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High spectral mode density of conventional optical cavities is detrimental to the generation of broad optical
frequency combs and to other linear and nonlinear applications. In this work we optimize the morphology of
high-Q whispering gallery (WG) and Fabry-Perot (FP) cavities and find a set of parameters that allows treating
them, essentially, as single-mode structures, thus removing limitations associated with a high density of cavity
mode spectra. We show that both single-mode WGs and single-mode FP cavities have similar physical properties,
in spite of their different loss mechanisms. The morphology optimization does not lead to a reduction of quality
factors of modes belonging to the basic family. We study the parameter space numerically and find the region
where the highest possible Q factor of the cavity modes can be realized while just having a single bound state
in the cavity. The value of the Q factor is comparable with that achieved in conventional cavities. The proposed
cavity structures will be beneficial for generation of octave spanning coherent frequency combs and will prevent
undesirable effects of parametric instability in laser gravitational wave detectors.
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I. INTRODUCTION

An ideal optical cavity can be considered as a single
dimensional object with a well-defined “fundamental,” nearly
equidistant, spectrum. The majority of realistic optical cavities
have large spectral density of modes of nearly identical quality
(Q) factors and in addition to the fundamental mode family
many high-order modes are present in the cavity [1]. This is
an undesirable feature for various applications. For instance,
when a cavity is used as a linear optical filter, high-order
modes result in additional undesirable frequency-dependent
rejection or transmission of a signal of interest, reducing the
efficacy of the filter [2–4]. High-order modes also lead to
mode competition in lasers [5] and tend to cause unwanted
nonlinear instabilities in optical sensors and oscillators. The
difference in the environmental sensitivity of the fundamental
and high-order modes adds complexity to the system because it
becomes difficult to predict the spectrum of a cavity, especially
a monolithic one with a reasonably large geometrical size, as
a minute change of the ambient temperature leads to a change
in the cavity spectrum.

Very recently it was found that the high spectral density
of modes in whispering gallery mode (WGM) microcavities
significantly impacts generation of Kerr optical frequency
combs [6–13]. High mode density results in mode interaction,
mediated by the imperfect shape of the cavity, and modifies the
phase-matching conditions responsible for comb excitation.
This process results in an unexpected soft excitation regime
of frequency combs in microcavities with nominally normal
group velocity dispersion (GVD) [6,12]. The same process
limits the growth of the frequency comb in cavities charac-
terized with anomalous GVD [8]. It is essential to create a
nonlinear cavity free of mode interaction to generate ultrabroad
optical frequency combs on a chip.

Seemingly independent problems also arise on a macroscale
due to a high density of modes in a Fabry-Perot (FP) cavity.
It has been found that a large mode density of a conventional
FP resonator results in optomechanical parametric instability
in laser gravitational wave detectors [14–18]. This instability

restricts the optical power circulating in the detectors and limits
the ultimate sensitivity of the measurements. The problem can
be solved by reducing the Q factors of the auxiliary optical
modes that lead to instability.

The density of a cavity frequency spectrum can be reduced
rather significantly by changing the cavity morphology. One
can get rid of the unwanted modes by properly shaping
mirrors of a FP [19–21] or the circumference of a WGM
cavity [24,25]. The method draws from quantum mechanics
permitting existence of a potential well with a single bound
state [26]. Both FP and WGM cavities can be approximated
by a time-independent Schrödinger equation with a potential
term determined by their morphology. It is possible to create
a single-mode-family cavity since it is possible to select a
potential having only one bound state.

The method raises a fundamental question related to
the lifetime limitation of the bound state. The Schrödinger
equation model does not tell much about the Q factor of
cavity modes. The lifetime of the bound state is expected to be
short due to various effects not taken into consideration. For
example, diffraction loss becomes important if the potential
is too shallow and the system has finite overall dimensions
comparable with the size of the well. Increasing the well
depth results in increased lifetime, but it also leads to eventual
confinement of higher-order modes. In addition, the lifetime of
light circulating in unbounded modes can still be significant,
so the “single-mode” feature becomes compromised. The
question arises if it is practically possible to create a single-
mode cavity with high-enough Q factor; reduction of Q factor
below a certain limit makes the cavity useless for many
applications. It is also important to know the maximal ratio
of the bounded and unbounded modes for a cavity of a finite
size. Finally, it would be interesting if the Q factor depends
on the type of the cavity, since different types of cavities have
different loss mechanisms.

