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We study secondary instabilities in a coherently driven passive optical fiber cavity. We show that time-
modulated solutions which are generated at the onset of instability experience convective and absolute Eckhaus
instabilities. The splitting of the secondary instabilities into convective and absolute instabilities drastically
impacts the instability boundaries. As a consequence, the stability range of time-modulated waves is enlarged.
More importantly, the threshold of absolute instability determines the transition from time-periodic wave trains
to a chaotic regime. In the latter the wave trains are composed of irregular oscillations embedded in regular ones.
The predictions are in excellent agreement with numerical simulations.
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I. INTRODUCTION

There is currently a considerable interest in understanding
the nonlinear dynamics in optical fiber cavities that belong
to the class of nonequilibrium dissipative systems. It is well
known that the latter experience different generic instability
characteristics of nonlinear dynamical systems, namely, the
ones modeled by partial differential equations. This concerns
almost all fields in science ranging from chemical reactions,
biology, to nonlinear optics and fluid mechanics [1]. In optics,
the formation of dissipative solutions (DSs) arises naturally in
many optical devices from the coupling of dispersion (tem-
poral systems) or diffraction (spatial systems), nonlinearities,
and dissipation. This coupling triggers various spatiotemporal
instabilities, which lead to spontaneous formation of DSs that
can be stationary or not, periodic, or localized in the form of
dissipative solitons [2]. Among the possible devices, coher-
ently driven optical fiber ring cavities have recently appeared
as one of the most promising systems, not only for the richness
in their nonlinear dynamics [3] but also for their potential
applications [4]. It has been shown that, in the presence
of third-order dispersion, the standard theoretical approach
leading to modulation instability must be extended [5,6]. More
specifically, a nonlinear stationary state may be unstable with
respect to localized perturbations, but the state that results will
depend on the relative values of the amplification and the drift
induced by the third-order dispersion term. This is the basis of
the difference between convective and absolute regimes. In
the former, the perturbation grows in time but decreases
locally because it is advected away. In the latter it increases
locally and not only in the moving frame, so it eventually
extends over all the slow time domain. In this case, threshold
values for primary absolute and convective instabilities were
obtained [3]. However, as soon as the threshold is exceeded the
system enters a nonlinear regime where secondary instabilities
arise leading to a more complex dynamics characterized by
transition from dissipative periodic solutions to nonperiodic
and/or chaotic ones.
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In this paper we investigate these secondary instabilities
in the presence of third-order dispersion and emphasize the
crucial role of secondary convective and absolute instabilities
in the dynamics of a coherently driven passive optical fiber
cavity. Indeed, above threshold, dissipative time-modulated
solutions are obtained. By increasing the incident pump power,
these solutions destabilize and the system bifurcates either to a
new periodic solution or enters a chaotic regime. At this stage
a secondary instability threshold is reached. This threshold is
crucial in the nonlinear dynamics of the system above threshold
since it determines the stability range of the dissipative
periodic solutions and subsequently the parameters range of
their observation. An amplitude equation has been derived to
describe the weakly nonlinear dynamics above the onset of
instability that allows us to determine the threshold values for
the different types of the secondary instability. An important
result is that the threshold of absolute instability of modulated
solutions determines the transition from modulated dissipative
solutions to a regime of a temporal chaotic behavior [7].

II. THE MODEL

The system under investigation depicted in Fig. 1 can be
modeled by the extended nonlinear Schrödinger equation with
boundary conditions. This leads to a set of two equations,
usually referred to as the map equations (or mapping) that
can be reduced in the mean-field approximation to obtain a
single equation modeling the intracavity field dynamics. This
equation, known as the Lugiato-Lefever equation (LL model)
[8], has been proven relevant for describing weakly nonlinear
dynamics in cavities [9]. It reads

∂ψ

∂t ′
= S − (1 + i�)ψ − is

∂2ψ

∂τ ′2 + B3
∂3ψ

∂τ ′3 + i|ψ |2ψ, (1)

where t ′ = tθ2/2tR is a slow normalized time variable,
with t the real time and tR the round-trip time, τ ′ =
T θ/(L|β2|)1/2 is a fast normalized time variable, s =
sign(β2), ψ = A(2γL)1/2/θ , S = 2Ai(2γL)1/2/θ2, B3 =
β3θ/(3L1/2|β2|3/2), and � = 2δ0/θ

2. The amplitudes Ai and
A are, respectively, slowly varying envelopes for the incident
pump electric field and the intracavity electric field, δ0 the
cavity phase detuning, L the cavity length, γ the nonlinear
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FIG. 1. Scheme of the fiber ring cavity (BS, beam splitter). ρ and
θ are the amplitude reflection and transmission coefficients of BS
(ρ2 + θ2 = 1).

coefficient of the fiber, and β2,3 are the second-order and
the third-order dispersion (TOD) terms respectively. The
steady-state response ψs of Eq. (1) satisfies Ss = [1 + i(� −
|ψs |2)]ψs so that the system is monostable (bistable) for
� <

√
3 (� >

√
3). The linear stability analysis of the steady-

state response with respect to finite frequency perturbations
of the form exp[−i(Kt ′ − �τ ′)] shows that the primary
threshold is reached at I = Is = 1 with I = |ψs |2. Hence,
the system evolves toward modulated solutions with the
frequency �c = √

(� − 2Is)/s associated to the wave number
kc = B3�

3
c .

