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Interferometry with massive particles may have the potential to explore the limitations of standard quantum
mechanics, in particular where it concerns its boundary with general relativity and the yet to be developed
theory of quantum gravity. This development is hindered considerably by the lack of experimental evidence and
testable predictions. Analyzing effects that appear to be common to many of such theories, such as a modification
of the energy dispersion and of the canonical commutation relation within the standard framework of quantum
mechanics, has been proposed as a possible way forward. Here we analyze in some detail the impact of a modified
energy-momentum dispersion in a Ramsey-Bordé setup and provide achievable bounds of these correcting terms
when operating such an interferometer with nanodiamonds. Thus, taking thermal and gravitational disturbances
into account will show that without specific prerequisites, quantum gravity modifications may in general be
suppressed requiring a revision of previously estimated bounds. As a possible solution we propose a stable setup
which is rather insensitive to these effects. Finally, we address the problems of decoherence and pulse errors in
such setups and discuss the scalings and advantages with increasing particle mass.
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I. INTRODUCTION

A framework, unifying classical general relativity with
quantum mechanics, remains a crucial scientific challenge to
date. As incompatibilities hinder the straightforward inclusion
of gravity into the standard framework of quantum field theory,
the development of a new theory, the quantum gravity, seems
essential. Space-time quantization is a natural ingredient of
such a theory stemming from its dynamical nature in general
relativity. This has led to the notion of minimal length and
maximal energy scales [1,2], commonly ascribed to the Planck
scales: the Planck length lp as the length where the Compton
radius of quantum mechanics meets the Schwarzschild equiv-
alent of gravitation lp =

√
G�/(c3) � 1.6 × 10−35 m and

the Planck mass Mp = �/(cLp) = √
�c/G � 2.1 × 10−8 kg.

More abstract, these scales arise in a combination of three
fundamental constants, thereby forming new quantities that
may or may not be of fundamental importance in nature. This
minimal length scale plays a crucial role in candidates for
quantum gravity theories [1] such as string theory [3,4], loop
quantum gravity [5], doubly special relativity [6,7], and in
the field of black-hole physics [8]. The complete frameworks
however are rather complex and incomplete in their physical
interpretation. It has therefore been proposed to test common
impacts of a space-time quantization on standard quantum
mechanics instead, such as the modification of the energy
dispersion relation [9] or the change of quantum mechanical
commutator relations [2,10–12]. Incorporating such “univer-
sal” effects into existing frameworks inspired the proposal
of numerous verification experiments both in the relativistic
and nonrelativistic regime. This has led to bounds on the
magnitude of the anticipated fundamental scales, though, due
to the smallness of the effects, an existence verification is
still pending. In particular, tests have been proposed within
the framework of quantum optics as constraining the energy
dispersion relation in atom interferometers [9,13], commutator
measurements on nanomechanical oscillator systems [12],

observation of energy-level shifts and modified tunneling
rates [10,11], holographic noise measurements [14,15], and
the appearance of modified photon scattering rates [16].

Here we will focus on the approach developed in [9,13], that
proposes the test of quantum gravity induced energy dispersion
modifications in the context of atom interferometry [17,18].
This interferometry method, which relies on mapping acquired
phase shifts to a well-controlled two-level quantum system,
allows for the ultraprecise detection of spatial potentials
and accelerations. Accordingly its applications are versa-
tile, ranging from gravitational constant [18,19] and recoil
based fine-structure measurements [20,21] to the detection
of magnetic-field gradients and gravitational waves [22].
Replacing atoms by more massive particles is both interesting
for testing the fundamental limits of quantum mechanics [9,12]
and in the analysis of decoherence effects [23,24]. Of particular
importance for the upcoming analysis, larger masses might be
capable of enhancing Planck scale corrections. Color centers
in diamond [25], such as nitrogen- or silicon-vacancy centers,
form promising candidates for that task. As a specific example,
we will focus on nanodiamonds comprising a nitrogen-
vacancy center (NV− center) (see Fig. 1), that does provide
a well-controlled internal level structure along with the pos-
sibility for optical initialization and readout of the spin qubit
ground states [26]. Extraordinary long electronic coherence
times up to milliseconds [27] even at room temperature and
combinations with dynamical decoupling methods [28] make
them promising candidates as a solid-state qubit. Furthermore,
optical trapping [29,30] and optical ground-state manipula-
tion [31,32] have been demonstrated, which are important
prerequisites for recoil based interferometry experiments. The
interferometric application of nanodiamonds in a trapped
configuration has been proposed just recently [33,34].

This paper is organized as follows. We will start by intro-
ducing the modified energy dispersion relation along with the
interferometric setup for its measurement in Sec. II. Based on
the interference signal and assuming various sources of noise
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FIG. 1. (Color online) Ramsey-Bordé interferometer setup and
NV-center energy levels. An initially trapped nanoparticle undergoes
the illustrated interferometer sequence where black lines correspond
to the NV being in the ground state |g〉 (e.g., |−1〉 or |0〉) and
red dashed lines to the excited state |e〉 (e.g., |+1〉). Red arrows
indicate π/2-laser Raman transitions, beam-splitter operations with
recoil transfer �k in the corresponding laser directions. Those
transitions can be realized using a � scheme between the |+1〉,
|−1〉 [36], or |0〉,|+1〉 [31] 3A ground states and an appropriate
excited state of the manifold 3E with a photon recoil momentum
�k � 2� × 2π/(637 nm). The inset depicts the nitrogen-vacancy-
center energy-level structure.

and imprecisions, we then provide precision bounds in Sec. III
that may be anticipated in the determination of the quantum
gravity modifications. Here we focus in particular on the mass
scaling and a comparison between atomic and nanoparticle
setups. Having identified the contribution for which the
verification of their existence or nonexistence seems feasible
with nanodiamonds, we analyze the interference signal under
the influence of gravitation and thermal motion in Sec. IV,
showing that this contribution is in general unobservable as
a result of suppression and decoherence mechanisms. As a
viable solution we then provide in Sec. V a modified robust
setup based on momentum inversion by gravitation, allowing
us to restore the perfect phase and visibility, that otherwise
could just be achieved under challenging conditions. Whereas
the preceding analysis is based on a particular closed path
interference contribution of two selected paths, Sec. VI is
dedicated to extend that concept to all paths involved in the
setup. In Sec. VII we address the question whether massive
particles and quantum optical schemes are suitable for tests
of quantum gravitational corrections, thereby pointing out
the still unresolved controversies that have emerged in the
literature. Practical consideration as the combination with de-
coupling sequences, spatial decoherence, visibility reduction
by imperfect pulses, and time and pulse errors are discussed in
Sec. VIII, focusing again on the particularities of nanoparticle
setups. Following the main text, Appendix A provides the
derivation of the interferometer phase at the example of a
specific path combination and based on a recently developed
operator formalism [35]. In Appendix B the coherence matrix

element as required for the interference term evaluation is
calculated for a thermal harmonic-oscillator state. Appendix C
gives an analysis of the developed robust stability setup and
the required momentum conditions and Appendix D discusses
the difference of the modified energy dispersion approach to
studies based on a modified commutator relation.

II. MODIFIED ENERGY DISPERSION RELATION AND
INTERFEROMETER PHASE

The approach developed in [9,13] proposes the analysis of
a modified energy dispersion, that in the nonrelativistic limit
takes the form

E(p) = p2

2m
+ ξ1

mcp

2Mp

+ ξ2
p2

2Mp

, (1)

with p the particle momentum, m the mass, and c the
speed of light. ξ1 and ξ2 form free parameters, that have to
be constrained by experiments. If the Planck scale plays a
fundamental role both parameters are expected to be of order
one. Indications for such linear and quadratic corrections in the
particle momentum can be found in loop quantum gravity [37]
and doubly special relativity approaches [7], respectively.
More abstract, the modifications induced can be considered
as the first-order correction in the Planck mass of the form
(1/Mp)�(1)(p,m) under the assumption that m still takes the
role of the rest mass [�(1)(p → 0,m) = 0] and for Mp → ∞
the standard dispersion relation is recovered [13]. In the
nonrelativistic limit p � mc the ξ1 and ξ2 contributions then
form the leading and next-to-leading possible contributions
to �(1)(p,m), respectively. In a broader context, the general
ansatz (1), and in particular the ξ2 contribution, also serves as
a test for Lorentz symmetry breaking [9,38].

As pointed out in [9,13], which is exclusively based on
an analysis of energy-momentum conservation, the phase
of a Ramsey-Bordé interferometer as illustrated in Fig. 1
corresponds to the difference in the kinetic energy between
the two paths. We will show in Appendix A that, for the
closed paths combination illustrated in Fig. 1 and a potential at
most linear in position (leading to an inertial force), H (p̂,x̂) =
E(p̂) + V (x̂) with V ′(x̂) = const, the interferometer phase for
an initial definite momentum state | 	p〉 is given by

φint = 1

�

[∫ t1

t0

�E( 	p − ∇V (x)t ′,�	k)dt ′

+
∫ tf

t2

�E( 	p − ∇V (x)t ′,−�	k)dt ′
]

+ �ϕ, (2)

with the times defined as in Fig. 1, �E( 	p,δ 	p) = E(| 	p +
δ 	p ′|) − E(| 	p|), and �ϕ the phase factor originating from the
laser pulse interactions with �ϕ = [ϕ(tf ) − ϕ(t2) + ϕ(t1) −
ϕ(t0)] + ∫ t1

t0
δ(t ′)dt ′ + ∫ tf

t2
δ(t ′)dt ′. Herein δ denotes the laser

detuning and ϕ(t) the absolute laser phase at time t . In the
absence of an accelerating force, for equal time intervals T and
a constant laser phase and detuning δ, this reduces to φint =
1/�[�E( 	p,�	k) + �E( 	p,−�	k)]T + δT . Upon completing the
interferometer sequence, this phase is measurable as popula-
tion oscillations contributing to the probability for finding the
particle in the ground state as p′

g = 1/8[1 + cos(φint)]. The
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FIG. 2. (Color online) Frequency contribution and momentum
splitting. Interferometry phase frequency for different nanodiamond
radii: the unperturbed recoil phase (zero-order contribution, blue
solid), the ξ1 quantum gravity correction (red dashed), and the ξ2

correction (black dashed dotted). The circles in the green shaded area
(top to bottom: zero order, ξ1, ξ2) indicate the corresponding values
for a Cs atom interferometer in the same colors. Inset: maximal
spatial separation of the interferometer paths for an interferometer
time T = 100 μs and nanodiamonds.

total probability, involving the influence of additional paths of
the interferometric setup, will be analyzed in Sec. VI.

