency and wave-vector representation, is derived in the
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detailed-matrix form

[−iω + i�v · �q + i(ωa − ωb)]ρn
ab(�q,�v,ω) + i

∑
c

∑
d

∫
d3q ′

∫
dω′�̄ab,cd (�q,ω; �q ′,ω′)ρn

cd (�q ′,�v,ω′)

=
[ −i

(2π )4�

] ∑
c

∫
d3q ′

∫
dω′[V 1

ac(�q ′,ω′)ρn−1
cb (�q − �q ′,�v,ω − ω′) − ρn−1

ac (�q − �q ′,�v,ω − ω′)V 1
cb(�q ′,ω′)

]

+
[ −i

(2π )4�

] ∑
c

∫
d3q ′

∫
dω′[V 2

ac(�q ′,ω′)ρn−2
cb (�q − �q ′,�v,ω − ω′) − ρn−2

ac (�q − �q ′,�v,ω − ω′)V 2
cb(�q ′,ω′)

]
. (19)

The Fourier transforms of the linear and quadratic field components of our relevant interaction operator are denoted by V 1(�q,ω)
and V 2(�q,ω), respectively. The required tetradic-matrix elements of our Liouville-space self-energy operator kernel are expressed
as follows:

�̄ab,cd (�q,ω; �q ′,ω′) =
(

1

2π

)4 ∫
d3r

∫ ∞

−∞
dt

∫
d3r ′

∫ t

t0

dt ′[e−i(�q ′ ·�r−ω′t)�̄ab,cd (�r,t ; �r ′, t ′)e+i(�q ′ ·�r ′−ω′t ′)]e−i(�q−�q ′)·�rei(ω−ω′)t

→ �̄ab,cdδ(�q − �q ′)δ(ω − ω′). (20)

The arrow indicates the simplified result that we obtain for
spatial uniformity and in the Markov approximation, based
on Eq. (7). In the next section, we will employ the formal
solution for the various field components of the (reduced)
density operator, in the continuous frequency and wave-vector
representation, which follows from the compact operator form
of Eq. (19).

2. Three-state (�-system) atomic-structure model

Numerous experimental and theoretical investigations of
EIT and related resonant pump-probe optical phenomena in a
warm vapor of 87Rb atoms have been based on the three-state
(�-system) atomic-structure model, which is schematically
illustrated in Fig. 1. The three atomic states that have been
included are the F = 1 and 2 hyperfine-structure substates
of the 5S1/2 ground state together with the F ′ = 2 hyperfine-
structure substate of the 5P1/2 excited state. The intense pump
electromagnetic field is chosen to be nearly resonant with the
F ′ = 2 ↔ F = 2 hyperfine-structure component of the D1

radiative transition, while the weak probe electromagnetic field
is selected to be closely resonant with the F ′ = 2 ↔ F = 1
hyperfine-structure component of this radiative transition.

In the presence of an external magnetic field, the more
detailed Zeeman-substate structure must be taken into account.
In investigations of the influence of a homogeneous external
magnetic field on EIT, the individual Zeeman-split components
of the basic hyperfine-structure spectral feature have been
observed [11,12]. If the external magnetic field is collinear
with both the pump and probe electromagnetic fields and these
electromagnetic fields have identical circular polarization, the
selection rules pertaining to the magnetic quantum numbers
indicate that three individual Zeeman-split spectral features
can be observed [12,31]. For more general field orientations
and polarizations, four Zeeman-split spectral features can be
produced.

The observed Zeeman-split spectral features have been
analyzed by adopting a description in terms of the relevant
set of independent magnetic � subsystems. In this analysis,
the initial magnetic substates, which may be designated by
〈5S1/2, F = 1,MF = 1,0,−1〉, have been assumed to have

equal populations and the (Zeeman) coherences pertaining
to pairs of magnetic � subsystems have be neglected. In
an analysis and optimization of a proposed channelization
architecture involving an inhomogeneous external magnetic
field [9], the 87Rb atoms were assumed to have been initially
prepared in one of the three magnetic substates, i.e., the state
〈5S1/2, F = 1,MF = 1〉. In our general reduced-density-
operator description, not only the entire manifold of the
13 relevant atomic magnetic substates, but also additional
excited states from the complete basis set can be taken
into account on an equal footing and the influence of the
magnetic-substate (Zeeman) coherences can be systematically
investigated.

IV. MACROSCOPIC ELECTROMAGNETIC RESPONSE

In the absence of free electrical charges, the macroscopic
electromagnetic response can be evaluated in terms of the
microscopic electronic current density. We initially employ
the expansion of the (reduced) many-electron-system den-
sity operator in powers of the entire classical (combined
pump and probe) electromagnetic field. The propagation
dynamics of the probe field might be more advantageously
investigated using an alternative expansion in powers of
the weak probe field alone, together with an alternative
zeroth-order representation corresponding to dressed states,
which are to be determined by including in the zeroth-
order relevant Hamiltonian operator the interactions with the
intense pump electromagnetic field together with the external
magnetic field. A fully quantum-mechanical evaluation of the
macroscopic electromagnetic response, within the framework
of an open-systems QED formulation, is left to future
investigation.

A. Microscopic electronic current density

For a many-electron quantum system, the microscopic
electronic current-density operator �j (�r,t) can be expressed
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in the form [32,33]

�j (�r,t) = −
(

e

2

) ∑
j

[(
d�rj

dt
− igs

m�
�pj × �sj

)
δ3(�r − �rj )

+ δ3(�r − �rj )

(
d�rj

dt
+ igs

m�
�pj × �sj

)]
. (21)

The laboratory-frame position vectors �rj = �R + �r ′
j depend on

the relative position vectors �r ′
j and the center-of-mass position

vector �R. The electromagnetic interaction can be expressed as

V (t) = −
(

1

c

) ∫
d3r �j (�r,t) · �A(�r,t). (22)

Using Eq. (11), the single-electron velocity operators �vj =
d�rj /dt can be expressed in terms of the single-electron
canonical momentum operators �pj , the single-electron spin
operators �sj , the electromagnetic vector potential �A(�r,t),
and the external magnetic field �Bext(�r,t). The microscopic
electronic current-density operator �j (�r,t) can then be written
as follows:

�j (�r,t) = �j 0(�r,t) + �j 1(�r,t), (23)

where the electromagnetic-field-independent component is
given by

�j 0(�r,t) =
(−e

2m

) ∑
j

[
�pj − igs

�
�pj × �sj + e

2c
�Bext(�r,t) × �rj

]

× δ3(�r − �rj ) +
(−e

2m

) ∑
j

δ3(�r − �rj )

×
[

�pj + igs

�
�pj × �sj + e

2c
�Bext(�r,t) × �rj

]
(24)

and the electromagnetic-field-dependent component is given
by

�j 1(�r,t) =
( −e2

2mc

) ∑
j

[ �A(�r,t)δ3(�r − �rj ) + δ3(�r − �rj ) �A(�r,t)]

=
(−e2

mc

)
�A(�r,t)n(�r). (25)

The electronic number-density operator is denoted by n(�r).
The electromagnetic interaction given by Eq. (22) is fully
consistent with the predominately nonrelativistic Coulomb-
gauge form for the electromagnetic interaction that we have
introduced in the preceding section.

B. Macroscopic electronic current density

1. Space and time representation

In the space and time representation, the macroscopic
electronic current density �J (�r,t) can be defined as a Liouville-
space inner product (quantum-statistical average) involving
the microscopic electronic current-density operator �j (�r,t) and
the (reduced) many-electron-system density operator ρ(�r,�v,t).
The macroscopic electronic current density �J (�r,t) can then be
obtained, as an expansion in powers of the entire classical

electromagnetic field, as follows:

�J (�r,t) = 〈〈 �j (�r,t)|ρ(�r,�v,t)〉〉

=
∞∑

n=0

〈〈 �j 0(�r,t)|ρn(�r,�v,t)〉〉

+
∞∑

n=1

〈〈 �j 1(�r,t)|ρn−1(�r,�v,t)〉〉. (26)

The average over the center-of-mass velocity distribution is
taken into account in the quantum-statistical average (trace
operation) represented by the Liouville-space inner product.

2. Frequency and wave-vector representation

The macroscopic electronic current density can be ex-
pressed, in the continuous frequency and wave-vector rep-
resentation, as follows:

�J (�q,ω) =
∞∑

n=0

(
1

2π

)4 ∫
d3q ′

×
∫

dω′〈〈 �j 0(�q ′,ω′)|ρn(�q − �q ′,�v,ω − ω′)〉〉

+
∞∑

n=1

(
1

2π

)4 ∫
d3q ′

×
∫

dω′〈〈 �j 1(�q ′,ω′)|ρn−1(�q − �q ′,�v,ω − ω′)〉〉. (27)

C. Macroscopic electromagnetic-response tensors

The expansion for the macroscopic electronic current den-
sity can be obtained either in the space and time representation
or in the frequency and wave-vector representation:

�J (�r,t) =
∞∑

n=0

�J n(�r,t) or �J (�q,ω) =
∞∑

n=0

�J n(�q,ω). (28)

1. General nth-order macroscopic electromagnetic-response
tensors

The general (arbitrary n) field component �J n(�r,t) of the
macroscopic electronic current density �J (�r,t) can be expressed
in the form of a 4n-dimensional integral relationship as
follows:

�J n(�r,t) =
∫

d3r1 · · ·
∫

d3rn

∫
dt1 · · ·∫

dtnσ
n(�r,�r1, . . . ,�rn; t,t1, . . . ,tn)

· �E(�r1,t1) × · · · × �E(�rn,tn). (29)

The general nth-order macroscopic electromagnetic response
of the many-electron system (comprising the optical medium)
to the classical electric field �E(�r,t) = −(1/c)(∂/∂t) �A(�r,t),
incorporating spatial nonlocality together with retardation, is
thereby represented in terms of the (n+1)th-rank conductivity
tensor σ n(�r,�r1, . . . ,�rn; t,t1, . . . ,tn). It is well known that the
nonlinear conductivity tensor σ n(�r,�r1, . . . ,�rn; t,t1, . . . ,tn) is
not uniquely defined, because the product of the n electric
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fields can be rearranged according to n! permutations. The
arbitrariness can be removed by defining the (n+1)th-rank
nonlinear conductivity tensor to include the symmetrization
operation (1/n!)

∑
P P , where P indicates a permutation in-

volving the n sets consisting of the space and time coordinates
and the tensor indices [34], thereby incorporating the intrinsic
permutation symmetry. In the quantized-field formulation, this

symmetrization operation cannot be introduced because the n

electric fields would then be represented by noncommuting
operators.

The 4(n+1)-dimensional Fourier transformation of the
relationship given by Eq. (29), incorporating both spatial and
temporal dispersion, can be expressed in the general form

�J n(�q,ω) =
∫

d3q1 · · ·
∫

d3qn

∫
dω1 · · ·

∫
dωnσ

n(�q,�q1, . . . ,�qn; ω,ω1, . . . ,ωn) · �E(�q1,ω1) × · · · × �E(�qn,ωn). (30)

The (n+1)th-rank conductivity tensor σ n(�q,�q1, . . . ,�qn; ω,ω1, . . . ,ωn), characterizing the nth-order macroscopic electromagnetic
response in the continuous frequency and wave-vector representation, is most generally defined by means of the relationship

σ n(�q,�q1, . . . ,�qn; ω,ω1, . . . ,ωn) =
(

1

2π

)4n ∫
d3r

∫
d3r1 · · ·

∫
d3rn

∫
dt

∫
dt1 · · ·

∫
dtn

× exp[−i(�q · �r − ωt)]σ n(�r,�r1, . . . ,�rn; t,t1, . . . ,tn) exp

⎡
⎣i

n∑
j=1

(�qj · �rj − ωj tj )

⎤
⎦ . (31)

For single field modes, the general definition for the nth-order
contribution to the macroscopic electronic current density
given by Eq. (30) can be reduced to a simple algebraic
form. If in addition the magnetization, which arises from
the individual electron orbital and spin angular momenta, is
neglected, the analogous relationship expressing the nth-order
macroscopic polarization in terms of the nth-order electrical
susceptibility tensor and the product of the n electric fields
becomes equivalent to the nth-order macroscopic current-
density relationship. For a spatially uniform and stationary
optical medium, the nth-order electrical susceptibility tensor
can be simply related to the nth-order conductivity tensor in
the following manner:

χn(�q1, . . . ,�qn; ω1, . . . ,ωn)

=
(

i

�n

)
σ n(�q1, . . . ,�qn; ω1, . . . ,ωn). (32)

We emphasize that the orbital-angular-momentum-dependent
and lowest-order spin-dependent contributions, giving rise to
the magnetization, are automatically taken into account in our
definition of the microscopic current-density operator. Conse-
quently, our formulation of the macroscopic electromagnetic
response should be equivalent to the more general form of
the alternative description, which would include the nth-order
macroscopic magnetization, in terms of the nth-order magnetic
susceptibility tensor and the product of the n magnetic fields,
in addition to the macroscopic polarization relationship.