Loss in FP cavities having both bound and unbound modes
has been evaluated previously [21]. It was found that the
bounded modes have Q factors that increase exponentially
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with the mirror diameter, while the Q factors of the unbounded
modes follow a power law dependence on the diameter. Thus,
it is possible to achieve an infinite ratio of the Q factors
for infinite mirrors. That study does not evaluate limitations
imposed by the finite resonator size when the mirror shape is
considered as a free parameter.

An analytical study of finite-size single-mode cavities is
rather challenging. In this paper we investigate numerically a
method for reduction of the complexity of the cavity frequency
spectrum by optimizing the cavity morphology, using two
distinct examples of optical cavities: WGM and FP. We show
that very high-Q single-mode-family cavities of both kinds
are practically feasible. For the sake of clarity we select
cavities with 10 GHz free spectral range (FSR) excited with
1.55-μm-wavelength light. The transverse dimension of the
cavities does not exceed 0.1 cm. We confirm that it is possible
to make both single-mode-family FP and single-mode-family
WGM cavities by engineering their morphology and find
the lifetime of light circulating within the bound modes.
The single-mode regime is achieved for a limited range of
geometrical parameters of the cavities.

While the simulations are performed for microcavities, the
conclusions hold for cavities of any size, including kilometer-
scale laser gravitational wave detectors. In what follows it is
shown that the problem we solve can be parameterized in such
a way that the single-mode FP cavity is mathematically scaled
to any desirable size. It means that a kilometer-size cavity could
have properties similar to those of a microcavity. A similar
scalability feature was previously predicted for single-mode
WGM cavities [24].

We found that the Q-factor value of the single-mode FP
cavity is comparable with the value of the diffraction-limited
Q factor of a FP cavity with ideal spherical mirrors, when both
cavities are matched in length. For the given dimensions the Q

factor of the basic mode family is Q = 1.1 × 109, according
to our numerical simulations. We found that Q factors of
the single-mode FP cavity can exceed this number and the
maximum ratio of the Q factors of the bound and the highest
Q unbound mode exceeds 1000.

The Q factor is not diffraction limited for a large (a
few millimeters in diameter) conventional overmoded WGM
cavity. Fundamental radiative loss is the only unavoidable,
and usually negligible, loss mechanism in the cavity. It is
shown theoretically that for a water droplet having a radius
of 50 μm localized in air the radiation-limited quality factor
is 1073 at wavelength 0.6 μm [22,23]. The best practically
achieved number for a quality factor for a conventional WGM
resonator exceeds Q = 1011 [27], limited by the absorption
of the material. We found that Q factors of the single-mode
WGM cavity can exceed Q = 1010 and the maximum ratio of
the Q factors of the bound and the highest Q unbound modes
is approximately 1000, similar to that of the single-mode FP
cavity. These results imply that it is practical to make these
kinds of devices suitable for various applications.

The paper is organized as follows. In Sec. II we discuss
limitations of Q factor values for single-mode WGM cavities.
A study of Q factors in single-mode FP cavities is presented
in Sec. III. Similarities and differences between behaviors of
WGM and FP single-mode cavities is discussed in Sec. IV.
Section V concludes the paper.

II. SINGLE-MODE WGM RESONATORS

In this section we present a simple analytical model to show
the possibility of existence of a single-mode WGM resonator
and find a range of parameters where single-mode operation
takes place [24].

A. Analytical description of a single-mode WGM cavity

We start from the scalar wave equation

∇ × (∇ × E) − k2n2E = 0, (1)

where k = ω/c is the wave number, n is the index of refraction
of the resonator host material, E is the electric field of the
mode. For the sake of simplicity we neglect material loss and
consider the T E mode family.