III. PRECISION BOUNDS ON QUANTUM GRAVITY
PARAMETERS

A variety of error sources and uncertainties, both of prac-
tical and fundamental nature, limit the achievable precision
in the interferometric determination of the quantum gravity
parameters ξ1 and ξ2. It will turn out that for a bound on ξ2 no
gain in precision can be expected in going for more massive
particles such as nanodiamonds; from a practical perspective
even the contrary holds true. On the other hand, bounds on
ξ1 benefit considerably from increasing masses and already
a rather small nanodiamond size could make its existence
amenable to verification provided ξ1 ∼ 1. However, both for
atoms and nanoparticles, such a ξ1 term will generally be
suppressed by gravitational and thermal motion, the latter
effect even scaling disadvantageously with increasing particle
mass. Thus it is in general impossible to extract this data from
existing interference experiments as has been proposed and
performed in [9,13], therefore creating the need for a new setup
and analysis as will be discussed in the upcoming sections.

The (perfect) external interferometric phase following out
of (2) takes the form

φ = �k2

m
T + ξ1

m

Mp

ckT + ξ2
�k2

Mp

T (3)

and we will refer to the first term, the phase of an unmodified
energy dispersion, as the “zero-order” contribution in what
follows.

The magnitudes of the different phase contributions are
depicted in Fig. 2 for different particle masses. Note in
particular that for nanodiamonds the ξ1 term, provided that
it exists, forms the dominant phase contribution, whereas this
role is ascribed to the zero-order phase contributions φ0 =
(�k2/m)T for an atomic system. This turns out to be crucial
for the error scaling in that uncertainties in the zero-order
phase term, denoted as “relative errors,” play a significant role
for atomic systems, whereas they are much less prominent
for nanodiamonds. In particular, for constraining ξ1 with
nanoparticles, relative errors play a minor role compared to
“absolute errors,” the latter referring to mass and wave-vector
independent uncertainties such as shot noise or frequency
imprecisions. The mass and wave-vector scaling for these two
different types is given in Table I along with the scaling of
different error sources, the latter ones plotted for realistic
experimental parameters in Fig. 3. As a consequence of
the different error scaling, the absolute error scaling �ξ1 ∝
1/(mk) and �ξ2 ∝ 1/k2 favors larger recoil contributions for
nanodiamonds, whereas the opposite conclusion can be drawn
for atomic systems [13] based on the relative error scaling
�ξ1 ∝ k/m2.

The ξ1-bound benefits for both types of errors from an
increasing mass. Strikingly, due to ξ1 being the dominant
phase contribution for nanodiamonds, already a rather small
radius of 5 nm (∼106 amu, ∼9 × 10−14Mp) might allow for
the existence or nonexistence verification of such a ξ1 term. The
shot noise is, along with imprecisions in the laser detunings,
the main and limiting error source, whereas fundamental
knowledge of the fine-structure constant will be very unlikely
to limit the precision under realistic experimental conditions.

In contrast, the ξ2 contribution exhibits a mass independent
scaling for absolute errors. From a practical point of view
this favors atoms over nanoparticles, the former benefiting
from the ability to realize parallel interferometric setups of
up to ∼108 atoms [21], long coherence times T ∼ 10 ms,
higher mass precisions originating in their elementary par-
ticle nature, and elaborated techniques for large momentum
transfers [21,42,43]. In particular, the lack of parallelism

TABLE I. Imprecision bound formulas for the estimation of the parameters ξ1 and ξ2 for different sources of imperfection. The last row
indicates the general scaling with the particle mass m and the wave vector k for errors that are due to fluctuations of the zero-order phase
(relative value) and mass and wave-vector independent errors (absolute value), respectively.

Shot-noise limit �ξ sn
1 = 1√

N

Mp

cT

1
mk �ξ sn

2 = 1√
N

Mp

T �k2

Laser frequency stability (�δ) �ξ lf
1 = Mp

c

1
mk �δ �ξ lf

2 = Mp

�

1
k2 �δ

Mass precision �ξmass
1 = ξ1

�m

m + Mp

m2
�k
c

�m

m �ξmass
2 = Mp

m
�m

m

Precision of the fine-structure constant / of (�/me) �ξα
1 = Mpme

c

k
m2 �( �

me
) �ξα

2 = Mp

m
1

�/me
�( �

me
)

General scaling absolute value �ξ1 ∝ 1/(mk) �ξ2 ∝ 1/k2

relative value (zero-order term) �ξ1 ∝ k/m2 �ξ2 ∝ 1/m
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FIG. 3. (Color online) Precision bounds for different nanodia-
mond radii on (a) ξ1 and (b) ξ2 arising from various error sources.
Dashed dotted lines indicate the bounds for an atomic interferometry
setup (Cs atoms). For the shot-noise limitation we assume a number
of N = 1000 repetitions per data point and an interferometer time
of T = 500 μs for nanodiamonds, whereas for Cs atoms N =
108 and T = 10 ms in accordance with recent atomic interference
experiments [21] is assumed. The wave vector corresponds to a
Raman transition recoil contribution with k ∼ 2 × 107 m−1. The mass
precision for Cs atoms is given by [39] �mCs/mCs = 10−9, whereas
for nanodiamonds a variance of �mNV = ±mC12 corresponding to
one carbon atom is assumed. The �(�/me) (fine-structure) uncer-
tainty has been extracted from electron magnetic-moment anomaly
measurements [40,41] leading to �(�/me) = 5.9 × 10−14 J s/kg.

for nanoparticle setups forms a challenging obstacle in
overcoming a predominant shot-noise error. Only for the much
smaller relative errors can a favorable scaling with particle
mass be expected. In any case, a tight ξ2 estimation remains
a challenging task as any frequency imprecisions, e.g., the
laser detuning stability, have to be compared to the very
small ∝10−13 Hz ξ2-contribution frequency (see Fig. 2). In
previous work based on the experimental data of a Cs atom
interferometer [20], the ξ2 parameter has been constrained
to [13] �ξ2 � 2.6 × 109, and an improvement of one order of
magnitude �ξ2 � 3 × 108 can be obtained from more recent
experimental data based on Rb atoms [21], still far from
verifying or falsifying the existence of such a quantum gravity
correction.

IV. CAN A ξ1 TERM BE OBSERVED IN EXPERIMENTS?

As outlined in the previous section, it is merely the ξ1

contribution that may gain advantage from an increased mass;
in addition, it is the quantity for which the verification of its
existence or nonexistence seems feasible. However this term
exhibits two crucial drawbacks. First, there remains in general
a dependence on the particle momentum 	p even for a perfect
interferometer sequence. This resembles the situation of open
interferometers, in which by averaging over an initial thermal
distribution of particle momenta, decoherence, and therefore
a reduction of the interferometer visibility may be anticipated.
Second, contrary to the phase contributions quadratic in
momentum, the impact of gravitation on the linear ξ1 term does
not appear as a separate phase factor nor can it be eliminated by

choosing the recoil momentum orthogonal to the gravitation
direction. In contrast, pure gravitation will suppress the ξ1

phase-term contribution. Therefore, in the absence of a specific
preparation of the interferometer sequence, the coherent ξ1

contribution appearing in (3) will in general be unobservable.
Whereas the thermal phase suppression scales ∝√

m, thus
leading to more restrictive prerequisites for increasing mass,
the equally challenging gravitational counterpart turns out
to be mass independent. In the following we will begin
by analyzing the phase term for a constant nonzero initial
momentum, which will lead to a description of the phase-term
behavior for a thermal particle along with conditions for
its observation. Next, the influence of gravitation will be
considered in more detail with a subsequent discussion of
the influence of both gravitation and thermal motion.

A. ξ1 phase and suppression for a constant momentum

The external phase contribution of the ξ1 term according
to (1) and (2) for the lower closed path interference contribu-
tion follows as

φξ1 = μ

(∫ t1

t0

| 	p1(t ′) + �	k| − | 	p1(t ′)|dt ′

+
∫ tf

t2

| 	p2(t ′) − �	k| − | 	p2(t ′)|dt ′
)

, (4)

with μ = ξ1mc/(2�Mp), the times as defined in Fig. 1, and
we will assume that t1 − t0 = tf − t2 = T . As a special, and
particularly relevant case, we will consider the situation of a
constant momentum in each of the two intervals, but allow for
different momenta 	p1 and 	p2 in the first ([t0,t1]) and second
([t2,tf ]) interferometer cycle, respectively.

Let us first consider the case of equal momenta 	p1 =
	p2 = 	p as illustrated in Fig. 4(a). Such a situation describes
a fixed particle momentum up to the beam-splitter-induced
modifications, as might correspond to a particular momentum
out of a thermal distribution. With increasing magnitude of that
initial momentum, the ξ1 phase term reveals a purely decaying
behavior. Thus a significant phase contribution in that regime
can be expected exclusively in the limit |p| � |�k|. Such a
decay behavior with the momentum generally characterizes
the ξ1 phase, which will turn out to make the phase observation
challenging.

Originating in the rather small recoil induced momentum
shift �k, that in most cases is much smaller than the
thermal momentum variance or the momentum gain by
gravitation, the limiting regime |p1|,|p2| � �k will be
of particular importance. In that case, | 	pi(t) + �	k| �
| 	pi(t)|{1 + �k/| 	pi(t)| cos θi + |�k|2/[2| 	pi(t)|2][1 − cos2 θi]},
the phase (4) can be approximated by

φξ1 � μT

{
|�k|(cos θ1 − cos θ2) + |�k|2

2

[
(1 − cos2 θ1)

1

|p1|

+ (1 − cos2 θ2)
1

|p2|
]}

, (5)

where cos θi = pz
i /|pi |sgn(�k), with θi the angle between

the momentum 	pi and the recoil z direction. The second
contribution describes the recoil components orthogonal to
the momentum direction and is purely decaying with the
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FIG. 4. (Color online) Momentum phase suppression and fre-
quency distribution. (a) Suppression of the ξ1-phase contribution
for an initial nonzero momentum 	p (constant during the interfer-
ometric cycle) and different orientations to the recoil contribution
�	k. Intermediate orientations do fall into the blue shaded region.
(b) ξ1-term frequency distribution of the dimensionless frequency
x = ω/(2μ�k) for a Gaussian momentum distribution with different
variances σ̃ = σ/(�k) and assuming 	p ⊥ �	k.

momentum magnitude. This holds at each instant of time and
leads to a significant suppression of that term. In contrast, the
first term will vanish as a result of the phase cancellation
in the first and second interferometric cycle unless there
occurs a change in the momentum direction, that is, unless
θ1 �= θ2. This term corresponds to the momentum parallel
recoil contribution.

Two important consequences follow out of the observed
behavior in the limit p � �k. First, in the absence of any
directional momentum change (θ1 = θ2 = const) or for a
momentum purely orthogonal to the recoil direction, the ξ1-
phase contribution will decay with increasing momentum. We
will see in the following sections that, except for specifically
designed setups, this renders the phase observation essentially
unobservable under the influence of gravitation or a thermal
momentum distribution. Second, for the recoil being suffi-
ciently parallel to the particle momentum and a momentum
inversion in between the first and second interferometric cycle,
a significant phase contribution can be expected. This latter
observation will lead us to the creation of a “stability setup” in
Sec. V, which will turn out to recover the unperturbed phase
in the presence of gravitation and thermal motion.