2. Self-consistent description of the macroscopic
electromagnetic response

As discussed in Sec. VI, the macroscopic electromagnetic
response can be self-consistently described [33] by introducing
our perturbation expansion for the macroscopic electronic
current density as a source term into the Maxwell field
equations, as illustrated in Fig. 4. The local-field corrections,
which are almost always treated using empirical models [34],
can be systematically incorporated by including the equations

governing any longitudinal electric fields that have not been
taken into account by the inclusion of the corresponding
electrostatic interactions in the zeroth-order Hamiltonian
operator representing the many-electron quantum system, e.g.,
the electrostatic interactions involving different many-electron
atoms.

The set of Maxwell field equations thus obtained governs
the dynamics of the mean or macroscopic electromagnetic
fields. These fields can be defined by invoking the ergodic
hypothesis, i.e., that the time average of the rapidly fluctuating
microscopic electromagnetic fields is equivalent to the average
involving the degrees of freedom of the quantum-statistical
ensemble corresponding to the optical medium. In some
approaches, an average of the electromagnetic fields within
a small volume is introduced. Since a premature spatial
average could interfere with the precise description of nonlocal

FIG. 4. (Color online) In the self-consistent semiclassical de-
scription of the electromagnetic interaction, the macroscopic elec-
tronic current density �J (�r,t), defined in terms of the microscopic
electronic current-density operator �j (�r,t) and the (reduced) many-
electron-system density operator ρ(�r,�v,t), is introduced as a current-
source term into the Maxwell field equations.
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correlations and short-wavelength transitions, the macroscopic
electromagnetic fields introduced in our investigation should
be understood to be defined only with respect to the statistical-
ensemble average.

For ultrafast electromagnetic interactions, the assumption
of ergodic behavior may not be valid and it may be necessary to
describe the electromagnetic interactions entirely in terms of
the microscopic electromagnetic fields. In our formulation, this
can be simply accomplished by redefining the trace operation
to include only the quantum-mechanical expectation value.

D. Compact expressions for the macroscopic
electromagnetic-response tensors

The nth-order field components of the macroscopic elec-
tronic current density can be evaluated in the continu-
ous frequency and wave-vector representation by introduc-
ing the field components of the (reduced) many-electron-
system density operator that are obtained from the formal
solution of the set (hierarchy) of coupled relationships
given by Eq. (19). The conductivity tensors can then be

expressed in terms of the Doppler-shifted Liouville-space
resolvent operator Ḡ(ω − �v · �q) = (ω − �v · �q − L̄0 − �̄)−1.
The Liouvillian operator L̄0 corresponds to the field-free
many-electron-system Hamiltonian operator augmented with
the external-field-dependent contributions and �̄ denotes the
Liouville-space self-energy operator obtained in the Markov
approximation or by introducing a model of non-Markovian
behavior for which the required Fourier transformation can be
analytically performed. Compact expressions for the macro-
scopic electromagnetic-response tensors can also be obtained
in the space and time representation from the formal solution
of the set of coupled relationships given by Eq. (17).

1. Linear (n = 1) conductivity tensor

After evaluating the linear contribution �J 1(�q,ω)
to the macroscopic electronic current density using
ρ1(�q,�v,ω) = Ḡ(ω − �v · �q)V̄ 1(�q,ω)ρ0(�v) and ρ0(�q,�v,ω) =
(2π )4δ3(�q)δ(ω)ρ0(�v), the linear (n = 1) conductivity tensor
is obtained in the generalized Kubo [35] form

σ 1(�q,q1; ω,ω1) =
(

i

ω1

) (
1

2π

)5 ∫
d3q ′

1

∫
dω′

1δ
3(�q − �q ′

1 − �q1)

×〈〈 �j 0(�q ′
1,ω

′
1)|Ḡ(ω − ω′

1 − �v · (�q − �q ′
1)) �̄j 0(−�q1,ω − ω′

1 − ω1)|ρ0(�v)〉〉

+ i

(
1

2π

)3
δ(ω − ω1)

ω1
1

(
e2

m

)
〈〈n(�q − �q1)|ρ0(�v)〉〉. (33)

The symbol �̄j denotes the Liouville-space microscopic many-electron current-density operator defined by the commutator
relationship �̄jρ = (1/�)[ �j,ρ] and 1 denotes the rank-2 unity tensor. The field-independent microscopic electronic current-density
operator �j 0(�q,ω) is obtained as follows:

�j 0( �q, ω) = 2πδ(ω) �j 0( �q) = −e

2m
(2π )δ(ω)

∑
j

{(
�pj − igs

�
�pj × �sj + e

2c
�Bext × �rj

)
exp[−i(�q · �rj )]

+ exp[−i(�q · �rj )]

(
�pj + igs

�
�pj × �sj + e

2c
�Bext × �rj

)}
. (34)

2. General nonlinear (n > 1) conductivity tensors

In our evaluation of the general nth-order contribution to
the macroscopic many-electron-system current density, we
directly obtain a compact Liouville-space operator expression
for the component that does not involve the quadratic-field
term in the semiclassical electromagnetic interaction. The
remaining components, which involve the quadratic-field
interaction, are expressed in terms of contractions among

the electric-field vectors and therefore correspond to lower-
rank-tensor contributions to the nth-order macroscopic electro-
magnetic response. After introducing compact Liouville-space
operator expressions for the field components of the (reduced)
many-electron-system density operator, we derive for tensor
providing the highest-rank contribution the following sym-
metrized analytical relationship:

σ n,n+1(�q,�q1, . . . ,�qn; ω,ω1, . . . ,ωn)

= (i)n
(

1

2π

)5n n∏
m=1

{∫
d3q ′

m

∫
dω′

m

} (
1

n!