III. THE AMPLITUDE EQUATION

To study the role of TOD in the nonlinear symmetry
breaking of the generated traveling waves, and to keep
mathematics as simple as possible, we perform a multiscale
analysis similar to the one developed in [10] to find the
amplitude equation describing the weakly nonlinear dynamics
in the LL model. Beyond the primary threshold, the traveling
wave solutions are assumed to take the form ψ = ψs + a,
where a is a small perturbation. We expand this perturbation
as a = εa1 + ε2a2 + ε3a3 + · · · , with ε a small parameter
measuring the distance from the primary threshold: ε2 =
I − 1. Following the approach of [11], and taking into account
the gain spectrum of the instability [9], we introduce the
new times: T0 = t , T1 = εt , T2 = ε2t , τ0 = τ , and τ1 = ετ

so that the corresponding temporal derivatives become ∂t =
∂T0 + ε∂T1 + ε2∂T2 and ∂τ = ∂τ0 + ε∂τ1 . By substitution of the
above expansions in Eq. (1), we obtain a hierarchy of equations
for the successive orders of ε. To the leading order we found
a1 = (1 + i)[A1e

i(�cτ
′+kct

′) + A∗
1e

−i(�cτ
′+kct

′)]. The form of a1

is justified by the fact that, right above the instability threshold,
the gain is only positive in the vicinity of � = ±�c. A1

and its complex conjugate A∗
1 are slowly varying amplitudes,

and the evolution of A1 is described by the following
equation, obtained by solving the system up to the third
order:

∂t ′S + 3B3�
2
c∂τ ′S = (

ψ2
s − 1

)
S + (

2�2
c + 3iB3�c

)
∂2
τ ′S

+ (d1 + id2)|S|2S, (2)

where we have set S = εA1 and the parameters are defined as

d1 = 24
2G + 3

G2
+ 4

G2(1 − 2G) + H 2(2G − 3)

(G2 − H 2)2 + 4H 2
, (3)

d2 = 4H [2(1 − 2G) + G2 − H 2]

(G2 − H 2)2 + 4H 2
, (4)

with

G = 3(� − 2),

H = −6B3�
3
c .

This equation of complex Ginzburg-Landau type [12] de-
scribes the time evolution of Stokes wave above the threshold.
Here, an amplitude equation is derived above the threshold and
takes into account both group velocity dispersion and TOD.
Consequently, in the absence of TOD (β3 = 0), three terms
in Eq. (2) disappear since B3 = 0 and d2 = 0. Moreover, the
expression of d1 greatly simplifies to

d1 = 30� − 41

[3/2(� − 2)]2
(5)

and the numerator of d1 shows clearly that the transition from
super- to subcritical bifurcation is reached at � = 41/30 in
agreement with the result in the seminal paper of Lugiato-
Lefever [8]. As a result, the presence of TOD (β3) drastically
impacts the fiber cavity dynamics by introducing drift and
diffraction effects [terms in Eq. (2) with B3 �= 0] together
with a nonlinear frequency modulation (term with d2 �= 0).
Note also that the presence of TOD affects the nature of
the bifurcation [see Eq. (3)]. This issue is under investigation
and it is out of the scope of this paper. In what follows, we
consider values of β3 in the parameter range where d1 < 0 and
consequently we deal with a supercritical bifurcation. In both
convective and absolute regime, the instability domains are
surrounded by the unstable trivial state. Here, we emphasize
that while the trivial state is invaded by the modulational
instability the envelope of the periodic solution obeys Eq. (2)
and what we describe here is the dynamical behavior of this
envelope, including the important issues such as its stability,
characteristics (frequency, nature of the bifurcation, etc.),
and the bifurcating solutions. This highlights the complex
dynamics in the nonlinear regime. To this end, we seek
solutions in the form

Sω = |Sω|ei(kωt ′+ωτ ′). (6)

Substituting the above expression in Eq. (2) we obtained

|Sω|2 = 1

d1

[
2�2

cω
2 − (I − 1)

]
, (7)

kω = −3B3�cω
2 − 3B3�

2
cω + d2|Sω|2. (8)

First, we consider solutions with ω = 0. In this case, the
amplitude and the phase of modulated solutions are given by

|S0|2 = − (I − 1)

d1
, (9)

k0 = −d2(I − 1)

d1
. (10)

Hence, the corresponding solution in the LL model can be
written as

ψ0 = ψs + (1 + i)|S0|[ei[�cτ
′+(kc+k0)t ′] + e−i[�cτ

′+(kc+k0)t ′]].