B. Thermal momentum distribution

We will now assume the initial momentum of the interfer-
ometric particle being thermally distributed. Correspondingly
the final population will have to be averaged over that distribu-
tion of initial momenta, as will be described in more detail in

Sec. VI. From a different point of view, this corresponds to an
average over the frequencies ω(p) of the ξ1 phase contribution
defined by φξ1 = ω(p)T .

Two important consequences arise from such a thermal
distribution. First, as described in the preceding section and
as can be deduced from (5), the suppression of ω(p) with
increasing p, i.e., the average frequency decreases with
an increasing momentum variance. Second, the momentum
variance will be reflected in the frequency variance ω(p),
the latter being responsible for a coherence decay, thus for
a reduction of the coherence time T2 and a decay of the
corresponding interference term.

We will assume the initial momentum to be Gaus-
sian distributed. This will be the case for an initial ther-
mal harmonic-oscillator state as discussed in Appendix B,
which leads to a zero-mean distribution with variance σ 2 =
(�/2)mωα(1 + 2〈n̂〉). Herein the thermal population 〈n̂〉 =
{exp[�ωα/(kB T ) − 1]}−1 and ωα the oscillator frequency in
the corresponding spatial direction α ∈ x,y,z. This reduces
to the Boltzmann distribution σ 2 � mkBT for kBT � �ωα or
equivalently for a free particle. In any limit the momentum
variance, responsible for the phase suppression, grows with
increasing mass σ ∝ √

m, and consequently makes a phase
observation more challenging for massive particles.

Figure 4(b) illustrates the corresponding interference phase
frequency distribution P(ω(p)) out of the momentum distri-
bution for different variances σ̃ = σ/(�k). Albeit this assumes
the momentum orthogonal to the recoil direction; a similar
behavior holds for a parallel configuration. This allows us to
identify three different regimes.

For |σ | � |�k| the mean frequency approaches the optimal
phase ω � 2μ�k as given in (3). As the frequency variance
around this optimal frequency is small, decoherence only has
a negligible influence.

In contrast, for |σ | � |�k| all possible frequencies ω ∈
[0,2μ�k] appear with almost equal probability, therefore lead-
ing to the largest frequency variance and a decay of interference
fringes. Consequently, coherent phase contributions cannot be
observed in that regime.

Last, in the limit |σ | � |�k| the phase suppression with
increasing momentum is responsible for a dominant frequency
contribution ω � 0. As only very few momentum states have
significant nonzero frequencies, the frequency variance de-
creases again. Thus no coherent ξ1 oscillations can be observed
in that regime, but at the same time decoherence decreases with
increasing σ , therefore not disturbing the observation of other
phase contributions on that time scale (e.g., the zero-order
contribution).

The behavior of the interference term in each of the regimes
for a three-dimensional thermal momentum distribution is
illustrated in Fig. 5 and exhibits exactly the previously
discussed behavior. Only the regime σ̃ � 1 is appropriate
to analyze the ξ1 phase as expected and there is a clear
significance of the previously described regimes. We note
that in the overdamped regime a coherent oscillation on the
T2 time scale emerges, representing the very small nonzero
average frequency in that regime. The coherence times T2 are
smallest in the σ̃ ∼ 1 regime and increase linearly with σ̃ and
1/σ̃ in the σ̃ � 1 and σ̃ � 1 limit, respectively. Importantly,
whereas the relevant regime depends only on the value of

033834-5



ANDREAS ALBRECHT, ALEX RETZKER, AND MARTIN B. PLENIO PHYSICAL REVIEW A 90, 033834 (2014)

100 200

0

1

50 100
1

0.5

0

0.5

1
σ̃=0.2σ̃=0.01 σ̃=10

p̃g

p̃g

T̃ T̃ T̃

20 40

0.5

0

0.5

1

100 200
1

0.5

0

0.5

1

0
−1

20 40

0

1

0
−1

50 100

0

1

0
−1

FIG. 5. (Color online) Thermal influence on the ξ1 contribution. ξ1-interference contribution (red solid) p′
g = (1/8)(1 + p̃g) for different

values of the thermal momentum variance σ̃ = σ/(�k) plotted versus the dimensionless time T̃ = 2μ(�k)T . A fast oscillation frequency,
whose absolute value contribution is plotted here, has been added artificially to the phase (light blue) to extract the decoherence decay envelope
(black dashed). The lower panel shows the coherent phase contribution (blue dashed) with subtracted decay envelope and the actually observed
ξ1-interference contribution (red solid).

σ̃ ∝ √
m, the absolute time scales are proportional to m−1 as

expected by the mass-dependent prefactor μ in (4). Additional
nonzero average particle momenta 〈pi〉 = p0 �= 0 will push
the interferometer further into the σ̃ � 1 regime as is readily
seen from Fig. 4(a), and therefore into a regime where neither
a coherent nor a decoherent signature of the ξ1 term will be
observed, which then might lead to the premature conclusion
that such a term does not exist.

Typical values for the momentum variance σ̃ and the
coherence time T2 are shown in Table II. Originating from
the small recoil momentum transfer those values are in
general located far in the overdamped σ̃ � 1 regime, except
for challenging low temperatures. As a consequence of the
variance scaling with the particle mass, reaching the regime

TABLE II. Thermal momentum variance σ̃ = σ/(�k) for k =
1.9 × 107 m−1 corresponding to a 637 nm Raman transition and
the corresponding T2 time for different nanodiamond radii, a Cs
atom, and different temperatures. The first row corresponds to
the quantum fluctuations of an harmonic-oscillator (HO) ground
state with frequency ω. Note that the variance, which determines the
regime as outlined in the main text, scales ∝√

m, whereas the absolute
time scale is proportional to 1/m reflecting the mass dependence of
the ξ1-contribution term.

r = 5 nm r = 50 nm Cs atom

HO ground state σ̃ 0.37 12 4 × 10−3

(ω = 2π × 1 Hz) T2/s 0.03 2.5 × 10−4 9 × 103

T = 4 μK σ̃ 153 5 × 103 1.7
T2/s 3.2 0.1 3.6 × 102

T = 1 mK σ̃ 2 × 103 8 × 104 27
T2/s 52 1.6 4.5 × 103

T = 10 K σ̃ 2 × 105 8 × 106 2.6 × 103

T2/s 5 × 103 1.6 × 102 4.7 × 105

of coherent oscillations (σ̃ � 1) seems very hard for more
massive particles and might at most be possible for small
nanodiamond radii (∼5 nm), following a harmonic ground-
state cooling with subsequent adiabatic relaxation of the trap
frequency. Note that increasing the beam-splitter momentum
�k [21,42,43], recalling that σ̃ = σ/(�k), can help in the
achievement of a coherent regime.

C. Influence of gravitation

For phase contributions quadratic in the momentum, grav-
itation leads at most to an additional phase factor (see also
Appendix A). In the case of the ξ1 contribution, however, it can
have a destructive effect on the observation of the phase itself,
as follows out of Fig. 4(a). With no additional pulse sequences
involved, the gravitational effect can be described by choosing
	p1(t ′) = 	p2(t ′) = 	p 0 − m	gt ′ in (4), with a potential nonzero
initial momentum 	p 0, that we will set to zero for now. Such
a situation is characterized by the dimensionless quantity
x = [mg/(�k)]/[2μ�k] = Mpg/(�k2c), which corresponds to
the ratio between suppression and coherent (optimal) phase
evolution frequency. As both quantities scale proportional
to the mass, this regime characterizing factor is mass inde-
pendent, i.e., there exists no advantage concerning the fringe
observation by changing the mass. For x > 1 the overdamped
regime is reached, in which coherent oscillations are essen-
tially suppressed. In that regime (mgT � �k) the phase (4)
can be approximated by φξ1 � 1/(2x)[1/2 + log(4xT̃ )] with
T̃ = 2μ�kT . In contrast, x � 1 forms the desired regime
in which gravitation is merely a perturbative factor to the
ξ1-phase evolution. However, for a Raman recoil contribution
with wavelength λ = 637 nm, x = 1.7 × 104, a value located
deep in the suppression regime independent of the particle’s
size. A challenging recoil of ∼102

�k would be required to
turn this into a coherent oscillatory x � 1 regime, poten-
tially feasible with atomic systems [21,42,43]. Figure 6(a)
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FIG. 6. (Color online) Gravitational suppression and combined simulations. (a) Influence of gravitation on the ξ1 phase φξ1 and oscillation
fringe suppression p′

g = 1/8(1 + p̃g) for different values of x = Mpg/(�k2c). A zero initial momentum is assumed and the gravitational

direction has been chosen orthogonal to the recoil momentum. (b) ξ1 simulations for realistic parameters combining gravitation (	g ⊥ 	k) and
thermal effects for Cs and a nanodiamond with radius 50 nm (blue solid lines) and the perfect unperturbed situation for comparison (red
dashed-dotted lines). For Cs gravitation dominates, whereas in the nanodiamond case both thermal and gravitational effects are of the same
magnitude. This latter situation leads to an enhanced decoherence compared to the value given in Table II as is explained in the main text.

illustrates this phase behavior for different x values showing a
slowdown of the accumulated phase and consequently a fringe
suppression for increasing magnitudes. For realistic x values,
no oscillations would be observable at all.

D. Combining both effects

Up to now, the thermal and gravitational influences have
been analyzed separately. The combination of both is illus-
trated in Fig. 6(b), for the case of a Cs atom and a nanodiamond
under realistic experimental temperatures. As expected from
the limiting cases discussed in the two preceding sections,
ξ1 oscillations are highly suppressed. In cases where χgrav ≡
2mgT � σ , i.e., when the gravitational momentum gain is
large compared to the typical thermal momentum magnitudes,
the situation is well described by the pure gravitational case as
is the case for the Cs atom simulation (χ̃grav = χgrav/(�k) ∼
2 × 104, σ̃ = 1.7). In the opposite regime χgrav � σ , the
thermal description holds. However, in an intermediate regime
of comparable magnitudes the behavior can deviate from the
individual ones. Such a regime allows for the observation of
ξ1-correction signatures in the interference signal. This is best
understood in the (relevant) |p| � |�k| regime approximated
in (5). For a significant phase the first nondecaying term,
reflecting the parallel component, has to be nonzero. This
is only the case if there occurs a momentum angle change
with respect to the recoil momentum axis in between the
first and second interferometric cycle. For a purely thermal
or gravitational situation this angle remains fixed. However,
combining both, gravitation will induce a change in the relative
pz component, leading to θ1 �= θ2 for any thermal 	p nonparallel
to the gravitational direction. This leads to a significant phase
contribution in the limit when both the thermal momentum and
the gravitational momentum gain are of the same magnitude.
In the absence of any initial effective momentum this does lead
to a fluctuating contribution (〈cos θ1 − cos θ2〉 = 0), resulting
in an increased decoherence instead of a coherent contribution,
an effect that can be seen in the nanodiamond simulation of

Fig. 6(b). In that case χ̃grav � 2 × 106 ∼ σ̃ = 8 × 106; for a
purely thermal influence a much smaller decay rate would
have to be expected from Table II. Note, however, that a
nonzero initial momentum combined with gravitation can lead
to a significant real coherent evolution based on the same
enhancement mechanism, a discussion that will be the subject
of the next section.