)

×
∑
P

P

〈
〈 �j 0(�q ′

1,ω
′
1)|

n∏
m=1

Ḡ((ω − �′
m) − �v · (�q − �Q′

m))

ωm

δ3(�q − �Q′
m − �qm) �̄j 0(−�qm,ω − �′

m − ωm)|ρ0(�v)〉
〉
. (35)
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The symbols �Q′
m and �′

m denote the sums, from j = 1 to j =
m, of �q ′

j and ω′
j , respectively.

For the n = 2 and 3 nonlinear conductivity tensors, our
compact Liouville-space operator expressions have forms
analogous to those obtained in the space and time representa-
tion by Tanaka et al. [28]. In addition to the generalization
of their results for arbitrary n, we have also included a
lowest-order spin-dependent component of the microscopic
electronic current-density operator and have taken into account
the full tetradic-matrix form of the Liouville-space self-energy
operator in our definition of the Doppler-shifted Liouville-
space resolvent operator. Our results for the linear and the
general (arbitrary n) nonlinear conductivity tensors can be
applied for a spatially nonuniform and nonstationary optical
medium under arbitrary (possibly coherent) initial excitation
conditions.

3. The n = 1 and 2 conductivity tensors including initial
atomic-state coherences

The coherent excitation of a specific manifold of many-
electron quantum states can be described by including ap-
propriate nondiagonal matrix elements in the eigenstate de-
composition of the initial-state many-electron-system density
operator given by Eq. (4). The linear conductivity tensor
expressed by Eq. (33) gives the most general form of the
lowest-order electromagnetic response for a spatially and
temporally dispersive medium. For the analysis of EIT and
related pump-probe processes, it is necessary to consider the
nonlinear electromagnetic response. The contributions to the
linear and the n = 2 nonlinear conductivity tensors that do
not involve the quadratic-field interaction can be expressed, in
terms of the tetradic matrix elements of the Doppler-shifted
Liouville-space resolvent operator Ḡ(ω − �v · �q), in the forms

σ 1,2(�q,�q1; ω,ω1) = δ(ω − ω1)

(
i

�ω

) (
1

2π

)3 ∑
a

∑
a′

∑
b

∑
b′

∑
c

∑
c′

〈c′| �j 0(�q − �q1)|c〉

× 〈〈cc′|Ḡ(ω1 − �v · �q1)|bb′〉〉[〈b| �j 0(−�q1)|a〉δb′a′ − δba〈a′| �j 0(−�q1)|b′〉]〈a|ρ0(�v)|a′〉 (36)

and

σ 2,3(�q,�q1,�q2; ω,ω1,ω2) = δ(ω − �2)

ω1ω2
(−i)2

(
1

2π

)7 (
1

2!

)∑
P

P
∑

a

∑
a′

∑
b

∑
b′

∑
c

∑
c′

∑
d

∑
d ′

∑
e

∑
e′

× 〈e′| �j 0(�q − �q1)|e〉〈〈ee′|Ḡ(ω1 − �v · �q1)|dd ′〉〉〈〈dd ′| �̄j 0(−�q1)|cc′〉〉
× 〈〈cc′|Ḡ(ω2 − �v · �q2)|bb′〉〉〈〈bb′| �̄j 0(−�q2)|aa′〉〉〈a|ρ0(�v)|a′〉. (37)

The averages over the center-of-mass velocity distribution
must be performed to obtain the final results. If the initial
quantum-state coherences are neglected, the initial-state many-
electron-system density operator can be represented entirely in
terms of its diagonal matrix elements, which can be obtained
from a simpler set of rate equations governing the population
densities.

If the external-magnetic-field interaction is neglected,
the electromagnetic-field-independent microscopic electronic
current-density operator given by Eq. (34) can be expressed
in the more familiar electric dipole form, which has been
frequently employed in the nonlinear optics literature [36–
38]. After making the electric dipole approximation, which
corresponds to �q = 0, neglecting the spin-dependent contri-
butions, and employing the commutator relationship �pj =
(im/�)[H0,�rj ], the current-density operator �j 0(�q) can be
expressed in terms of the single-electron position operators �rj .
We emphasize that the commutator relationship is rigorously
valid only when the various matrix elements are evaluated
using exact eigenstates of the zeroth-order many-electron-
system Hamiltonian operator H0.

Electromagnetically induced transparency and related
pump-probe optical phenomena have often been investigated
by evaluating the linear polarization within the framework of
a dressed-atom representation [7], which has been determined
by including the electromagnetic interaction involving the

intense pump field in the zeroth-order Hamiltonian operator,
together with the external-magnetic-field interaction. This
alternative dressed-atom approach can be adopted by taking
our states a, b, c, d, etc., to be these field-dependent states.
The coherent excitation of the Zeeman states produced by
the intense pump field is automatically incorporated by this
nonperturbative solution of the equation of motion for the
many-electron-system density operator. Consequently, the
linear macroscopic electromagnetic response can be expressed
entirely in terms of the diagonal matrix elements of the
many-electron-system density operator in a dressed-atom
representation.

4. Ensemble of noninteracting many-electron atomic systems

The states a, b, c, d, etc., and the microscopic electronic
current-density operators �j 0(�q,ω) and �j 1(�r,t) pertain to the
entire many-electron quantum system comprising the optical
medium. The optical medium will now be assumed to be
composed of an ensemble of N identical many-electron
atoms. If interactions among different many-electron atoms
are neglected, the density operator representing the initial
quantum-statistical state of the entire optical medium can be
expressed in the tensor-product form ρ0(�v) = ⊗N

j=1 ρ0
j (�v),

where ρ0
j (�v) denotes to the initial-state density operator

describing a single many-electron atom. The electronic eigen-
states of the entire quantum system corresponding to the
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optical medium can then be expressed as tensor products of the
N eigenstates, each of which describes a single many-electron
atomic system. Our general expression for the nth-order
macroscopic electromagnetic response can then be reduced
to a simpler result involving the initial-state density operator
describing a single many-electron atomic system and the
matrix elements of the microscopic electronic current-density
operators can be reduced to the corresponding matrix elements
for a single many-electron atomic system. The final result for
an ensemble of N identical many-electron atoms is obtained
by simply multiplying the contribution of each of the identical
many-electron atomic systems by their number density in
the optical medium. In order to systematically incorporate
the interactions among various clusters of coherently excited
many-electron atomic systems, a hierarchical reduced-density-
operator formulation should be introduced in a future extension
of this investigation. This extension will be necessary for the
description of cooperative electromagnetic phenomena such
as superradiance.