(11)
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FIG. 2. (Color online) Analytical velocity given by Eq. (12)
(solid blue line) as a function of the detuning parameter compared
with numerical results from the LL model (red stars) for I = 1.1,
s = −1, and B3 = −0.19. The green dashed line corresponds to
the result of the linear analysis [first term on the right-hand side
of Eq. (12)].

This expression describes the main modulated solution with a
maximum MI gain appearing beyond the primary threshold. A
first interesting result is that the TOD introduces a phase term
k0 depending linearly on the intracavity field above threshold
(I − 1). Therefore, the phase velocity of the modulated
solution is given by [10]

V = kc + k0

�c

= Vc − d2

�cd1
(I − 1), (12)

where Vc = kc/�c = −B3�
2
c is the phase velocity at thresh-

old. The dependence of the velocity on the control parameter
has already been reported in the complex Ginzburg-Landau-
type equation (see, e.g., [10]). Here, we emphasize that
this dependence induces nontrivial variation of the velocity
with respect to the other parameters. Indeed, considering,
for example, the dependence on the detuning parameter, the
standard analysis gives a linear evolution (dashed green line
in Fig. 2). However, as can be seen from Fig. 2 which displays
the velocity given by the numerical simulations with respect to
the detuning � (stars), the variation is not linear. On the same
figure we have plotted Eq. (12) (solid line) which displays a
very good agreement with the numerical results.

IV. THE ECKHAUS-BENJAMIN-FEIR INSTABILITY

So far, we focused on the solution S0. However, according
to the relation (7), more solutions Sω may appear for (I − 1) >

2�2
cω

2 since d1 < 0. We will show in this section that some
of these solutions are unstable to perturbations of the form
eiδωt ′ . This instability is called the Eckhaus instability in the
case of stationary waves corresponding to B3 = 0 (β3 = 0) and
the Benjamin-Feir instability in the case of progressive waves
corresponding to B3 �= 0 (β3 �= 0) [12]. To simplify analytical
calculations it is more convenient to normalize Eq. (2) as

∂S̃

∂t̃
= S̃ + (1 + ib)

∂2S̃

∂τ̃ 2
− (1 + ic)|S̃|2S̃, (13)

with

S̃ =
√

−d1

ε2
S,

t̃ = ε2t ′,

τ̃ =
√

ε2

2�2
c

(
τ ′ − 3B3�

2
c t

′), (14)

b = 3B3

2�c

,

c = d2

d1
.

The modulated solutions of Eq. (13) take the following form:

S̃ω̃ = √
1 − ω̃2ei(ω̃τ̃−k̃ω̃ t̃), (15)

with

k̃ω̃ = c(1 − ω̃2) + bω̃2. (16)

Obviously, the solution (15) can only exist for

ω̃2 < 1. (17)

We perform the linear stability analysis of the solution (15) by
injecting in Eq. (13) a solution in the form

S̃ = (|S̃ω̃| + δa)ei(ω̃τ̃−k̃ω̃ t̃), (18)

with

δa = δa+e(λt̃+iqτ̃ ) + δa−e(λ∗ t̃−iqτ̃ ). (19)

Then we obtain the following dispersion relation [13]:

λ = −|S̃ω̃|2 − 2ibqω̃ − q2

+
√

(1 + c2)|S̃ω̃|4 − (bq2 − 2iω̃q + c|S̃ω̃|2)2. (20)

A. The Eckhaus instability (b = c = 0)

First, we consider the case where the TOD term is absent
(b = c = 0). From Eq. (15), the corresponding form of the
modulated solution can be written as

S̃ω̃ =
√

1 − ω̃2eiω̃τ̃ (21)

and λ [expression (20)] takes a simpler form

λE = −|S̃ω̃|2 − q2 +
√

|S̃ω̃|4 + 4ω̃2q2. (22)

The analysis of the real part of λE shows that the solution (21)
is unstable for

ω̃2 > 1
3 . (23)

The most unstable mode qmax is calculated from the relation
(∂ Re[λE]/∂q)|qmax

= 0, and it takes the following form:

q2
max = 3

4

(
ω̃2 − 1

3

)
(1 + ω̃2)ω̃−2. (24)

We note that qmax → 0, when ω̃ → 1/3 and qmax → 1, when
ω̃ → 1.