In summary, only two situations can lead to the observation
of a significant coherent ξ1-phase contribution. The first
is cooling of the particle to a regime σ̃ � 1, requiring
ground-state cooling for trap frequencies <1 Hz in the typical
nanodiamond regime, along with performing the setup in
a zero-gravity space. Both of those conditions could be
significantly relaxed by increasing the recoil transfer of the
beam-splitter operation [42,43] by at least a factor of 102.
Second, preparing the system in a nonzero initial momentum
state nonparallel to the gravitation direction, with both the
gravitational momentum transfer and the initial momentum
being of the same magnitude and exceeding the momentum
variance.

V. STABILITY CONFIGURATION FOR THE ξ1

MEASUREMENT, RESILIENT TO GRAVITATION AND
INITIAL (THERMAL) MOMENTA

As outlined in the previous section, a change in the
momentum direction relative to the recoil orientation 	k within
the interferometric sequence can lead to the appearance of
a significant nonzero phase term even in the presence of a
large absolute momentum value. In the following the terms
“parallel” and “orthogonal” will always refer to the momentum
relative to the recoil direction 	k of the first interferometric cycle
[t0,t1], unless stated otherwise. Whereas for the orthogonal
component each individual cycle phase contribution decays
to zero with increasing |p|, for the parallel component the
combination of both cycles is crucial. Changing the direction
of the initial momenta, such that 	p 0

1 �= 	p 0
2 (see Fig. 7), or
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FIG. 7. (Color online) Stability regime setup and phase recovery. (a) Interferometric setup in the stability ξ1 regime using gravitation for
the momentum inversion. (b) ξ1 phase for different values of the recoil orthogonal momentum p̃⊥ = p⊥/(�k), leading to a suppression of the
phase term, vs an increasing parallel component p0

1,z = −p0
2,z = pz. For |pz| � |p⊥| the stability regime is reached leading to the maximal

optimal phase φξ1 = 2μ�kT . (c) Recovery configuration for σ̃ = σ/(�k) = 100 and x = Mpg/(�k2c) = 5 in a configuration as depicted in
(a). T̃ denotes the dimensionless time T̃ = 2μ�kT . Herein p̃0

z = p0
z /(�k) = xT̃ + (1 + ζ

√
2)σ̃ with ζ = 5 guaranteeing that the parallel

component exceeds the perpendicular one most likely by a factor of ζ = 5 even at its smallest value at time T (assuming equal momentum
variances σ̃ in all spatial directions). The time τ is chosen to allow for the same ratio in the second cycle, such that p0

2,z � −ζ
√

2σ . Red solid
lines show the ξ1 population oscillations in the recovery regime, and blue dotted lines the optimal phase without any disturbance, whereas
green (upper) and black (lower) dashed lines correspond to a nonadjusted “normal” configuration with τ = 0 and 	p 0

1 = 0 for 	g ⊥ 	k and 	g ‖ 	k,
respectively.

more precise changing the angle to the recoil term, will lead
to a momentum independent contribution [see (5)]. This fact
can be used to construct a regime in which the ξ1 phase
can be observed despite thermal and gravitational influences.
For static momenta, the optimal condition can be identified
from (5), following as

	p 0
1 ↑↑ 	k, 	p 0

2 ↑↓ 	k(⇔ 	p 0
1 ↑↓ 	p 0

2

)
, (6)

i.e., the first initial momentum is parallel to the recoil,
whereas there occurs a change in the momentum direction
in between the two interferometer cycles, such that the second
initial momentum is antiparallel to the first one (and parallel
to the second recoil direction). In that case φξ1 = μT 2�k,
which corresponds to the optimal phase (3), the same as
would appear in the absence of any momenta except the
beam-splitter operations. We will call this regime the “stability
regime,” because, once the parallel and antiparallel condition
is reached, the phase is highly stable and independent of the
absolute momentum value, thereby making it stable against
decoherence. Moreover, this holds for any momentum even
outside the |p| � |�k| regime as will be shown in Appendix B.
One could anticipate from (5) that a configuration 	p 0

1 ↑↓	k and
	p 0

1 ↑↓ 	p 0
2 will lead to the same phase magnitude despite a

negative overall sign; however, such a regime is only momen-
tum independent in the limiting case of the validity of (5).
A configuration based on changing the parallel momentum
direction in between the first and second cycle is demonstrated
in Fig. 7(b). Once the parallel regime is approached, i.e.,
the parallel momentum dominates the orthogonal compo-

nent, the phase is recovered up to its optimal unperturbed
value.

Experimentally, one has merely to guarantee the parallel
condition along with a momentum direction change in between
the two cycles involved. The first one can be arranged by an
initial parallel momentum sufficiently large such that it exceeds
the momentum gain of gravitation and the thermal momentum
variance σ . The second condition will require a directional
momentum change during the intermediate time period τ that
can be obtained by an external acceleration or making use
of gravitation. We will focus on the latter, as a momentum
transfer by, e.g., laser pulses may be prone to destroy the spatial
superposition state by, e.g., incoherent photon scattering.
This leads to a possible setup as depicted in Fig. 7(a) in a
configuration such that 	g is antiparallel to the initial recoil
direction. An initial momentum is transferred such that its
magnitude exceeds the thermal variance and gravitation,
| 	p 0

1 | > σ,1/2χgrav, ensuring the parallel regime, followed by
a free evolution sequence τ in which gravitation provides the
change to an antiparallel configuration with | 	p 0

2 | > σ . For
such a gravitational scheme to work, the thermal variance
should be at most comparable (or smaller) in magnitude to
the gravitational momentum gain σ � |χgrav| as otherwise
the intermediate time period would have to be much longer
than the interferometer time (τ � T ). This will in general
imply an initial motional particle cooling [44] more restrictive
for increasing particle mass. Figure 7(c) demonstrates that
mechanism in dimensionless units. For a parallel momentum
component exceeding the orthogonal fluctuating thermal ones
by at least a factor of 5, an almost perfect recovery of coherent
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FIG. 8. (Color online) Phase recovery scheme simulation for a
setup as depicted in Fig. 7(a), a nanodiamond of radius 50 nm, and
a parallel component exceeding the orthogonal one upon design by
a factor ζ = 5 as defined in the caption of Fig. 7. The temperature
has been chosen as 1 mK in order to make the thermal momentum
variance comparable to the gravitational momentum gain. Left:
population oscillations for the combination of zero order and ξ1

term (blue solid), the ξ1 term alone (red dashed), and the zero-order
contribution alone (black dashed-dotted). The orange (thin solid) line
indicates the optimal ξ1 oscillations in the absence of thermal noise
and gravitation. Upper right: interference oscillations in the absence
of a specifically designed recovery sequence for the same parameters,
but τ = 0 and p0

1 = 0 and 	g ‖ 	k (blue solid) and 	g ⊥ 	k (green
dashed), respectively. Lower right: initially transferred velocity
parallel to the recoil vs T .

oscillation fringes is achieved. A realistic example is provided
in Fig. 8 for a nanodiamond of radius 50 nm. Here an initial
cooling to a temperature of 1 mK along with an initial velocity
transfer of the order of 1 mm/s allows for the observation
of well-defined coherent interference fringes on a time scale
of 200 μs, within range of the NV-center coherence time.
This would be a sufficient test for the existence of such a
term.

Note that, by working in the parallel regime, in particular
in a regime with the gravitation being parallel to the recoil
direction, the zero-order phase contribution will be altered
as well, namely by an additional phase �φ0 = (1/m)	k[ 	p 0

1 −
	p 0

2 ]T . This term will have to be accounted for in a proper
determination of ξ1, requiring a precise knowledge of the
initial momentum and the gravitation direction. To avoid that
additional change one could also use alternative momentum
schemes by choosing the gravitation orthogonal to 	k ‖ 	p 0

1 ,
with the initial momentum subsequently changed by at most
a π/2 rotation for the second cycle under the influence of
gravitation; however, with the drawback that such a regime
is only approximately momentum independent for |p| � |�k|
and according to (5) the maximal phase is one-half of the one
in the parallel gravitational approach.

VI. TOTAL INTERFERENCE PATTERN: MULTIPATH
INTERFERENCE

Up to now we have considered a single closed inter-
ferometric path combination. Aside from demonstrating the
basic concepts, such a description holds whenever the spatial
separation to neighboring paths is large, such that additional
interference can be neglected and only a single path lies

within the detection region. This is generally fulfilled for
interferometric setups with atoms, where the single path
model is widely used [20,21,45]. For an implementation with
nanodiamonds, however, noting that the spatial separation
∝ (�k/m)T scales inversely with the mass, the path splitting
turns out to be very small. As a consequence, the influence of
additional paths will have to be taken into account.

The total interference pattern is then determined by eight
paths involved in the Ramsey-Bordé setup as illustrated in
Fig. 9. Importantly, a second closed path interferometric
combination with equal area exists on top of the previously
discussed partial interferometer. Two possible effects might
arise by including the additional paths. First, the appearance
of additional interference contributions, namely each path may
interfere with each of the other paths. This then leads to
additional phase terms and possibly additional frequencies in
the interference pattern. Second, an addition of the partial inter-
ference pattern from distinct spatial regions, that is an addition
of populations as a consequence of the inability to resolve indi-
vidual path combinations in the detection process. This second
property even holds if these regions are independent in terms of
interference. Importantly, the ability for interference decreases
with increasing separations in momentum or position of the
pathways under consideration. Whereas interference of closed
paths can be accomplished even with thermal (incoherent)
particle states, for open paths this property depends crucially
on the state coherence in momentum and position. Generally,
this coherence, and thus the interference contribution of open
path combinations, decreases with increasing temperature.
This behavior manifests the predominant influence of the
closed interferometer pathways, whose interference contribu-
tion corresponds to the one analyzed in the preceding sections.
For sufficiently large temperatures, these pathways will in fact
be the only significant ones contributing to the interference
phase.