Changing variables in Eq. (1) as

E = �e±ilφ 1√
r
, (2)

where l ≈ kna � 1 is angular momentum number of a WGM,
and assuming that the resonator radius changes as R = a +
A(z)[a � A(z)], we arrive at

∂2�

∂r2
+ ∂2�

∂z2
+

{
k2n2

[
1 + 2

A(z)

a

]
− l2

r2

}
� = 0. (3)

Example of such a resonator is shown at Fig. 1(a). Equation (3)
shows that geometrical change of the resonator radius is
equivalent to the spatially dependent increase of the refractive
index of the resonator host material.

Introducing � = �r�z, we separate variables

− ∂2�z

∂z2
− 2k2n2 A(z)

a
�z = k2

z�z, (4)

∂2�r

∂r2
+

(
k2n2 − k2

z − l2

r2

)
�r = 0, (5)

FIG. 1. (Color online) Morphologies of the studied cavities:
(a) single-mode WGM cavity; (b) single-mode FP cavity.
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where k2
z is the separation parameter. Equation (4) is equivalent

to a time-independent Schrödinger equation describing the
motion of a particle in a potential well.

The derivation has two crucial assumptions so far: One is
exchange of the term −l2/r2 with term −l2/r2 + 2A(z)l2/a3

to reflect change of the resonator radius, and the other is the
assumption that variables can be separated in Eq. (3). These
assumptions are valid if we consider high-order WGMs with
fields localized in the vicinity of the surface of the resonator.
Numerical simulations presented in what follows validate the
derivation steps.

To show that the cavity can have only one localized TE
mode, we further simplify the problem and assume that
A(z) = x0 if p/2 � z � −p/2. If x0 is large enough we get
the standard eigenvalues for the low-order modes of the well:

kz,j � πj

p
, j = 1,2,3, . . . . (6)

The eigenvalues for the localized cavity modes can be
estimated in this case as

k2n2 � 1

(a + x0)2

[
l + αq

(
l

2

)1/3
]2

+ π2j 2

p2
, (7)

where αq is the qth root of the Airy function, Ai(−r), which is
equal to 2.338, 4.088, and 5.521 for q = 1,2,3, respectively.

The wave vector of the unlocalized modes (continuum) of
the cavity is simply

k2
cn

2 � 1

a2

[
l + αq

(
l

2

)1/3
]2

. (8)

The condition of localization of the j th mode is kc > k or√
2x0

a

2n

λ
>

j

p
. (9)

Only one mode is supported by the resonator if

1 >

√
x0

a

2np

λ
>

1

2
. (10)

Equation (10) shows that there is a region of parameters for
which the WGM cavity spectrum has a single-mode family in
each polarization. As the derivation of the equation has many
strong assumptions the predicted range of the parameters gives
only order-of-magnitude accuracy. In addition, it does not give
any clue about the quality factor of the cavity modes. In what
follows we present results of numerical simulations performed
for a particular WGM cavity that validates the analytical
calculation and also describes the behavior of the Q factor
as function of parameter x0.

B. Numerical modeling of a single-mode WGM cavity

In this section we numerically study a WGM cavity with
morphology illustrated by Fig. 1(a). A MgF2 cavity with
thickness h = 60 μm and radius a = 0.35 cm is considered.
The cavity has 10 GHz FSR [c/(2πan), nWGM = 1.36 is the
refractive index of the material, c is the speed of light in the
vacuum]. The rim of the cavity has a Gaussian geometric
shape characterized with 10 μm full width at half maximum

(FWHM) and a variable height,

A(z) = x0 exp

[
−

(
z − h/2

p

)2
]

, (11)

where p2 = 36.1 μm2 corresponds to the FWHM selection.
The Gaussian profile is selected since this kind of profile
has been demonstrated experimentally [25]. The considered
example is rather general since the value of FWHM is not
essential to create a single-mode WGM cavity and the results
of the simulations do not fundamentally change for different
FWHM values. Single-mode operation is still observed at
different values of x0, as indicated by Eq. (10).