This instability is known as the Eckhaus instability. It has
been extensively studied in fluid mechanics as, for instance, in
the case of cells of Rayleigh-Benard convection (see [14], and
references therein) and also in optics [15]. When the frequency
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of the modulated solution satisfies the criterion (23), this
instability causes the disappearance of the initial modulation
at frequency ω̃ and the amplification of a frequency domain
around the most unstable frequency ω̃ − qmax (ω̃ + qmax) in
the case of ω̃ > 0 (ω̃ < 0). Numerical simulations obtained
by integrating Eq. (13) for a stable frequency (ω̃ = 1/2) and
an unstable frequency (ω̃ = √

2/3) are shown in Fig. 3. In
this example, Figs. 3(a) and 3(b) show clearly the stability
of the modulated solution with ω̃ = 1/2. For the case of
ω̃ = √

2/3 ≈ 0.81, the above calculations show that it is
unstable to the modulations q around the most unstable
mode qmax = 5/8 ≈ 0.79, the predicted frequency of the
bifurcated solution is ω̃ − qmax ≈ 0.02, close to zero with
a slow period 2π/(ω̃ − qmax) ≈ 300. As can be seen from
Fig. 3(d) numerical results are in excellent agreement both
qualitatively and quantitatively with the predictions. Since
the Eckhaus instability is found in the normalized amplitude
equation [Eq. (13)], it is interesting to check this instability in
the LL model (1). By using the relations (14), we can obtain
a relation that connects the normalized frequency ω̃ to the
frequency ω in the LL model as

ω2 = ε2

2�2
c

ω̃2, (25)

where ε2 = I − 1. Using (25), we can also express the
existence condition of modulated solutions (ω̃2 < 1) and their
stability condition (ω̃2 < 1

3 ) in the parameters of the LL model
as

ε2 > 2ω2�2
c, (26)

ε2 > 6ω2�2
c . (27)

In Fig. 4 we show the domain where the Eckhaus instability
is possible in the LL model (green area). The unstable domain
is bounded by the solid black line and the dotted blue line.
To observe the Eckhaus instability in the LL model, we must
first find the form of the modulated solution (21) related to this
model. Using the relations (14), we found

ψω = ψs + (1 + i)
|S̃ω̃|√−d1

[ei[(�c+ω)τ ′+kct
′] + e−i[(�c+ω)τ ′+kct

′]].

(28)

In Fig. 5 we present the result of a numerical simulation in
the LL model [Eq. (1)] seeded by an initial condition that
satisfies Eq. (28). This initial signal has two frequencies at
�c + ω and −�c − ω [Fig. 5(a)]. During the propagation,
we observe the attenuation of the two initial frequencies
and the amplification of two spectral sidebands around the
frequencies �max = �c + ω − Qmax and −�max = −�c −
ω + Qmax with Q2

max = q2
maxε

2/2�2
c corresponding to the most

unstable mode (the Eckhaus mode). In Fig. 5(b), the numerical
most unstable frequencies (blue solid line) caused by the
Eckhaus instability are close but slightly different from the
positions calculated analytically (red dotted line). Two factors
contribute to this slight disagreement: First, we have limited
the calculation to the first order in ε to find the solution in
the LL model; second, since the multiscale calculation is

(a)

(b)

(c)

(d)

FIG. 3. (Color online) The real part of the signals in time and
frequency domains. (a) and (b) show the initial and final (at t̃ = 1000)
signal with a frequency ω̃ = √

1/4 in the stability range and (c) and
(d) show the initial and final (at t̃ = 1000) signals with a frequency
ω̃ = √

2/3 in the instability range.

performed with I − Is small, the result can be very sensitive to
the values of I in the numerical integration of the LL model.
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FIG. 4. (Color online) Zone of instability in the ω/�c-ε2 plane.
The relation ε2 = 2ω2�2

c is represented by the solid black curve
defining the region where the modulated solution can exist and the
relation ε2 = 6ω2�2

c is represented by the dotted blue curve which
delimits the region of stable solutions with s = −1, � = 1, and
�c = 1.

B. The Benjamin-Feir instability (b �= 0, c �= 0)

When the TOD is present in our model, the parameters b

and c of Eq. (13) are both nonzero. Therefore, the dynamics of
our system becomes more complex. The TOD induced a drift

(a)

(b)

FIG. 5. (Color online) (a) The initial spectrum of the signal ψω

and (b) the spectrum of ψω at t ′ = 2500 of a simulation in the LL
model with ω̃ = √

2/3, s = −1, � = 1, I = 1.06, and �c = 1. The
red dotted line in (b) indicates the predicted positions of �max and
−�max.

to modulated solutions that are stationary in the case of b = 0
and c = 0 [i.e., k̃ω̃ = 0 in Eq. (29) below]. This drift gives
rise to the appearance of two types of instability regimes of
modulated solutions: a convective regime and an absolute one.
We start by rewriting the modulated solution in its complete
form

S̃ω̃ = √
1 − ω̃2ei(ω̃τ̃−k̃ω̃ t̃) (29)

with

k̃ω̃ = c(1 − ω̃2) + bω̃2.