A. Total interference pattern and interference fringe
visibility decay

The total unitary evolution, describing paths that do end up
in the ground state |g〉 of the “two-level” particle, takes the
form

U
(g)
tot =

(
1√
2

)n 2n−1∑
i=1

η
(g)
i U

(g)
i , (7)

with n the number of π/2 pulses involved in the sequence
(here n = 4) and η

(g)
i = (−i)k with k the number of population

inversions of the corresponding path accounting for the beam-
splitter operation as defined in (A1). U (g)

i describes the unitary
evolution of path i, whose calculation is exemplified for the
lower closed path interferometer in Appendix A. The evolution
U

(e)
tot of all paths ending up in the internal excited state |e〉

and again leading to 2n−1 paths can be described analogously
by merely replacing the index (g) by (e) in (7). Thus the
final state after the interferometric sequence follows as ρf =
UtotρinU

†
tot from the initial state ρin with Utot = U

(g)
tot + U

(e)
tot .

The probability for finding the internal state in its ground-state
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FIG. 9. (Color online) Ramsey-Bordé paths and interference phase contributions. Left: the complete path scheme involved in the
interferometer sequence with red arrows denoting Raman-π/2 pulses and black and red (dashed) lines corresponding to the particle internal state
being in the ground and excited state, respectively. The two closed interferometer configurations are highlighted by the cyan and pink shaded
areas. Right: path contributions to the interferometer phase. pf denotes the total momentum gain, the difference for different paths directly
corresponding to the path separation in momentum �p, and zf the final position (both neglecting accelerations that are common to all paths and
therefore will have no impact on the interference). φ0 describes the momentum independent phase part relative to the second path [φ2(p)] from
below, and φξ1 the quantum gravity phase part [μ = ξ1mc/(2�Mp)]. For the latter, terms in curved brackets are absent (present) in a setup with
the gravitation orthogonal (parallel) to the recoil direction �k. η accounts for the beam-splitter phase as defined in (7) and (9). The total phase (11)
follows as φj (p) − φ2(p) = φ

j

0 + (1/�)zj

f p + φ
j

ξ1
with φ2(p) = 1/(6m2

�g){p3 − [p − mg(2T + τ )]3}. A direct connection to the interference

element form (19) and (20) is given by �pij = pi
f − p

j

f , �z
ij

0 = zi
f − z

j

f , and �φij (0,�p) = �φij (0,0) − �p/(2�)[zi
f + z

j

f − g(2T + τ )2]
with �φij (0,0) the corresponding phase difference out of φ0 and φξ1 .

configuration is therefore given by

pg = tr(ρf |g〉〈g|) = tr
(
U

(g)
tot ρiU

(g)†
tot

)
. (8)

With the help of (7) this can be reexpressed as

pg =
(

1

2

)n

tr

⎛
⎝ 2n−1∑

i,j=1

(
η

(g)
i η

(g)∗
j

)
U

(g)
i ρinU

(g)†
j

⎞
⎠

= 1

2

⎛
⎝1 + 1

2n−1

2n−1∑
i<j

[(
η

(g)
i η

(g)∗
j

)

× tr
(
U

(g)
i ρinU

(g)†
j

) + H.c.
]⎞⎠ , (9)

where in the last step the 2n−2(2n−1 − 1) interference terms
have been separated from the pure population contributions.
The evaluation of the total Ramsey-Bordé setup (n = 4)
necessitates the calculation of 28 interference contributions,
including also two paths configurations closed in position and
momentum.

Essentially this requires calculating contributions of the
form tr(U (g)

i ρinU
(g)†
j ), wherein the evolution operators can be

expressed as (see Appendix A)

U
(g)
j = e(i/�)pj

f ẑe−iφj (p̂), (10)

with p
j

f the total final (classical) momentum gain of the path
j through the beam splitter and accelerating forces during the
interferometer sequence. Thus the first contribution in (10)

corresponds to a displacement operation in momentum space.
The momentum dependent phase factor, by restricting to
potentials at most linear in position, is shown in Appendix A
to equal the kinetic energy integrated along the classical
interferometer path

φj (p̂) = 1

�

∫ tf

t0

E(p̂j (t ′))dt ′ + ϕ
j

l , (11)

with p̂j (t) the time-dependent momentum in path j and t0
and tf the initial and final times, respectively. Herein, the
momentum evolution operator corresponds to the classical
momentum evolution with the initial momentum p replaced
by the operator analog p̂. The phase factor ϕ

j

l accounts for
the purely internal state dependent detuning and laser phase
contributions and will be assumed to be zero in the following.
Note that momentum operator dependent contributions of
φj (p̂) in (10) describe the path displacement in position
space. Explicit expressions for the phase factor and the final
momentum for the individual paths can be found in Fig. 9.

With the general form of the unitary operators (10) at hand,
the interference terms evaluated in momentum space take the
form

tr
(
U

(g)
i ρinU

(g)†
j

) =
∫

dp e−i[φi (p̂)−φj (p̂+�p)]〈p|ρin|p + �p〉,
(12)

with �p ≡ �pij = pi
f − p

j

f the final momentum difference
of both paths. The evaluation in momentum representation is
of particular advantage as it allows for the simple inclusion of
modifications to the energy dispersion relation. The calculation

033834-10



TESTING QUANTUM GRAVITY BY NANODIAMOND . . . PHYSICAL REVIEW A 90, 033834 (2014)

of (12) involves the matrix element 〈p|ρin|p + �p〉 that
characterizes the coherence (“momentum overlap”) of the
initial state in momentum space.

This can be interpreted in that for starting in the two
different momentum states both of the paths involved end
up in the same final momentum state and therefore contribute
constructively to the interference pattern. That is, an initial
separation of the paths by �p in momentum space will trans-
late into a perfect overlap in the detection region. Moreover,
the momentum distribution determined by the matrix overlap
element and the average (integration) involved accounts for
the separation and overlap in position space.

We will calculate the matrix element in Appendix B for
an initial thermal harmonic-oscillator state of frequency ωt ,
which leads to

〈p|ρin|p + �p〉 = P(p + �p/2)e− 1
2�2 �p2〈ẑ2〉

, (13)

with P(p) a Gaussian distribution of variance 〈p̂2〉
P(p) = 1√

2π〈p̂2〉
e− 1

2 p2/〈p̂2〉 (14)

and the variances given by

〈ẑ2〉 = �

2mωt

(2〈n̂〉 + 1), 〈p̂2〉 = mωt�

2
(2〈n̂〉 + 1), (15)

where the average phonon number 〈n̂〉 = exp[�ωt/(kBT ) −
1]−1. In the high-temperature limit kBT /(�ωt ) � 1 the mo-
mentum variance 〈p̂2〉 � mkBT and (14) reduces to the
Boltzmann distribution independent of the trap frequency; in
contrast, the position variance 〈x̂2〉 � kBT /(mω2

t ) retains its
dependence on the initial localization (trap frequency).

Inserting (13) and (14) into (12) allows us then to rewrite
the interference element as

tr
(
U

(g)
i ρinU

(g)†
j

) = e
− 1

2�2 �p2〈ẑ2〉
∫

dpP(p)e−i�φij (p,�p),

(16)

with the definition of the phase difference

�φij (p,�p) = φi(p − �p/2) − φj (p + �p/2). (17)

That way, based on the momentum difference of the paths
involved and their phase (11), the interference matrix el-
ement (16) can be readily evaluated. Whereas the decay
due to a path separation in momentum appears directly in
expression (16), the decay due to a separation in position
as characterized by the momentum dependent terms in �φ

follows as a result of the momentum averaging process.
In the following we will make this decay behavior more

explicit by assuming that �φij can be rewritten in the
particular form

�φij (p,�p) = �φij (0,�p) + (1/�)�zp, (18)

which holds for the standard form of the energy dispersion
relation E(p) = p2/(2m) as well as in the “stability
configurations”; in the latter case the quantum gravity phase
part is momentum independent, or in other words does
not lead to additional (final) path separations in position.
Herein �φij (0,�p) corresponds to a pure phase whereas
�z, recalling its origin from a displacement operator in (10)
evaluated in momentum space, describes the path separation

in position. That way (16) can be calculated to

tr
(
U

(g)
i ρinU

(g)†
j

) = e−i�φij (0,�p)e
− 1

2�2 �p2〈ẑ2〉
e
− 1

2�2 �z2〈p̂2〉
,

(19)

which does have an intuitive interpretation in that path
separations in position and momentum lead to a decay of
the interference element with the momentum and position
variance of the initial thermal state, respectively. This decay
is more pronounced for an increasing temperature, which
reduces the state coherence. �φij (0,�p) takes the role of
the relevant phase factor. It is worth noting that, whereas
�p corresponds to the classical momentum difference of the
paths involved, the analog interpretation for �z holds true
only in cases of �p = 0. Otherwise, as the interference is
then characterized by the two contributing paths starting in
different momentum states as indicated by the overlap matrix
element of (12), the effective separation in position follows as

�z = �z0 − �p

m
ttot. (20)

Here �z0 = �(d/dp)�φij (p,0) denotes the classical path
difference for a particle with a well-defined initial momentum
and the second contribution accounts for the deviation from
that situation, namely initial momenta that differ by �p.
Remarkably, this means that closed paths in position but
differing in momentum can be effectively open in position
in the evaluation of (19), though this is not the case in the
interferometric setup under consideration.

B. Nanodiamond interference setup including all paths

For nanodiamonds, the final path separation �z ∝ 1/m

turns out to be very small, which prevents the selection of
individual paths in the detection process and in addition may
lead to interference contributions of additional paths other
than the closed ones. As can be seen in Fig. 9, the typical path
separations in position and momentum are given by �z �
(�k/m)T ∼ 1/m, or ∼1/m2 on the typical period time T ′ =
2π/(2μ�k) ∼ 1/m of the interference fringes, and �p = 2�k,
respectively. In contrast, the state overlap in position and mo-
mentum space as defined in (19) together with (15) follows as

�zr =
√

4�

mωt [2〈n̂〉 + 1]
, �pr =

√
4�mωt

2〈n̂〉 + 1
, (21)

leading to a visibility reduction V�z = exp(−�z2/�z2
r ) and

V�p = exp(−�p2/�p2
r ). Therefore, the interference of open

paths in measuring a possible ξ1-quantum gravity contribution
becomes more probable with increasing particle mass.

It is worth considering first the impact of the two closed
paths interferometric configurations. Their contribution to the
interference pattern is independent of the initial particle state,
and thus independent of temperature and the state coherence
overlap as defined in (21). Thus, for any particle mass, the final
population takes the form

pclosed
g = 1

2

(
1 + 1

4 [cos φl + cos φu]
)
, (22)
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with φl and φu the phase of the upper and lower closed
interferometric combination [μ = ξ1mc/(2�Mp)]

φl/u = ±�k2

m
T + 	k	g T (T + τ ) + 2μ�kT . (23)

For a general momentum inversion the gravitational term can
be replaced by 	k[ 	p 0

1 − 	p 0
2 ](T/m) with 	p 0

1 and 	p 0
2 the initial

momenta and the one at time T + τ , respectively. As can be
seen out of Fig. 2, the recoil contribution (�k2T/m) is signifi-
cantly smaller for nanodiamonds compared to the anticipated
quantum gravitational corrections such that φl � φu. Thus the
constructive addition of the two closed paths combinations
leads to a doubling of the interference fringe contrast. In case
that interference of open pathways contributes, this will lead
to additional phase terms in (22).