V. EVALUATION OF THE SELF-ENERGY
CONTRIBUTIONS FOR ATOMIC COLLISIONAL AND

RADIATIVE INTERACTIONS

The entire set of tetradic matrix elements of the Liouville-
space self-energy operator �̄(z), which occurs in our ex-
pression for the Doppler-shifted Liouville-space resolvent
operator, can be evaluated using the general definition given
by Eq. (3), which involves the total Liouville-space interaction
operator V̄ , the Liouville-space environmental (irrelevant)
interaction operator V̄ ir, and the Zwanzig Liouville-space
projection operators P̄ = |ρE〉〉〈〈IE | and Q̄ = 1 − P̄ .

In our semiclassical description of the electromagnetic
interaction, the radiative components of the total Liouville-
space interaction operator V̄ that are associated with the
classical electromagnetic fields should not be included. The
self-energy corrections that are induced by the classical
electromagnetic fields, together with the local-field corrections
arising from any additional electrostatic interactions that
are not included in the zeroth-order Hamiltonian operator,
are systematically incorporated when our expansion for the
macroscopic electronic current density (and perhaps also
the electronic charge density) in powers of the classical
electromagnetic fields is introduced as a source term into
the Maxwell field equations, as discussed in the following
section. However, this semiclassical treatment of the radiative
self-energy corrections, which would be obtained at the level
of a mean field, is not expected to be rigorously correct. In
a future investigation, the semiclassical description should be
replaced by a quantized-field formulation.

A. Explicit expressions for the Zwanzig Liouville-space
projection operators

The zeroth-order states of the combined quantum system,
consisting of the relevant many-electron system and the
environment, can be represented by the tensor-product states
|α〉 = |a,{ni}, �p〉 = |a〉 ⊗ |{ni}〉 ⊗ | �p〉. The quantum states of
the many-electron system, taking into account the external-
magnetic-field interaction and perhaps also the intense-pump

electromagnetic-field interaction, will be denoted by lowercase
latin letters, e.g., a, b, c, and d. The set of occupation numbers
corresponding to the environmental photon modes will be
denoted by {ni}. Finally, the quantum state pertaining to the
projectile atomic system in an atom-atom collision process, for
which the internal atomic degrees of freedom will be neglected,
will be characterized by the relative momentum variable �p. The
Zwanzig Liouville-space projection operator P̄ = |ρE〉〉〈〈IE |
can be explicitly expressed using the following expansions:

|ρE〉〉 =
∑
{ni }

∑
�p

|{ni}{ni}, �p �p〉〉〈〈{ni}{ni}|ρR〉〉〈〈 �p �p||ρC〉〉,

(38)

|IE〉〉 =
∑
{ni }

∑
�p

|{ni}{ni}, �p �p〉〉. (39)

The environmental density operator has been expressed in the
tensor-product form ρE = ρR ⊗ ρC , in terms of the density
operators for the radiation field R and the projectile atomic
system C. The environmental photons can be represented
by the diagonal density-matrix elements corresponding to
a Planck (thermal-equilibrium) distribution. The projectile
atomic systems can be represented by a Maxwellian (thermal-
equilibrium) distribution corresponding to the relative mo-
mentum variable and only binary collisions with the target
many-electron atomic system will be taken into account.
The nondiagonal density-matrix elements will be assumed to
vanish.

The most unambiguous treatment of the atomic collision
processes involves those pertaining to different (buffer-gas)
projectile atomic systems, which are assumed to not resonantly
interact with the electromagnetic fields. These (buffer-gas)
projectile atomic systems can be most consistently considered
as a component of the environment. Collision processes
involving the atomic systems comprising the EIT medium can
also be treated in terms of environmental interactions, provided
the electrostatic interactions among different atomic systems
are not included in the zeroth-order Hamiltonian operator. In
this case, the internal degrees of freedom for both atomic
systems should be taken into account.

B. Liouville-space linewidth and line-shift operators

It is traditional to introduce the Liouville-space relaxation
operator R̄(z) as follows:

R̄(z) = V̄ + V̄ Q̄
1

z − Q̄L̄Q̄
Q̄V̄

= V̄ + V̄ Q̄
1

z − Q̄L̄0Q̄
Q̄R̄(z). (40)

The second of the two equivalent forms is conveniently
expressed in terms of the zeroth-order Liouvillian operator
L̄0 for the combined system, without the total Liouville-space
interaction operator V̄ . Since we will include all quantized
electromagnetic-field modes in the Liouville-space environ-
mental (irrelevant) interaction operator V̄ ir and omit radiative
self-energy corrections that are induced by the classical
electromagnetic fields, the distinction between Liouville-space
environmental (irrelevant) interaction operator V̄ ir and the
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total Liouville-space interaction operator V̄ can be ignored.
Consequently, the Liouville-space self-energy operator �̄(z)
can be expressed in terms of the Liouville-space relaxation
operator R̄(z) as follows:

�̄(z) = P̄ R̄(z)P̄ = TrE[R̄(z)ρE]. (41)

Since the number of the relevant degrees of freedom is very
small in comparison with the total number of degrees of
freedom, we can make the approximation Q̄ = 1 − P̄ = 1.

In the spectral description of the emission or absorption
of electromagnetic radiation that is composed of a set of
spectral lines, which are associated with transitions between
two groups of many-electron quantum states {a} and {b}, it
will be convenient to express the Liouville-space self-energy
operator �̄(z), in terms of the Liouville-space shift and
width operators ̄(x) and �̄(x), by employing the following
relationship [39,40]:

lim
η→0

�̄(x ± iη) = ̄(x) ∓ i
�̄(x)

2
. (42)

In the diagonal-resolvent approximation, which is frequently
adopted in detailed spectral simulations, the diagonal matrix
elements of the Liouville-space operator ̄(x) are the line
shifts associated with the individual transitions a→b and the
diagonal matrix elements of the Liouville-space operator �̄(x)
can be interpreted as the full widths at the half maxima.