The phase drift velocity of solution (29) is given by ṽ = k̃ω̃/ω̃.
Note that ṽ may be positive or negative depending on the
values of b, c, and ω̃. The analysis of the eigenvalue λ

[expression (20)] allows one to understand the dynamics in
different instability regimes of solution (29). For the sake of
simplicity, we develop λ for q → 0 to obtain an approximate
expression as follows [12,13]:

λa = −iVgq − Dq2 + O(q3) (30)

with

Vg = 2(b − c)ω̃, (31)

D = 1 + bc − 2(1 + c2)ω̃

1 − ω̃2
. (32)

The approximate expression of λ [expression (30)] allows us
to get good insight into the stability of solution (29). Indeed,
the sign of D determines the stability of this solution: It is
stable (Re[λa] < 0) when D > 0. Using expression (32), we
can express the stability criterion as

ω̃2 <
1 + bc

3 + 2c2 + bc
. (33)

Notice that, condition (23) is recovered when setting b = c =
0. The solution S̃0 (solution corresponding to ω̃ = 0) is stable
if the Benjamin-Feir-Newell criterion 1 + bc > 0 is satisfied
[12]. The most unstable mode (the Eckhaus mode) can be
found by using the following relation:

∂ Re[λ]

∂q

∣∣∣∣
qmax

= 0. (34)

From the approximate expression of the eigenvalue λa we
obtain qmax = 0. In the study of the convective and absolute
instability, the relation ω̃2 = (1 + bc)/(3 + 2c2 + bc) deter-
mines the convective threshold. However, the approximate
expression of λa is not sufficient to predict the absolute
threshold and the most unstable mode (the Eckhaus mode)
beyond the convective threshold; we then consider the exact
expression of λ [Eq. (20)] to continue the analysis. Indeed, in
the general context of convective and absolute instabilities,
λ and q are both complex as λ = Re[λ] + i Im[λ] and
q = Re[q] + i Im[q]. By replacing these two complex terms
in the exponential part of the perturbation [Eq. (19)], we
found

δa ∝ e(λt̃+iqτ̃ ) = e[Re[λ]−Im[q](τ̃ /t̃)]t̃ ei[Im[λ]+Re[q](τ̃ /t̃)]t̃ . (35)
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Here, we define the drift V and the total growth rate σ of the
perturbation as follows [16]:

V = τ̃

t̃
, (36)

σ = Re[λ] − Im[q]V, (37)

where the total gain σ represents the temporal growth rate
along each drift V . The asymptotic dominant frequencies qs

are defined by the saddle-point method [16–18],

∂qλ(qs) = V (qs). (38)

The absolute threshold is reached when the following condi-
tions are satisfied [12,13,16]:

∂qλ(qsa) = 0, (39)

Re[λ(qsa)] = 0. (40)

The frequency qsa is commonly called the absolute frequency.
By solving numerically Eqs. (39) and (40), we can express the
absolute threshold as a function of b, c, and ω̃. An example is
given in Fig. 6(a), following the same method as in [12]. The
black dashed line represents the absolute threshold in the plane
(ω̃,c) for b = −1.5. A path with ω̃ = 0.3 (blue dashed line) is

(a)

(b)

FIG. 6. (Color online) (a) The convective and absolute instabil-
ities in the ω̃-c plane with b = −1.5. The solid red line represents
the limit of the Eckhaus instability ω̃2 = (1 + bc)/(3 + bc + 2c2) for
q → 0 and the dashed black curve shows the marginal curve which
separates the zone of the convective and absolute instabilities; it is
obtained from the relations (39) and (40). (b) The total growth rate σ

(gain) versus V for five values of c.

chosen to test the convective and absolute thresholds obtained.
This path intersects the convective threshold curve at cc = 0.5
and the absolute threshold curve at ca = 1.05. Figure 6(b)
shows the total gain versus V for five values of c with ω̃ = 0.3
and b = −1.5 to examine the transition between the different
regimes. When c � cc (stable regime), the modulated solution
(29) is stable, the total gain is negative for all V except one
drift V with σ = 0 which corresponds to the drift of the stable
modulated solution [see the curve labeled c = 0.1 in Fig. 6(b)],
and it is marginally stable. By increasing c, the total gain curve
does not move vertically but horizontally; this means that the
modulated solution is always stable but its drift can change
depending on c [see the curves labeled c = 0.1 and c = 0.5 in
Fig. 6(b)]. Just above the convective threshold, the total gain
curve rises vertically with increasing c leading to a range of
unstable V with σ positive [see the curve labeled c = 0.8 in
Fig. 6(b)]. In this regime σ (V ) is positive but only for negative
values of V . This means that the perturbation grows only in
one direction and the solution (29) is convectively unstable.
At the absolute threshold, the limit of the positive part of the
total gain curve (σ = 0) reaches V = 0 [see the curve labeled
ca = 1.05 in Fig. 6(b)]. By increasing c, the positive part of
the total gain curve extends simultaneously in the range of
V < 0 and V > 0 [see the curve labeled c = 1.3 in Fig. 6(b)]
and the perturbation develops in both directions so that the
solution (29) is absolutely unstable. Before going further, we
would like to emphasize that the splitting of the secondary
instabilities on convective and absolute regimes is induced here
by the TOD, in contrary to previous works in hydrodynamics
and optics where the splitting results from a drift term (first
derivative).