Noting that the ξ1-phase contribution increases linearly with
mass, larger diamonds of radius ∼50 nm have been identified
optimal in Sec. V for observing ξ1-induced interference fringes
within the internal state coherence time. As stated at the
beginning of this section, this makes the interference of open
path combinations more probable.

Let us assume a nanodiamond of radius 50 nm, the initial
localization to be characterized by a trap frequency ωt =
2π × 165 kHz, a temperature of 1 mK, and an interferometer
time of T = 500 μs. This corresponds to a configuration as in
Fig. 8. Paths open in position are then characterized by a typical
path separation �z � 0.6 pm, leading to an interference term
visibility ofV�z � 0.7, andV�p � 1. On the time scale of a sin-
gle oscillation fringe [T ′ = (2π )/(2μ�k) = 12 μs], the path
separation is even smaller and V�z � 1. That is, all path com-
binations contribute significantly to the interference pattern.

The expected interference pattern and the frequency con-
tributions involved are illustrated in Fig. 10, characterized in
this configuration by an almost perfect coherence overlap and
thus interference comprised of all paths involved and a full
contrast in the fringe visibility. For clarity, the pure quantum
gravity phase contribution is shown by configuration (iii) in
Fig. 10. It is characterized by the frequency ωξ1 = 2μ�k, as
already appears in the exclusive interference of the closed
paths (23), and additional frequency contributions at the double
frequency 2ωξ1 along with a static contribution. Including the
effect of gravitation, crucial in case it is used as the underlying
mechanism for momentum inversion, results in an interference
pattern as illustrated by (iv). The gravitational influence, or
the momentum inversion component, introduces an additional
frequency modulation in time that tends to smear the sharp
frequency characteristic.

Decreasing the nanodiamond size, a viable scenario for
larger internal coherence times, changes the expected interfer-
ence pattern significantly. That is, the path separation increases
and the interference pattern is gradually reduced towards the
situation with interference terms exclusively arising from the
closed paths contributions (22) and (23). For a diamond of
radius 10 nm and otherwise equal parameters (ωt = 2π ×
165 kHz, 1 mK, T = 500 μs), the visibility decay of spatially
open paths is characterized by V�z � 10−20 � 0 and V�p �
0.97. Thus interference contributions of open paths can be
essentially excluded. The interference pattern contribution for
the ξ1 phase then takes the form as illustrated by configuration
(i) in Fig. 10, characterized by a single frequency ωξ1 = 2μ�k

FIG. 10. (Color online) Interference pattern comprising all paths.
(a) Ground-state population after passing the Ramsey-Bordé interfer-
ometer vs interferometer time T assuming a stability configuration
and a linear QG correction to the energy dispersion relation as defined
in (1). (i)–(iii) correspond to the QG phase part alone for (i) (solid
red) both closed interferometric path combinations (r = 10 nm,
temp = 1 mK, g = 0) and (ii) (black dashed) a single closed path
interferometer contribution and (iii) (solid blue) all paths of the
interferometer with an (almost) perfect state overlap guaranteeing
the interference of all paths involved (r = 50 nm, temp = 1 mK,
g = 0). (iv) (Blue dashed dotted) represents a r = 50 nm diamond
at a temperature of 1 mK for the total phase including gravitation.
(b) Frequency contributions of the interference oscillations for the
situations as illustrated in (a) based on a FFT analysis over 25
oscillation periods. For ξ1 � 1, μ�k � 2π × 41 kHz for a diamond
of radius 50 nm [μ = ξ1mc/(2�Mp)].

and a reduced fringe contrast. Note that, as the coherence
overlaps (21) decrease with temperature, such a reduction
of the interference pattern to the closed paths contribu-
tion also holds true for larger particles by increasing the
temperature.

The additional frequency modulation in time introduced
by gravitation can be avoided by an orthogonal regime as
described at the end of Sec. V, at the drawback of reducing
the ξ1-phase frequency. In fact, this regime can be shown to
be characterized by a single frequency ωo

ξ1
= μ�k even for a

033834-12



TESTING QUANTUM GRAVITY BY NANODIAMOND . . . PHYSICAL REVIEW A 90, 033834 (2014)

perfect overlap of all paths involved and is describable by an
analog form as (22) and (23) with 	k	g = 0 and μ → μ/2.

As a final remark, we have assumed a symmetric mo-
mentum inversion in the intermediate τ region that does not
lead to additional ξ1-phase contributions. If that condition
is not strictly fulfilled, all frequency contributions will be
shifted by the corresponding phase, except for the closed paths
contributions.

VII. CAN QUANTUM GRAVITY EFFECTS BE EXPECTED
IN INTERFEROMETRIC SETUPS OF MASSIVE

PARTICLES?

The question whether quantum gravitational effects can
be expected in such a quantum optical interferometric setup
turns out to be very controversial. Whereas an energy dis-
persion modification has been proposed in many theories
to date [6,7,37], its inclusion into the “test framework” of
standard quantum mechanics [13] remains debatable. In light
of the incompleteness and controversies of existing quantum
gravity theories, probing such a small detail in a large
framework seems a promising starting point, that can both
help to validate and promote a better understanding of Planck
scale physics. However, one should keep in mind that a theory
of quantum gravity is much more than merely a modified
energy dispersion relation or a modified commutator. It should
in addition specify the underlying metric, the behavior under
transformations that might go along with a deformed Poincaré
symmetry, a kinematic description of the equations of motion,
and an interpretation of the physically relevant coordinates and
observables [2].

The question remains whether massive particles are appro-
priate for testing quantum gravity. As for macroscopic bodies
the proposed energy dispersion corrections would be large,
what is unobserved on a macroscopic scale, it is a natural
assumption to introduce a restriction to particle sizes that do
behave “quantum mechanically” [13]. Note that the proposed
energy dispersion corrections (1) constitute a perturbative
expansion for small masses and would consequently not be
valid in the macroscopic limit anyway. Even more delicate, a
consistent framework would most probably require a modifica-
tion of special relativity, and for a curved metric this will result
in a nonlinear momentum addition law. This can be motivated
by the fact that a minimal length scale maintains a fundamental
role only if it is observer independent, contradictory to the
standard framework of special relativity [6,7]. As a modified
velocity addition law has been the consequence of defining a
fundamental velocity in special relativity (the speed of light),
it is not surprising that introducing in addition a fundamental
length scale can lead to a modified momentum addition. Such
a nonlinear addition will however lead to a scaling problem
as an iteration of a correction quadratic in the momentum
scales quadratically with the number of constituents and will
eventually become significantly large in contradiction to the
“macroscopic world” observation. This is well known in the
literature as the “soccer ball problem” [2,46,47], such that a
restriction of the theory to “fundamental particles” has been
stated by many authors, even though this notion remains
imprecise. A possible solution for composite particles of N

constituents has been proposed by replacing the Planck mass

Mp by NMp [46,47], an approach that would not result in any
advantages for nanoparticles over atoms in testing quantum
gravity. Last, there have been some proposals, that the quantum
gravity corrections depend on the mass density rather than the
absolute particle mass [48]. Remarkably, apart from all those
controversies, a test of the energy dispersion relation will serve
as a test for the validity of special relativity even in a broader
context [9,38].

VIII. INTERFEROMETRY WITH MASSIVE PARTICLES
AND DECOHERENCE

Here we briefly discuss practical issues of such an interfero-
metric implementation based on nanoparticles: the decoupling
from decoherence, collisional decoherence, imperfect pulses,
and time constraints and their impact on the interference fringe
visibility. We will focus here on the robust stability regime;
however, as these effects are either general or mainly based
on the zeroth-order phase term, these results also hold true for
other interferometric applications with nanoparticles and even
the same scaling properties can be expected for different types
of interferometers.

Decoherence decoupling schemes [28] for the internal
degrees of freedom, crucial to reach significant T2-coherence
times and in addition removing quasistatic energy shifts, can
be implemented by (almost) recoil free microwave π pulses
within the ground-state triplet, as shown in Fig. 11. Note
that recoil based π pulses, obtained in analogy to the beam-
splitter interactions, would lead to the well-known gravimeter
configuration [18,19,35]. This latter setup, unsuitable for the
anticipated task, reveals a decoupling in both the external and
internal degrees of freedom, which makes it only sensitive to
accelerations [V ′(x) �= 0].

Figure 12 analyzes several sources of decoherence and
visibility loss. Following the fact that for recoil based beam
splitters the space-time area scales inversely with the particle
mass ∝1/m and that the thermal velocity variance σv ∝
1/

√
m, these decoherence effects show a favorable scaling

FIG. 11. (Color online) Pulsed decoupling scheme. Left: internal
decoupling by a recoil free (microwave) π pulse. Right: decoupling of
the internal and external degrees of freedom by a Raman-(recoil)-laser
pulse, leading to an accelerometer (gravimeter) interferometry setup.
Red arrows indicate Raman laser transitions, whereas blue wavy
arrows represent microwave transitions. Black and red dashed lines
represent the internal ground and excited state, respectively.
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FIG. 12. (Color online) (a) Collisional decoherence: interferometer visibility for a (background gas) temperature of 10 K and different
nanodiamond radii and pressures as indicated in the figure. The total interferometer time has been chosen as 2T = 200 μs and the
interferometric path splitting is assumed constant and approximated by its maximal value �z = �k2/mT with k = 2 × 107 m−1. An isotropic
elastic-scattering cross section has been assumed in a description as developed in [49]. (b) Time and pulse errors: visibility reduction
for time (blue solid) and pulse (Doppler shift) errors (red dashed), for different thermal velocity variances σv . Values for Cs atom and
nanodiamond (radius 5 nm) setups at different temperatures are indicated in the figure, assuming � = 2π × 10 MHz and �T = 10 ns,
respectively.

with increasing mass. Background gas collision induced
decoherence, the prominent spatial decoherence source [23]
for nanoparticles, is illustrated in Fig. 12(a) for different
pressures and particle sizes. Here a gas particle momentum
change � 	p during the scattering process will lead to a
(random) phase �φ = (1/�)� 	p�	x with �	x ∝ 1/m the in-
terferometer path separation. The effects of time imprecisions
and Doppler shift induced imperfect population transfer are
depicted in Fig. 12(b). A deviation of the interferometer
cycle times by �T will lead to an additional momentum
dependent phase term subject to thermal decoherence φo =
( 	p/m)	k�T = 	v 	k�T = 	p/��	x with 	v = 	p/m the particle
velocity. This defines a minimal required time precision that
scales inversely with the particle mass. Similarly, a Doppler
shift detuning δ ∼ 	v	k will affect the population transfer of the
interferometric beam-splitter operations, an effect that is not
removed by introducing decoupling sequences. Owing to the
velocity variance mass scaling, its influence also decreases
with increasing particle size. In a more general context,
best seen in perturbative path integral approaches for the
interferometer phase calculation [50], smaller space-time areas
reduce the phase contributions of mass independent spatial
Hamiltonian perturbations.