The lowest-order nonvanishing contribution to the
Liouville-space linewidth operator can be expressed as fol-

lows:

�̄(x) = 2πP̄ V̄ δ(x − L̄0)V̄ P̄ = 2πTrE[V̄ δ(x − L̄0)V̄ ρE].

(43)

The Liouville-space line-shift operator can be evaluated as
follows:

̄(x) = Re(V̄ ) + P
2π

∫ ∞

−∞

dx ′�̄(x ′)
x − x ′ , (44)

where Re denotes the real part and P indicates the Cauchy
principal value.

C. Tetradic-matrix elements of the lowest-order nonvanishing
contribution to the Liouville-space linewidth operator in the

diagonal-resolvent approximation

In the diagonal-resolvent approximation, the tetradic matrix
elements of the lowest-order nonvanishing contribution to the
Liouville-space linewidth operator can be simply expressed as
sums of the partial contributions that are associated with the
environmental radiative (R) and collisional (C) interactions
〈〈ab | �̄(x) |ab〉〉 = 〈〈ab | �̄R(x) |ab〉〉 + 〈〈ab | �̄C(x) |ab〉〉 .

The lowest-order radiative linewidth can be expressed
as the sums of the separate components correspond-
ing to the spontaneous (SR) and the induced (IR) ra-
diation processes: 〈〈ab | �̄R(x) |ab〉〉 = 〈〈ab | �̄SR(x) |ab〉〉 +
〈〈ab | �̄IR(x) |ab〉〉 . We have evaluated the component from
single-environmental-photon spontaneous emission processes
to obtain the result

〈〈ab | �̄SR(x) |ab〉〉

=
(

2π

�2

) ∑
a′′

∑
�k

∑
λ

|Vaa′′ (�kλ)|2δ(x − ωa′′ + ωb − ω) +
(

2π

�2

) ∑
b′′

∑
�k

∑
λ

|Vbb′′ (�kλ)|2δ(x − ωa + ωb′′ + ω). (45)

The quantities Vaa′′ (�kλ) are the linear-interaction matrix elements in Eq. (19). The component from single-environmental-photon
absorption and induced emission processes is evaluated as

〈〈ab | �̄IR(x) |ab〉〉

=
(

2π

�2

)∑
a′′

∑
�k

∑
λ

|Vaa′′ (�kλ)|2δ(x − ωa′′ + ωb − ω)〈n�kλ〉 +
(

2π

�2

) ∑
a′′

∑
�k

∑
λ

|Vaa′′ (�kλ)|2δ(x − ωa′′ + ωb + ω)〈n�kλ〉

+
(

2π

�2

) ∑
b′′

∑
�k

∑
λ

|Vbb′′ (�kλ)|2δ(x − ωa + ωb′′ + ω)〈n�kλ〉 +
(

2π

�2

) ∑
b′′

∑
�k

∑
λ

|Vbb′′ (�kλ)|2δ(x − ωa + ωb′′ − ω)〈n�kλ〉.

(46)

The average environmental-photon occupation number denoted by 〈n�kλ〉 can be related to the specific intensity I (�k,λ)
corresponding to a Planck (thermal-equilibrium) distribution function.

The lowest-order partial contribution to the linewidth from the collisional (C) interactions can be expressed as the sums of
the separate components associated with inelastic collisional transitions and elastic collisions involving the relevant (target)
atomic system: 〈〈ab | �̄C(x) |ab〉〉 = 〈〈ab | �̄IC(x) |ab〉〉 + 〈〈ab | �̄EC(x) |ab〉〉 . We have evaluated the lowest-order component
associated with inelastic collisional (IC) transitions to obtain the result

〈〈ab | �̄IC(x) |ab〉〉 =
(

2π

�2

) ∑
a′′

∑
�p

∑
�p′′

∣∣V C
a �p,a′′ �p′′

∣∣2
δ(x − ωa′′ + ωb − ω �p′′ + ω �p)ρ �p

+
(

2π

�2

) ∑
b′′

∑
�p

∑
�p′′

∣∣V C
b �p,b′′ �p′′

∣∣2
δ(x − ωa + ωb′′ − ω �p + ω�--p)ρ �p. (47)
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The matrix elements V C
a �p,a′′ �p′′ and V C

b �p,b′′ �p′′ are to be evaluated

in terms of the collisional interaction operator V C , which
is primarily the Coulomb interaction between the relevant
(target) atomic system and the projectile atomic system. Note
that the average over the initial relative momentum distribution
is expressed in terms of the density operator ρ �p, which
can be represented by a Maxwellian (thermal-equilibrium)
distribution function. The lowest-order component associated
with elastic collisions (EC) is evaluated as follows:

〈〈ab | �̄EC(x) |ab〉〉 =
(

2π

�2

) ∑
�p

∑
�p′

∣∣V C
a �p,a �p′ − V C

b �p,b �p′
∣∣2

× δ(x − ωa + ωb − ω �p + ω �p′ )ρ �p. (48)

The collisional contributions can also be expressed in terms of
the matrix elements of the scattering operator S or in terms of
the scattering cross sections and scattering amplitudes.

The total linewidth in the Markov (short-memory-time)
approximation is obtained by setting x = 0. Our general
expression for the Liouville-space self-energy operator �̄(z)
can be evaluated beyond the lowest-order, diagonal-resolvent,
and Markov approximations.

D. Tetradic-matrix elements of the lowest-order nonvanishing
contribution to the Liouville-space line-shift operator in the

diagonal-resolvent approximation

The individual lowest-order radiative and collisional contri-
butions to the line shifts in the diagonal-resolvent and Markov
approximations can be determined from Eq. (44) using the
results obtained above for the individual lowest-order radiative
and collisional contributions to the linewidths. Beyond the
diagonal-resolvent approximation, the spectral line shapes
must be described by an evaluation of the full set of tetradic
matrix elements of the self-energy operator.