We have performed three numerical simulations by inte-
grating Eq. (13) to distinguish these different regimes: the
first one in the stable regime, the second in the convective
regime, and the last in the absolute regime. These simulations
are denoted by circles in Fig. 6(a) with red (c = 0.2), blue
(c = 0.6), and black (c = 1.4), respectively. In all simulations,
we superimposed a localized perturbation to the solution (29)
around the position τ̃ = 0 as an initial condition [Figs. 7(b),
8(b), and 9(b)], and follow its evolution. In the stable regime,
the localized perturbation drifts in the τ̃ -t̃ plane as shown
in Fig. 7(a) where the drift of the perturbation is given by
V = Vg = 2(b − c)ω̃. Note that the black and white fringes
represent the oscillation of the modulated solution at frequency
ω̃ = 0.3. Indeed, the slope of the fringes in the τ̃ -t̃ plane means
that the modulated solution drifts itself along τ̃ with a phase
velocity v = k̃ω̃/ω̃. In the temporal profiles and the spectrum
of the signal at t̃ = 300 [Fig. 7(c)] and t̃ = 600 [Fig. 7(d)],
we observe that the perturbation is lessened and the system
returns to the stable modulated solution (the positions of the
perturbation are framed by the black dotted rectangles). In the
convective regime, the evolution of the signal in the τ̃ -t̃ plane
is displayed in Fig. 8(a) where we observe that the affected
part of the signal by the initial perturbation extends and drifts
only in the backward direction during the simulation, and it
completely leaves the observation domain under the effect of
the drift at t̃ = 500. Note that the drift is negative as shown
in Fig. 6(b). The temporal profiles and the spectra show that
the affected part of the signal tends to form an oscillation
of the Eckhaus frequency [Fig. 8(c)], but this frequency
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(a)

(b)

(c)

(d)

FIG. 7. (Color online) Numerical simulations obtained by inte-
grating the normalized amplitude equation [Eq. (13)] in a stable
case. (a) The evolution of a perturbation initially located at τ̃ =
0 on the modulated solution in the τ̃ -t̃ plane.(b), (c), and (d)
represent, respectively, the temporal profiles and the spectra of the
signal at t̃ = 0, t̃ = 300, and t̃ = 600 with ω̃ = 0.3, b = −1.5, and
c = 0.2.

(a)

(b)

(c)

(d)

FIG. 8. (Color online) Numerical simulations obtained by inte-
grating the normalized amplitude equation [Eq. (13)] in the convective
regime. (a) The evolution of a perturbation initially located at
τ̃ = 0 on the modulated solution in the τ̃ -t̃ plane. (b), (c), and (d)
represent, respectively, the temporal profiles and the spectra of the
signal at t̃ = 0, t̃ = 250, and t̃ = 500 with ω̃ = 0.3, b = −1.5, and
c = 0.6.
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(a)

(b)

(c)

(d)

FIG. 9. (Color online) Numerical simulations obtained by inte-
grating the normalized amplitude equation [Eq. (13)] in the absolute
regime. (a) The evolution of a perturbation initially located at
τ̃ = 0 on the modulated solution in the τ̃ -t̃ plane. (b), (c), and (d)
represent, respectively, the temporal profiles and the spectra of the
signal at t̃ = 0, t̃ = 80, and t̃ = 170 with ω̃ = 0.3, b = −1.5, and
c = 1.4.

eventually disappears and the spectrum finds its initial state
after the perturbed part of the signal completely leaves the
observation domain under the effect of the drift [Fig. 8(d)].
This is in excellent agreement with our analytical prediction
about the existence of a convective regime where the system
asymptotically recovers its initial state. In the absolute regime,
the evolution of the signal in the τ̃ -t̃ plane is shown in Fig. 9(a)
where the perturbation affects all the signals and it finally
invades the entire observation domain. During the evolution,
the initial frequency ω̃ disappears, but we do not observe the
amplification of the Eckhaus frequency and the affected part
of the signal loses completely the modulated form [Figs. 9(c)
and 9(d)]. Note that a similar behavior has been reported in [7].
The authors investigated transition from periodic oscillations
to spatiotemporal chaos in a classic ecological system of
invasion of prey population by predators. Here, in addition to
the concept of convective and absolute instability, an advanced
nonlinear study is necessary to explain our results by taking
into account the interactions between all unstable modes and
their relative stabilities.