Note however that, despite the advantages outlined above,
from a practical perspective the interference with nanoparticles
is much more complex compared to atomic setups (see also
Sec. III). In addition this decoherence scaling only holds for
nanoparticles, as going to larger sizes would lead to significant
other decoherence contributions like photon scattering and
thermal decoherence [23] and would eventually end up in
classical behavior.

IX. CONCLUSION

In this paper we have shown how interferometry with mas-
sive particles, with the specific examples of nanodiamonds,
can improve existing bounds on proposed quantum gravity
corrections to the energy dispersion relation. Assuming the
Planck scale as the relevant scale for quantum gravity, this
would even allow for an existence proof of the linear correc-

tion contribution under experimentally realistic parameters.
However, despite its rather large proposed magnitude under
optimal conditions, gravitation and a thermal distribution of
momenta will in general render its observation inaccessible,
which necessitates a revision of previously estimated bounds.
As the requirements on the particle temperature and gravitation
in a standard setup turn out to be quite challenging, we have
proposed an alternative noise insensitive scheme based on
an initial momentum transfer combined with a momentum
inversion by gravitation. Moreover, we have investigated the
influence of the individual interferometer paths on the total
interference pattern along with its dependence on different
temperatures and nanodiamond sizes. Last, the combination of
the interferometric setup with decoupling sequences and mass
scalings for decoherence and visibility reducing processes
have been analyzed. The latter reveal an increasing robustness
with the particle size, originating in decreasing spatial areas
for increasing masses. This behavior renders the interfer-
ence of nanoparticles, despite technical challenges, a viable
scenario.
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APPENDIX A: INTERFEROMETER PHASE IN THE
RAMSEY-BORDÉ SETUP

In here we will derive the interferometric phase of the
Ramsey-Bordé setup for the lower closed path configuration as
depicted in Fig. 13(a) using the operator based formalism de-
veloped in [35]. Thereby we will focus on keeping the analysis
as general as possible, which allows for a simple inclusion of
a modified energy dispersion relation or accelerating inertial
forces at a later stage. From this specific example we will
obtain a general rule for the interferometric phase calculation
based on the kinetic energy, in cases when the external potential
is at most linear in position (inertial force), which allows for
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FIG. 13. (Color online) Ramsey-Bordé interferometer and phase-space area. (a) Ramsey-Bordé interferometry setup. Black and red dashed
lines correspond to the internal states |g〉 and |e〉, respectively. Red arrows indicate π/2-laser pulses in the corresponding direction. The unitary
evolution operators for the upper and lower path, leading to U (g) as defined in the main text, are shown in green and orange boxes, respectively.
(b) Phase-space evolution and area for E(p) = p2/(2m) in the absence of an external potential. Laser interaction paths are marked by the
superimposed red arrow and in addition the corresponding times are given under the assumption of instantaneous laser pulses.

the phase calculation of any arbitrary path combination as
performed in Sec. VI.

We will assume the two-level system {|g〉,|e〉} initially
prepared in the state |ψi〉 = |g〉 ⊗ |ψext〉, with |ψext〉 describing
the external, motional degrees of freedom. The π/2-laser
interaction pulse, that takes the role of a beam splitter, is
described by the unitary operation

Uπ/2 = 1√
2

(1 − i[e−iϕeikẑσ+ + eiϕe−ikẑσ−]), (A1)

with the rotation axis defined by σϕ = cos(ϕ)σx + sin(ϕ)σy .
Note that, most importantly, the recoil contribution exp(ikẑ)
leads to a splitting in momentum space, which is responsible
for the relevant splitting in the external degrees of freedom
(“interferometric beam-splitter operation”). During the free
evolution periods, the external degrees of freedom evolve
according to

Uf = exp[−(i/�)H (p̂,ẑ)t] with H (p̂,ẑ) = E(p̂) + V (ẑ),

(A2)

and V ′(ẑ) = const. Herein E(p̂) denotes the kinetic energy
and V (ẑ) an external potential; importantly, we restrict this to
potentials linear in position, as only in that case a simple
closed form for the phase can be obtained. Note however
that for the case of quadratic harmonic-oscillator potentials,
a straightforward phase expression can be obtained as well by
a slightly different approach [34,51]. The internal degrees of
freedom evolution follows out of

Uin = exp

(
−(i/�)

∫ t

Hin(t ′)dt ′
)

with Hin = −�δ(t)/2σz (A3)

in a frame rotating with the beam-splitter laser frequency,
δ(t) the corresponding detuning, and σz the Pauli z matrix

defined in the two-level internal state system. This term can
be included conveniently in (A1) by replacing ϕ → ϕl(t) =
ϕ(t) + ∫ t

δ(t ′)dt ′. Right after the interferometer sequence, and
restricting to the two paths involved in the sequence, i.e., the
ones that lead to equal states, the system ends up in the state

|ψf 〉 =
(

1√
2

)4 ([
U (g)

u + U
(g)
l

]|ψi〉 + i
[
U (e)

u − U
(e)
l

]|ψi〉
)
,

(A4)

with Uu and Ul describing the evolution operators of the upper
and lower path, respectively, and the left part evolution ends
up in the atomic state |g〉, whereas the right one ends up in |e〉
as indicated by the indices g and e, respectively. The “closed
path” contribution to the probability for finding the system in
the internal state |g〉 (=the initial state) after the interferometer
sequence follows out of (A4) and is given by

p′
g = tr([|g〉〈g| ⊗ 1]|ψf 〉〈ψf |)

= 1

8

[
1 + 1

2

(〈ψi |U (g)†
l U (g)

u |ψi〉 + c.c.
)]

. (A5)

For an initial mixed state ρin the interference term
〈ψi |U (g)†

l U
(g)
u |ψi〉 has to be replaced by tr(U (g)†

l U
(g)
u ρin).

Thus it remains to calculate U
(g)†
l U

(g)
u , a quantity that

delivers a pure phase for the closed interferometer path
combinations here, making it independent of the specific form
of the initial state |ψi〉. Note that, as both paths do end up in
the same state, both evolutions are formally equivalent up to
an operator ordering, i.e., the noncommutativity of operators
is responsible for the appearance of an interferometric phase.
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1. Important operator relations for the evaluation of the unitary
path evolution operators

For the calculation of the unitary path evolution op-
erators it is important to recall some operator relations,
obtained out of the operator identity exp(−αÂ)B̂ exp(αÂ) =∑∞

ν=0(−α)ν/ν![Â,B̂]ν with [Â,B̂]0 = B̂ and [Â,B̂]ν =
[Â,[Â,B̂]ν−1] along with [ẑ,p̂] = i�. Moreover, as mentioned
before, we will assume the potential being at most linear in
position, such that V ′(ẑ) = const.

Then it follows that

e±ikẑe−iφ(p̂)e∓ikẑ = e−iφ(p̂∓�k),
(A6)

e
i
�

V (ẑ)t e−iφ(p̂)e− i
�

V (ẑ)t = e−iφ[p̂−V ′(ẑ)t],

where we have used in addition that [V (ẑ),p̂] = V ′(ẑ)[ẑ,p̂].
This represents the momentum gain by the beam-splitter op-
eration and the external potential, respectively. Moreover, the
evolution sequence calculation is significantly simplified by
separating the position and momentum operator contributions
in the evolution (A2), namely

e− i
�

H (p̂,ẑ)t = e− i
�

V (ẑ)t e− i
�

∫ t

0 E(p̂−V ′t ′)dt ′ , (A7)

where V ′ ≡ V ′(ẑ) and the second contribution corre-
sponds to the interaction picture evolution with respect to
the potential, i.e., exp[−(i/�)

∫
Hint(t ′)dt ′] with Hint(t) =

exp[(i/�)V (ẑ)t]E(p̂) exp[−(i/�)V (ẑ)t], whereas the first con-
tribution accounts for the back transformation to the original
frame.

2. Path evolution operators and interference phase calculation

We will now turn to the calculation of the evolution
operators, that are given by (see Fig. 13)

U (g)
u = ei�ϕeikẑe−i/�H (tf −t2)e−ikẑ

× e−i/�H (t2−t1)e−ikẑe−i/�H (t1−t0)eikẑ,
(A8)

U
(g)
l = e−i/�H (tf −t0),

with the laser and internal phase contributions

�ϕ = [ϕl(tf ) − ϕl(t2) + ϕl(t1) − ϕl(t0)]

= [ϕ(tf ) − ϕ(t2) + ϕ(t1) − ϕ(t0)]

+
∫ t1

t0

δ(t ′)dt ′ +
∫ tf

t2

δ(t ′)dt ′, (A9)

that does take the value �ϕ = 2δT for fixed laser phases and
a constant detuning δ(t) ≡ δ.

Substituting the free evolution sequences by (A7) and
commuting the position operator dependent terms to the left
with the help of (A6) the evolution sequence can be simplified
to [again assuming that V ′(ẑ) is independent of ẑ]

U
(g)
u,int = ei�ϕe− i

�

∫ tf
t2

E(p̂−�k−V ′t ′)dt ′

× e
− i

�

∫ t2
t1

E(p̂−V ′t ′)dt ′
e
− i

�

∫ t1
t0

E(p̂+�k−V ′t ′)dt ′

= ei�ϕe− i
�

∫ tf
t0

E(p̂u(t ′))dt ′ ,
(A10)

U
(g)
l,int = e− i

�

∫ tf
t0

E(p̂−V ′t ′)dt ′ = e− i
�

∫ tf
t0

E(p̂l (t ′))dt ′ ,

where in the last step we used that the external phase part
corresponds just to the kinetic energy along the path. Here
p̂(t ′) is the classical momentum in time along that path with
the initial momentum replaced by the operator p̂. Therefore,
the operator product appearing in the interference term (A5) is
given up to the laser phase contributions by the kinetic energy
integrated along the closed path

U
(g)†
l U (g)

u = ei�ϕ exp

(
− i

�

∮
E[p̂(t ′)]dt ′

)
. (A11)

This phase calculation, following the same steps as above,
can be generalized to arbitrary paths involved, resulting in

Uj = eiϕlasere
i
�

p
j

f ẑe− i
�

∫ tf
t0

E(p̂j (t ′))dt ′ (A12)

for a path j with p
j

f the effective total momentum gain, p̂j (t)
the momentum along that path, and ϕlaser the laser phase inter-
nal contribution. More generally, this holds true for any inter-
ferometer subject to laser pulses and under a potential at most
linear in position and has been used previously for the phase
evaluation based on a semiclassical treatment, e.g., in [45].