Using x0 as a free parameter we find the lifetime of the
cavity modes and identify the single-mode operation regime.
Analytical theory gives reasonably good approximation of the
dynamic range of the single-mode operation of the cavity.
Substituting the effective value of resonator width [we select
it to be equal to FWHM of the Gaussian 2(ln 2)1/2p = 10 μm]
into Eq. (10), we find that single-mode operation is possible
for 8 μm � x0 � 2 μm. In what follows we show that for the
given realistic model of the resonator single-mode operation is
possible for practically the same values of x0. This result is not
obvious, though, since the analytical model is rather different
from the structure studied numerically.

In accordance with the analytical model of a single-mode
WGM cavity, there is a limited region of protrusion heights, x0,
when only a single bound mode family exists. The analytical
model, though, requires the cavity thickness, h, to be infinite.
Hence, conclusions of the analytical model are not directly
applicable to the case of a finite-size cavity. A symmetric
protrusion does not result in a change of the number of bound
modes and their Q factors in such a cavity. All the modes
have nearly identical (high) Q factors and simply change
their spatial distribution as compared with an unperturbed
stand-alone multimode cylindrical cavity. Similarly, the core
of a single-mode fiber, stripped off its cladding, becomes a
multimode fiber. Thus, in a cavity structure, the Q factors of
unwanted modes may be reduced similarly to the cladding of
single-mode optical fibers.

To address this problem we place the WGM cavity on a
SiO2 substrate. The substrate introduces additional attenuation
to the modes since its refractive index, ns = 1.44, is larger
than that of the cavity host material. We equip the substrate
with antireflection coating to ensure that the light entering the
substrate does not return to the WGMs.

The presence of a higher-index substrate is important
from both theoretical and practical points of view. From a
theoretical perspective, placing antireflection coating directly
at the bottom of the cavity results in an infinite continuation of
the cavity body. It leads to an increase of the Q factor of the
localized modes independent of the degree of their localization.
This is undesirable since the numerical procedure does not
allow reliable simulations of very high Q factors. From an
experimental perspective, cavities of finite size have to be
mounted on a substrate to facilitate single-mode operation. The
substrate increases loss of unbounded modes much stronger
if compared with loss increase of the bound modes. Our
numerical model describes exactly this case.
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FIG. 2. (Color online) Spatial profile of the field intensity for the
fundamental and the first dipole WGMs for different height of the
protrusion: (a),(b) x0 = 2 μm; (c),(d) x0 = 8 μm; and (e),(f) x0 =
11 μm. The intensity is illustrated by color density.

Our approach utilizes COMSOL software to solve the
Helmholtz equation using Galerkin’s method of weighted
residuals [28]. The three-dimensional (3D) problem is reduced
to a 2D problem because of azimuthal symmetry of the
cavity modes. Perfectly matched layers (PMLs) [29] are used
to simulate power loss of the modes originating from the
mounting substrate. The layers block unwanted reflections
from the edges of the substrate taken into consideration in
the code. Because of the loss introduced by the PML, the
frequencies of the modes (ν0) become complex and the Q

factor is calculated as Q = Re ν0/(2Im ν0).
Results of the simulation (Fig. 2) show that light escapes

to the higher-index substrate from both fundamental and
first-order dipole modes if the height of protrusion is small
enough. The field leaving the WGM is transferred to a Bessel
beam freely propagating in the substrate [30,31]. Hence, the
substrate can be considered as an ideal coupler for generation
of Bessel beams out of the resonator.

The energy exchange efficiency reduces with the increase of
the protrusion height. It also depends on the mode order. There
are two critical regimes corresponding to no-bound states for
x0 = 0 and a nearly infinite number of high-Q bound states for
x0p

2 � aλ2 [24]. The consequence of the protrusion increase
is clearly seen in Fig. 3(a), showing dependence of the Q factor
of the fundamental and lowest-order dipole WGMs. No modes
are confined for small x0. The first mode becomes trapped as x0

reaches a certain threshold value, equal to 2 μm for the selected
model. Its Q factor grows exponentially; however, it is still
finite. The Q factor of the first dipole mode, on the other hand,
barely changes. As the protrusion reaches another threshold
point, x0 � 8 μm, the Q factor of the second mode starts to
grow as well, which means that the mode becomes bound.
It is worth noting here that the Q factors of unbound modes
increase with protrusion height increase. However, the rate of
increase is significantly different than the rate of increase of
the bound mode.