After investigating the nonstationary modulated solutions
and their stabilities in the normalized amplitude equation
[Eq. (13)], let us return to the LL model [Eq. (1)]. In fact,
the nature of the instability depends directly on the frame
of reference in which we observe the instability: it can be
convective in a frame of reference and absolute in another one.
The key factor here is the drift of the frame of reference we
chose. In our case, we first need to reconsider the normalization
[Eq. (14)] which connects the time variable τ ′ of the LL model
to the normalized variable τ̃ as

τ ′ =
√

2�2
c

ε2

(
τ̃ − 3B3�c√

2ε
t̃

)
. (41)

We found that the frame of reference of the LL model is
moving in the frame of reference of the normalized amplitude
equation with a drift 3B3�c/

√
2ε that we note Vc. We also

introduce the drifts of the limiting fronts of the wave packet in
the normalized amplitude equation [Eq. (13)]. These fronts are
marginally stable and defined by σ (V−) = σ (V+) = 0 where
V− and V+ represent the drift of the leading and the trailing
edges, respectively. According to the concept of convective
and absolute instability applied to propagating wave packets in
unstable medium [19], the instability of the modulated solution
is absolute in the LL model if (V− − Vc)(V+ − Vc) < 0,
otherwise, it is convective. However, with parameters in our
analysis, V+ and V− are always smaller than Vc, leading to a
convective regime in the LL model.

V. CONCLUSION

In summary, we studied analytically and numerically the
impact of the TOD on modulated solutions that appear
above the onset of instability in a fiber ring cavity. We
have shown that the presence of the TOD induced a drift
which leads to the appearance of convective and absolute
instability regimes of the modulated solution in the amplitude
equation. In the convective regime, we numerically show that
a localized perturbation impacts the modulated solution by
shifting its modulation frequency to the Eckhaus frequency.
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Under the effect of the drift, the modulated solution recovers
its initial state after the localized perturbation completely
leaves the observation domain. In the absolute regime, the
localized perturbation affects all modulated solutions, but we
do not observe the appearance of the Eckhaus frequency. The
modulated solution completely loses the modulated form and
enters a chaotic regime. A nonlinear advanced study is needed
to explain this result and will be a prospect for future work.
Our analytical and numerical studies of the amplitude equation
led us to conclude that the instability of modulated solutions in

the LL model is convective according to the range of physical
parameters explored in this study.

ACKNOWLEDGMENTS

This work is supported by the Belgian Science Policy Office
(BelSPO) under Grant No. IAP 7-35, French Ministry of
Higher Education and Research, the French Project “ANR
Blanc N12-BS04-0011-02”, and the French Labex CEMPI
(ANR-11-LABX-0007-01).

[1] M. Tlidi, M. Taki, and T. Kolokolnikov, Chaos 17, 037101
(2007).

[2] N. Akhmediev and A. Ankiewicz, Dissipative Solitons: From
Optics to Biology and Medicine (Springer-Verlag, Berlin,
Heidelberg, 2008).

[3] A. Mussot, E. Louvergneaux, N. Akhmediev, F. Reynaud,
L. Delage, and M. Taki, Phys. Rev. Lett. 101, 113904 (2008).

[4] F. Leo, S. Coen, P. Kockaert, S.-P. Gorza, P. Emplit, and
M. Haelterman, Nat. Photonics 4, 471 (2010).

[5] A. Mussot, A. Kudlinski, E. Louvergneaux, M. Kolobov, and
M. Douay, Phys. Lett. A 374, 691 (2010).

[6] F. Leo, A. Mussot, P. Kockaert, P. Emplit, M. Haelterman, and
M. Taki, Phys. Rev. Lett. 110, 104103 (2013).

[7] J. A. Sherratt, M. J. Smith, and J. D. M. Rademacher, Proc. Natl.
Acad. Sci. USA 106, 10890 (2009).

[8] L. A. Lugiato and R. Lefever, Phys. Rev. Lett. 58, 2209 (1987).
[9] M. Haelterman, S. Trillo, and S. Wabnitz, Opt. Commun. 91,

401 (1992).

[10] R. Zambrini, M. San Miguel, C. Durniak, and M. Taki, Phys.
Rev. E 72, 025603 (2005).

[11] P. Manneville, Instabilities, Chaos and Turbulence (Imperial
College Press, London, 1994).

[12] I. S. Aranson and L. Kramer, Rev. Mod. Phys. 74, 99 (2002).
[13] I. S. Aranson, L. Aranson, L. Kramer, and A. Weber, Phys. Rev.

A 46, R2992 (1992).
[14] M. C. Cross and P. C. Hohenberg, Rev. Mod. Phys. 65, 851

(1993).
[15] M. Taki, M. N. Ouarzazi, H. Ward, and P. Glorieux, J. Opt. Soc.