VI. ELECTROMAGNETIC-FIELD PROPAGATION IN THE
SEMICLASSICAL DESCRIPTION

A wide variety of modified light-propagation charac-
teristics, including slow light, fast light, left-handed light
(associated with a negative value of the index of refraction),
and stopped (or stored) light [41], can be systematically
investigated by incorporating our analytical results for the
linear and nonlinear macroscopic electromagnetic response
as current-source terms in the macroscopic Maxwell field
equations of classical electrodynamics [42]. The alternative
microscopic Maxwell equations can be adopted simply by
redefining the average (trace operation) that is associated
with the Liouville-space inner product to correspond to
the quantum-mechanical average alone, without reference
to the quantum-statistical distribution. In a fully quantum-
mechanical (QED) formulation, the equations of motion for
the electromagnetic-field operators in the Heisenberg repre-
sentation can serve as a starting point for an investigation of
the propagation characteristics of the average electromagnetic
fields. The quantized-electromagnetic-field formulation will
be necessary for a fully consistent description of stopped (or
stored) light, which is accomplished by the regulated transfer

of the probe electromagnetic field into the coherently excited
many-electron quantum system, giving rise to quasiparticle
states of the light-matter system that have become know as
dark-state polaritons [7,41].

A. Electromagnetic-field propagation in the space
and time representation

In the Coulomb gauge, the inhomogeneous wave equation
governing the electromagnetic vector potential �A(�r,t) can be
expressed in the form

∇2 �A(�r,t) −
(

1

c2

)
∂2

∂t2
�A(�r,t)

= −
(

4π

c

)
�J (�r,t) +

(
1

c

)
�∇ ∂

∂t
�(�r,t). (49)

We have expressed the macroscopic electronic current density
�J (�r,t) as a perturbation expansion in powers of either the entire

classical electromagnetic field or the weak probe field alone.
We have emphasized that the semiclassical description

of the electromagnetic interaction is most unambiguously
implemented when the entire electrostatic interaction has been
included in the zeroth-order Hamiltonian operator describing
the many-electron quantum system corresponding to the
optical medium. In this case, the scalar potential �(�r,t)
may be set equal to zero in the absence of free charges.
However, we have pointed out that the electrostatic interactions
among different atomic systems are not taken into account
in the traditional atomic-structure approximation involving
noninteracting atomic systems. In this case, the scalar potential
should be determined by including the Poisson equation

∇2�(�r,t) = −4πρ(�r,t). (50)

In order to self-consistently incorporate these electrostatic
interactions, it may be necessary to introduce a perturbation
expansion for the macroscopic charge density ρ(�r,t) and
also to take explicitly into account the Coulomb interaction
operator Vc(t) = ∫

d3rρ(�r,t)�(�r,t) together with the relevant
electromagnetic-interaction operator. The electric field will
then be given, in terms of the transverse and longitudinal com-
ponents, by �E(�r,t) = −( 1

c
) ∂
∂t

�A(�r,t) − �∇�(�r,t) and Eq. (49)
will involve a coupling between these components.

For a complete analysis of the propagation characteristics
of the electromagnetic field in the optical medium, it may
be necessary to consider the differential continuity equations
corresponding to the conservation of energy, linear momen-
tum, and angular momentum in the interacting system of
charged particles and electromagnetic fields. These differential
conservation relationships are expressed in terms of the
energy densities, the energy fluxes, the linear momentum and
angular momentum densities, and the energy momentum and
angular momentum tensors. Moreover, these quantities may
be more conveniently defined in terms of the electric and
magnetic fields rather than the electromagnetic vector and
scalar potentials. The inhomogeneous wave equations can be
reexpressed in terms of the electric and magnetic fields and
also in terms of the polarization �P (�r,t) and the magnetization
�M(�r,t) by introducing the relationships �J (�r,t) = ∂

∂t
�P (�r,t) +

c �∇ × �M(�r,t) and ρ(�r,t) = −�∇ · �P (�r,t), which are valid in the
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absence of free charges and net currents passing through any
cross-section area. However, it is well known that partition of
the electronic current density is not unique.

The macroscopic formulation of the conservation rela-
tionships can be expressed in terms of the perturbation
expansions for the macroscopic charge density ρ(�r,t) and
the macroscopic electronic current density �J (�r,t). We have
adopted a description of the semiclassical electromagnetic
interaction based on perturbation expansions in terms of the
combined (pump and probe) electromagnetic field. However,
we have also pointed out that it might be advantages to
include the electromagnetic interaction involving the intense
pump field in the zeroth-order Hamiltonian operator, thereby
providing a dressed-state representation corresponding to a
nonperturbative and effectively nonlinear treatment of both

the intense pump field and the external magnetic field. The
perturbation expansions of the charge and current density
operators would then be expressed in terms of the weak probe
(or signal) field alone, while the macroscopic electromagnetic-
response tensors occurring in these expansions will be implicit
functions of the intense pump (or control) field and the external
magnetic field.

B. Electromagnetic-field propagation in the frequency and
wave-vector representation

After introducing the Fourier transformations and setting
the scalar potential equal to zero, the wave equation for the
electromagnetic vector potential can be expressed in the form

q2 �A(�q,ω) −
(

ω2

c2

)
�A(�q,ω) =

(
4π

c

)
�J (�q,ω)

=
(

4π

c

) ∞∑
n=0

�J n(�q,ω) =
(

4π

c

) ∞∑
n=0

∫
d3q1 · · ·

∫
d3qn

∫
dω1 · · ·

∫
dωnσ

n(�q,�q1, . . . ,�qn; ω,ω1, . . . ,ωn) · �E(�q1,ω1) × · · · × �E(�qn,ωn). (51)

The linear (n = 1) and nonlinear (n > 1) components of
the macroscopic electronic current density �J (�q,ω) can be ana-
lytically expressed using the compact Liouville-space operator
forms that we have obtained for the corresponding conductivity
tensors. The wave equation for the electromagnetic vector
potential �A(�q,ω) is a multiple-integral relationship. If the
perturbation expansion for the macroscopic electronic current
density is truncated at some order n, this wave equation can
be solved and the dispersion relation giving the frequency ω

as a function of the wave vector
⇀

q can be obtained. Starting
with a finite set of frequency and wave-vector variables, a
set of coupled wave equations will be obtained governing the
propagation of the fields associated with the various combina-
tions of these frequency and wave-vector variables, which are
generated as a result of the linear and nonlinear components of
the macroscopic electronic current density. Since the solution
of the general nonlinear and nonlocal form of the set of coupled
wave equations is not expected to be obtainable in an analytical
form, a numerical stimulation will be necessary. If we retain
only the linear contribution and introduce the simple algebraic
relationship pertaining to a single-mode electromagnetic field,
the dispersion relation for a spatially uniform and stationary
optical medium can be expressed in the familiar forms

ω2 = (cq)2

1 + 4πiσ 1(�q,ω)/ω
→ (cq)2

1 + 4πχ1(�q,ω)
= (cq)2

n(�q,ω)2
.