Our method of Q evaluation does not allow evaluating Q’s
exceeding several billion and undershooting several hundred

FIG. 3. (Color online) Dependence of the Q factors of the fun-
damental and the first dipole as well as the first higher-order radial
modes [quantization by q number; see Eq. (7)] on the protrusion
height for a WGM cavity (a) and a FP cavity (b). The numerical
model is not accurate enough to predict Q factors below 106 and
above 1010.

thousands. The simulations of the high-Q modes become
inaccurate when the imaginary part of the eigenvalue becomes
comparable with the simulation error. The simulations of
low-Q modes are limited in accuracy because the modes
overlap too much in frequency space and because an equivalent
Q of a piece of a material that has no mode confinement is
still finite and comparably large. For instance, the equivalent
Q factor of a piece of a material having length corresponding
to the WGM cavity length is approximately 2π2an/λ, which
is 6 × 104 for the cavity of the given size. The numerical
simulation gives wrong answers if the actual Q factor is close
to this value as the code looks for confined modes. The reliable
simulation results are achieved for a cavity that supports more
than ten round trips, which pushes the minimal simulated Q

factor to 106.
The numerical simulation confirms the prediction of the

simplified analytical theory showing that there exists a certain
range of protrusion heights where the cavity can be treated as
single mode [24]. It also shows that the maximum ratio of the Q

factors of the bound and unbound modes is reached just before
the second-lowest-order mode becomes bound. For the given
cavity geometry the ratio is approximately equal to a 1000.
The Q factor of the fundamental mode reaches its maximum
at the same point. We find the maximum using interpolation.
The simulation does not answer to the question related to the
optimal cavity morphology to reach the highest possible Q

factor under the condition of the largest Q-factor difference.

C. Variation of WGM cavity shapes

We have shown in a previous section that a high-Q WGM
cavity with Gaussian shape of protrusion can be created. The
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FIG. 4. (Color online) Dependence of the Q factors of funda-
mental and first dipole mode versus the protrusion height. The
simulation is performed for a WGM cavity formed by a protrusion
with a square cross section with 10 μm width. The Q factor of the
modes drops below 106 for height less than 1.5 μm.

Gaussian shape corresponds to the shape that can be produced
experimentally [25]. In this section we explore variations of
the problem and solve for the case of a protrusion having a
square cross section, as was discussed in Sec. II A and also
study dependence of a Q factor on the thickness of the cavity,
h, for the case of a Gaussian profile of the protrusion.

Results of simulation of Q factors of the fundamental and
dipole modes of a WGM cavity formed by a protrusion with
a square cross section is shown in Fig. 4. We found that the
cavity operates in the single-mode regime if the protrusion
height stays within 7 μm � x0 � 2 μm. Those boundaries are
relatively similar to the boundaries we found for the Gaussian-
shaped protrusion having 10 μm FWHM. This observation
gives us grounds to say that the single-mode regime of

FIG. 5. (Color online) Variation of the Q factor of the basic and
first dipole modes of a single-mode WGM cavity with Gaussian shape
versus thickness of the cavity, h. The Gaussian is characterized with
x0 = 3 μm and 10 μm FWHM.

WGM cavities does not depend strongly on the protrusion
morphology. The height and width of the protrusion matter.

An important question is related to the dependence of the
Q factor of the WGM cavity on its thickness. The smaller
the thickness, the higher is the overlap of the field localized in
the cavity mode with the higher-index substrate and the smaller
is the Q factor of the mode. We performed a simulation and
confirmed this intuitive prediction for the fundamental mode
(Fig. 5). Interestingly, the Q factor of the unbound dipole mode
did not change much. It means that for selected parameters the
dipole mode is strongly delocalized. This also means that for
the case of delocalized modes it is possible to increase the ratio
of Q factors of the basic and high-order modes beyond the fac-
tor of 1000 we found for the resonator with 60 μm thickness.