Am. B 17, 997 (2000).
[16] P. Huerre and P. A. Monkewitz, Annu. Rev. Fluid Mech. 22, 473

(1990).
[17] C. Bender and S. Orszag, Advanced Mathematical Methods for

Scientists and Engineers (MacGraw-Hill, New York, 1978).
[18] H. Ward, M. N. Ouarzazi, M. Taki, and P. Glorieux, Phys. Rev.

E 63, 016604 (2000).
[19] G. S. Triantafyllou, Phys. Fluids 6, 164 (1993).

033837-9

http://dx.doi.org/10.1063/1.2786709
http://dx.doi.org/10.1063/1.2786709
http://dx.doi.org/10.1063/1.2786709
http://dx.doi.org/10.1063/1.2786709
http://dx.doi.org/10.1103/PhysRevLett.101.113904
http://dx.doi.org/10.1103/PhysRevLett.101.113904
http://dx.doi.org/10.1103/PhysRevLett.101.113904
http://dx.doi.org/10.1103/PhysRevLett.101.113904
http://dx.doi.org/10.1038/nphoton.2010.120
http://dx.doi.org/10.1038/nphoton.2010.120
http://dx.doi.org/10.1038/nphoton.2010.120
http://dx.doi.org/10.1038/nphoton.2010.120
http://dx.doi.org/10.1016/j.physleta.2009.11.058
http://dx.doi.org/10.1016/j.physleta.2009.11.058
http://dx.doi.org/10.1016/j.physleta.2009.11.058
http://dx.doi.org/10.1016/j.physleta.2009.11.058
http://dx.doi.org/10.1103/PhysRevLett.110.104103
http://dx.doi.org/10.1103/PhysRevLett.110.104103
http://dx.doi.org/10.1103/PhysRevLett.110.104103
http://dx.doi.org/10.1103/PhysRevLett.110.104103
http://dx.doi.org/10.1073/pnas.0900161106
http://dx.doi.org/10.1073/pnas.0900161106
http://dx.doi.org/10.1073/pnas.0900161106
http://dx.doi.org/10.1073/pnas.0900161106
http://dx.doi.org/10.1103/PhysRevLett.58.2209
http://dx.doi.org/10.1103/PhysRevLett.58.2209
http://dx.doi.org/10.1103/PhysRevLett.58.2209
http://dx.doi.org/10.1103/PhysRevLett.58.2209
http://dx.doi.org/10.1016/0030-4018(92)90367-Z
http://dx.doi.org/10.1016/0030-4018(92)90367-Z
http://dx.doi.org/10.1016/0030-4018(92)90367-Z
http://dx.doi.org/10.1016/0030-4018(92)90367-Z
http://dx.doi.org/10.1103/PhysRevE.72.025603
http://dx.doi.org/10.1103/PhysRevE.72.025603
http://dx.doi.org/10.1103/PhysRevE.72.025603
http://dx.doi.org/10.1103/PhysRevE.72.025603
http://dx.doi.org/10.1103/RevModPhys.74.99
http://dx.doi.org/10.1103/RevModPhys.74.99
http://dx.doi.org/10.1103/RevModPhys.74.99
http://dx.doi.org/10.1103/RevModPhys.74.99
http://dx.doi.org/10.1103/PhysRevA.46.R2992
http://dx.doi.org/10.1103/PhysRevA.46.R2992
http://dx.doi.org/10.1103/PhysRevA.46.R2992
http://dx.doi.org/10.1103/PhysRevA.46.R2992
http://dx.doi.org/10.1103/RevModPhys.65.851
http://dx.doi.org/10.1103/RevModPhys.65.851
http://dx.doi.org/10.1103/RevModPhys.65.851
http://dx.doi.org/10.1103/RevModPhys.65.851
http://dx.doi.org/10.1364/JOSAB.17.000997
http://dx.doi.org/10.1364/JOSAB.17.000997
http://dx.doi.org/10.1364/JOSAB.17.000997
http://dx.doi.org/10.1364/JOSAB.17.000997
http://dx.doi.org/10.1146/annurev.fl.22.010190.002353
http://dx.doi.org/10.1146/annurev.fl.22.010190.002353
http://dx.doi.org/10.1146/annurev.fl.22.010190.002353
http://dx.doi.org/10.1146/annurev.fl.22.010190.002353
http://dx.doi.org/10.1103/PhysRevE.63.016604
http://dx.doi.org/10.1103/PhysRevE.63.016604
http://dx.doi.org/10.1103/PhysRevE.63.016604
http://dx.doi.org/10.1103/PhysRevE.63.016604
http://dx.doi.org/10.1063/1.868079
http://dx.doi.org/10.1063/1.868079
http://dx.doi.org/10.1063/1.868079
http://dx.doi.org/10.1063/1.868079