(52)

The arrow indicates the simplified result that can be obtained
by neglecting the magnetization and the index of refraction is
denoted by n(�q,ω).

In Eq. (51), the entire electrostatic interaction is assumed
to be included in the zeroth-order Hamiltonian operator, so

the scalar potential can be omitted. In order to systematically
take into account any electrostatic interactions that are not
included in the zeroth-order Hamiltonian operator, particularly
those among different atomic systems of the optical medium,
it will be necessary to develop a more general macroscopic
formulation, in which separate perturbation expansions would
be introduced for the charge and current densities and the scalar
potential would be self-consistently determined, together with
the electromagnetic vector potential.

The propagation characteristics of electromagnetic fields
in pump-probe optical phenomena are usually determined
by an analysis of the dispersion relation together with the
various conservation relationships. In applications to EIT and
related pump-probe optical phenomena, the primary propa-
gation characteristic of interest is the group velocity vg =
dω/dq. As discussed in Sec. IV, these resonant nonlinear
optical phenomena have been analyzed by evaluating the
linear polarization within the nonperturbative and effectively
nonlinear framework of a dressed-atom representation, by
including the electromagnetic interaction involving the intense
pump field in the zeroth-order Hamiltonian operator, together
with the external-magnetic-field interaction. Consequently, the
group velocity pertaining to the propagation of the weak
probe electromagnetic field can be determined by introducing
the dressed-atom linear susceptibility into Eq. (52). The
dependence of the group velocity on the intense probe field
provides the control mechanism for the slow and stopped
light-propagation phenomena.

VII. CONCLUSION

A reduced-density-matrix description has been de-
veloped for linear and nonlinear (possibly coherent)
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electromagnetic interactions of moving many-electron atomic
systems. Time-domain (equation-of-motion) and frequency-
domain (resolvent-operator) formulations have been devel-
oped in a unified and self-consistent manner. Atomic colli-
sional and environmental radiative processes have been treated
within the framework of a quantum-open-system approach and
external magnetic fields have been taken into account together
with the electromagnetic fields. The influence of the environ-
ment has thereby been described in terms of nonequilibrium
kinetics (decoherence and relaxation) processes together with
spectral line broadening mechanisms. We have emphasized
that our general, nonperturbative, non-Markovian, and full
tetradic-matrix formulations provide a rigorous foundation for
the systematic introduction of the Born (lowest-order), Markov
(short-memory-time), and diagonal-resolvent approximations.

A preliminary semiclassical description of the electromag-
netic interaction has been adopted, based on a perturbation
expansion of the electronic-system density operator in powers
of either the combined (pump and probe) classical electro-
magnetic field or the probe field alone. Time-domain and
frequency-domain sets (hierarchies) of coupled relationships
have been obtained for the field components of this density
operator. We have indicated how a self-consistent treatment of
the electrostatic interaction among different atomic systems
of the optical medium can be provided. We have empha-
sized that relativistic contributions to the electron-electron
and electromagnetic interactions can be most systematically
treated within the framework of a fully relativistic quantum-
electrodynamics formulation, which would also lead to a
completely consistent quantum-mechanical treatment of local-
field and radiative corrections.

The tetradic-matrix elements of the time-domain and
frequency-domain Liouville-space self-energy operators can
be systematically evaluated, taking into account the dominant
environmental interactions. In our semiclassical description,
the subspace of the relevant projection operator has been
defined as the subspace of either the zeroth-order many-
electron-system eigenstates or the dressed many-electron-
system eigenstates, taking into account the intense pump field.
Furthermore, the Liouville-space self-energy corrections that
we have taken into account describe the interaction of the quan-
tized electronic system with the environment, unperturbed
by the classical electromagnetic field. Consideration of the
field-dependent modifications of the self-energy corrections is
left to a future extension of this investigation.

In our semiclassical description of the electromagnetic
interaction, the macroscopic electronic current density has
been obtained as an expansion in powers of the classical
electromagnetic field. The general form of the nth-order
macroscopic electromagnetic response can be expressed in
terms of the (n+1)th-rank conductivity tensor in either
the space-time representation (applicable to a nonlocal and

nonstationary medium) or the frequency and wave-vector
representation (describing spatial and temporal dispersion).

We have emphasized that, for a self-consistent semiclassical
description of the electromagnetic interaction, the expansion
obtained for the macroscopic electronic current density should
be introduced as a current-source term into the Maxwell field
equations. A systematic treatment can thereby be provided
for the induced-field and local-field corrections that are often
discussed in the nonlinear-optics literature. The Maxwell field
equations thus obtained govern the dynamics of the mean
or macroscopic electromagnetic field. The field-induced and
local-field corrections can be incorporated when the expansion
of the macroscopic electronic current density in powers of the
classical electromagnetic field is introduced into the Maxwell
field equations. However, we have pointed out that this
treatment of field-induced corrections, which is obtained at the
level of a mean field, is not expected to be rigorously correct.
Consequently, the semiclassical description should eventually
be replaced by a fully quantum-mechanical description based
on an open-system version of quantum electrodynamics. In
the fully quantum-mechanical description, the Maxwell field
equations would be replaced by the Heisenberg-Langevin
equations of motion for the electromagnetic-field opera-
tors. This would provide a fundamental quantum-mechanical
framework for a unified treatment of nonlinear electromagnetic
interactions and quantum optical processes.

Using our preliminary semiclassical description of the elec-
tromagnetic interaction, compact analytical Liouville-space
operator expressions have been derived for the linear and the
general (nth-order) nonlinear macroscopic electromagnetic-
response tensors. In these expressions, we have allowed for
coherent initial electronic excitations and for the full tetradic-
matrix form of the Liouville-space self-energy operator rep-
resenting the environmental interactions either in the Markov
approximation or with a model for non-Markovian behavior.
We have pointed out that the compact analytical expression
that we have obtained for the macroscopic electromagnetic-
response tensors can be employed for the microscopic electro-
magnetic response simply by redefining the Liouville-space
inner product to include the quantum-mechanical expectation
value alone, without the quantum-statistical average.
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