As an explicit example let us consider the closed path
combination as above subject to the standard energy dispersion
relation E(p̂) = p̂2/(2m), a gravitational field V (ẑ) = m	g 	x
and assuming that the laser phase is kept constant as well
as the detuning. Noting that in the above derivation only the
force component parallel to the pulse direction does contribute
(the noncommuting p̂ and ẑ components), one obtains the
well-known expression for the phase (T = T ′)

φ = �k2

m
T + 	kT

[
	g(T + τ ) − 1

m
� 	pacc

]
+ 2δT , (A13)

where we introduced an additional acceleration of momentum
� 	pacc during the evolution time τ , besides the gravitational
influence, often used in experiments to increase the signal by
adding a series of N acceleration pulses such that � 	pacc =
−N�	k.

3. Relation to the phase-space area

As previously noted by many authors, the motional part of
the interferometer phase φext is, in many cases, related to the
phase-space area aps by the relation

aps =
∮

p dz = 2�φext, (A14)

which seems to hold for E(p) = p2/(2m) by noting that
in that case the phase-space area (in the absence of any
acceleration) is given by aps = 2(�k2)/mT [see Fig. 13(b)].
Moreover, such a relation can be strictly proven for trapped
particle interferometers, in which the interferometer action
can be described by a series of continuous displacements
in phase space [51]. For the case considered here, as has
been shown in [35], the phase-space area can be related
to the kinetic energy by noting that dz = (i/�)[H,z]dt =
(i/�)[E(p),z]dt = (d/dp)E(p)dt ,

aps =
∮

p dz =
∮

p
d

dp
E(p)dt

?= 2�φext = 2
∮

dt E(p).

(A15)
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Thus the relation of the phase-space area to the external
interferometric phase as given in (A14) follows if two
conditions are fulfilled: (i) the energy dispersion relation is
of the standard form E(p) = p2/(2m) and (ii) the system is at
most subject to inertial forces for the phase energy relation to
be valid.

APPENDIX B: MOMENTUM OVERLAP MATRIX
ELEMENT FOR A THERMAL HARMONIC-OSCILLATOR

STATE

In this Appendix we will derive the momentum overlap
matrix element 〈p|ρth|p + �p〉, that accounts for the finite
state overlap in the interference term calculations (12). This
matrix element defines the visibility decay for paths open in
position or momentum space. We will assume the particle
starting initially in a thermal harmonic-oscillator state, that
is ρth = 1/Z exp[−Ĥ /(kBT )] with Ĥ = �ω(n̂ + 1/2), n̂ =
â†â the number operator, and the partition function Z =
tr{exp[−Ĥ /(kBT )]}.

Using that exp [(i/�)�pẑ] |p〉 = |p + �p〉 along with
the Fourier representation of the δ function δ(p − p̂) =
1/(2π�)

∫ ∞
−∞ exp[i/�(p − p̂)y]dy, the matrix element can be

rewritten as

〈p|ρth|p + �p〉 = 〈
e

i
�

�pẑδ(p − p̂)
〉
ρth

= 1

2π�

∫ ∞

−∞
dy e

i
�

py
〈
e

i
�

�pẑe− i
�

yp̂
〉
ρth

. (B1)

We will start by evaluating the thermal expectation value that
upon application of the Baker-Campbell Hausdorff theorem
can be cast into the form〈

e
i
�

�pẑe− i
�

yp̂
〉
ρth

= e
i
�

(�p/2)y
〈
e

i
�

[�pẑ−yp̂]
〉
ρth

= e
i
�

(�p/2)y
〈
e− i

�
[(γ+iδ)a†+(γ−iδ)a]

〉
ρth

, (B2)

where in the last step we have used that ẑ = √
�/(2mω)(a +

a†) and p̂ = i
√

(�mω)/2(a† − a). Furthermore, for simplicity
of the expressions, we have defined γ ≡ −√

�/(2mω)�p and
δ ≡ √

(�mω)/2y. Now, making use of

〈eλâ†+μâ〉ρth = e
1
2 〈(λâ†+μâ)2〉ρth (B3)

and noting that ρth is diagonal in the energy eigenbasis and
thus only excitation number conserving terms have to be

considered, expression (B2) can be evaluated to〈
e

i
�

�pẑe− i
�

yp̂
〉
ρth

= e
i
�

(�p/2)ye
− 1

2�2 (γ 2+δ2)(2〈n〉+1)

= e
i
�

(�p/2)ye
− 1

2�2 〈p̂2〉y2

e
− 1

2�2 〈ẑ2〉�p2

, (B4)

with the momentum and position variance given by

〈p̂2〉 ≡ σ 2
p = mω�

2
(2〈n̂〉 + 1),

(B5)

〈ẑ2〉 ≡ σ 2
z = �

2mω
(2〈n̂〉 + 1)

and the thermal population 〈n̂〉 = {exp[�ω/(kBT )] − 1}−1.
Now inserting (B4) into (B1) and performing the y integration,
one obtains the final result

〈p|ρth|p + �p〉 = 1√
2π〈p̂2〉

e
− 1

2〈p̂2〉 (p+ �p

2 )2

e
− 1

2�2 〈ẑ2〉�p2

. (B6)

The first contribution corresponds to a Gaussian distribution in
momentum that will converge to the Boltzmann distribution in
the high-temperature limit kBT � �ω where 〈p2〉 � mkBT

and will turn out to characterize the decay for a final path
separation of the interferometer arms in position. In addition,
the finite overlap in momentum space is accounted for by
the last term that does represent a direct decay in �p on a
characteristic momentum scale [�/

√
ẑ2].

APPENDIX C: STABILITY REGIME

In the absence of specifically designed momenta directions,
the ξ1-phase contribution is most likely to decay in the presence
of momenta exceeding the beam-splitter recoil contribution,
|p| � |�k|. As shown in Sec. IV, this leads to a suppression
of coherent ξ1-phase oscillations under the influence of
gravitation and thermal momentum distributions. However,
based on an analysis in the regime |p| � |�k| (5) it turned
out that a change in the momentum with respect to the recoil
direction in between the two interferometric cycles leads to
a significant unsuppressed phase term, and more precise in
a stability configuration 	p 0

1 ↑↑ 	k, 	p 0
2 ↑↓ 	k(⇔ 	p 0

1 ↑↓ 	p 0
2 )

the optimal phase φ = 2μ�kT is recovered independently of
the momentum value. Here, as already outlined in the main
text, “parallel” and “orthogonal” refers to the direction of
the momentum relative to the first recoil 	k direction; the
first interferometric cycle is defined by [t0,t1] and the second

FIG. 14. (Color online) Phase contribution in the parallel regime. Phase contribution φ/(2μ|�k|T ) vs different momentum values p1 and
p2. The third configuration corresponds to the stability regime.
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one by [t2,tf ] (see Fig. 1). We will demonstrate here that
this does not only hold in the regime of large momenta,
but in any possible limit as long as the parallel condition is
fulfilled.

An orthogonal component will always lead to a decay with
increasing momentum and that even holds for the individual
cycles, i.e., p1 and p2 components alone. In contrast, for a
parallel component only the combination of both will lead
to a potential suppression. Figure 14 analyzes this effect
in more detail for static, but potentially different, parallel
momenta p1 = | 	p 0

1 |, p2 = | 	p 0
2 | for the two interferometer

cycles. It turns out that, without a momentum direction change
( 	p1 ↑↑ 	p2), the phase contribution always decays to zero in
the large momentum limit |p1|,|p2| � |�k|, and therefore
the only solution consists of working in the rather chal-
lenging |p1|,|p2| � |�k| regime. In contrast, in a 	p1 ↑↓ 	p2

configuration, i.e., if there occurs a change in the momentum
direction, the large momentum limit is characterized by
a nonzero, momentum independent phase. Particularly, the
stability regime 	p 0

1 ↑↑ 	k, 	p 0
2 ↑↓ 	k(⇔ 	p 0

1 ↑↓ 	p 0
2 ) retains

this property in any possible momentum regime, as long as
the parallel condition is fulfilled.

APPENDIX D: MODIFIED DISPERSION RELATION
VS MODIFIED COMMUTATOR RELATIONS

It is widely assumed that a quantization of space-time in
quantum gravity will lead to a minimal length scale of the order
of the Planck length Lp = �/(Mpc), that can be accounted for
by a modification of the commutator relation of the form [2]

[x̂,p̂] = C(p̂), (D1)

with C(p̂) = i� in the standard case of quantum mechanics
and, e.g., C(p̂) = i�[1 + ξp2/(Mpc)2], that will lead to a
minimal length scale �x = √

ξLp according to the general
uncertainty principle �x�p � −1/2i〈C(p̂)〉 [2,11,12].
Herein ξ denotes a dimensionless parameter that for a Planck-
scale correction will be of order one and is in general upper
bounded by the electroweak length scale to ξ � 1034 [10,11].
Such a modified commutator relation will then lead to a
modified interferometer phase that can be calculated, at least in
a perturbative way with respect to the Planck scale correction,
in the formalism of Appendix A, and its measurement has

already been proposed in a more simplistic setup in [12]. As
the interferometer phase considered here corresponds merely
to the kinetic energy integrated over a closed path, it is a natural
question to ask if both the modified energy dispersion relation
and the modified commutator relation are equivalent. That is,
can the modified energy dispersion be reproduced by choosing
the standard dispersion E(p̂) = p̂2/(2m) and modifying the
commutator instead [in particular with respect to (A6) and its
appearance in the phase (A10)]? For this purpose we will begin
by defining the energy dispersion relation via the displacement
operation as

E(p̃) = 〈p = 0|e− i
�

p̃x̂ p̂2

2m
e

i
�

p̃x̂ |p = 0〉 (D2)

that can be evaluated (see also Appendix A and using that
[x,f (p̂)] = f ′(p̂)[x,p]) to

E(p̃) = 〈p = 0| 1

2m

[
p̂2 − 2

i

�
p̃p̂C(p̂) − p̃2

�2
C(p)2

+ i
p̃3

�3
C ′(p̂)C(p̂)2 + O(p̃4)

]
|p = 0〉, (D3)

which corresponds to an expansion in the Planck scale
correction. For the modification of the commutator
relation given above, this would lead to [with
β = ξ/(Mpc)2]

E(p̃) = 1

2m

(
p̃2 + 2

3
βp̃4 + 17

45
β2p̃6 + O(β3)

)
. (D4)

It is worth noting that, due to the quadratic form of the
unmodified energy dispersion relation, a correction term
linear in the momentum does not appear according to (D2),
whereas the absence of higher-order odd powers in (D4) is
only due to the specific form chosen for the commutator and in
contrast to the absence of a linear term nonfundamental. Thus
a quadratic correction could be reproduced by a modified
commutator, whereas a linear correction term is impossible
within that framework. As a remark, such a conclusion is
only valid if p̂ corresponds to the physical momentum; if in
contrast p̂ is a function of the physical momentum operator
as often used in quantum gravity approaches [2], a linear term
correction would not be forbidden any more however related
to a different coordinate framework of quantum mechanics.
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