III. SINGLE-MODE FP CAVITIES

It is not obvious if the FP cavity has properties similar to
those of the WGM resonator, because the Q factor of modes of
the FP cavity itself is limited due to the diffraction loss, while
the WGM Q factor is practically infinite for an isolated cavity.
However, both WGM and FP cavities can be described in
a similar manner if the Born-Oppenheimer method, instead
of paraxial approximation, is used to solve the Helmholtz
equation (compare [24] and [32]). The Born-Oppenheimer
approach works in the case of the nearly confocal FP cavity

FIG. 6. (Color online) Spatial profile of the FP cavity mirrors and
the field intensity for the fundamental (red solid lines) and the first
dipole (blue dashed lines) modes for different heights of the mirrors:
(a) x0 = 5 μm, (b) x0 = 8 μm, and (c) x0 = 14 μm. The intensity
distribution of poorly confined modes have irregular spatial structure
resulting from diffraction at the mirror edge. The arrows are used
to directly show which scale (left or right) has to be used with each
particular curve presented on the picture.
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considered here (doubled curvature radius Rc is about FP
cavity length L, i.e., 2Rc � L). Since this approach results in
a 2D Schrödinger equation and also allows studying different
mirror shapes, we conclude that it is possible to create a
single-mode FP cavity if we use the proper mirror profile [see
Eq. (31)] and adjust its height parameter (x0). Our numerical
simulation in paraxial approximation confirms this conclusion;
see results shown in Figs. 6 and 3(b). The FP cavity can be
made with a high-Q single-mode family. For simplicity, we
assume below that mirrors of FP cavity are identical and are
cylindrically symmetric.

In this section we present an analytical model, follow-
ing [32], to show the possibility of the existence of a single-
mode FP resonator and find a range of parameters where the
single-mode operation takes place. We also validate the model
and prove existence of high-Q single-mode FP cavities via
numerical simulation based on a Fresnel integral equations
approach.

A. Analytical description of a single-mode FP cavity

We start from Eq. (1) and rewrite it as

∂2�

∂z2
+ 
⊥� + k2� = 0, (12)

where z is directed along the cavity axis. The boundary condi-
tions are �(r,z = L/2 + Ã(r)) = �(r,z = −L/2 − Ã(r)) =
0, where Ã(r) is mirror profile and r is radial distance from z

axis.
The Born-Oppenheimer approach is based on the ansatz

� = �r (r)�z(z; r), where dependence of �z(z; r) on radial
components can be neglected in the adiabatic approximation.
Separating variables we arrive at the equation

∂2�z

∂z2
+ k2

z�z = 0. (13)

This equation has to be supplied with boundary condi-
tions �z(r,z = L/2 + Ã(r)) = �z(r,z = −L/2 − Ã(r)) = 0.
The solution of Eq. (13) with the boundary conditions is

�z(z; r) = cos kzz, kz = ± 1

L/2 + Ã(r)

(
π

2
+ πl

)
, (14)

where l is an integer number.
Equation for �r (r) can be presented in the form


⊥�r + [
k2 − k2

z (r)
]
�r = 0. (15)

Assuming L/2 � Ã(r) we rewrite Eq. (15) as


⊥�r +
{
k2 − k2

0

[
1 − 4Ã(r)

L

]}
�r = 0, (16)

k0 ≡ 2π
(
l + 1

2

)
L

. (17)

Changing variables in Eq. (15) as

�r = �̃re
±i(m+1/2)φ 1√

r
, (18)

we arrive at

∂2�̃r

∂r2
+

{
k2 − k2

0

[
1 − 4Ã(r)

L

]
− m(m + 1)

r2

}
�̃r = 0. (19)

Introducing

k2 = k2
0 + k̃2, (20)

where k0 � k̃, we transform Eq. (19) to

∂2�̃r

∂r2
+

[
k̃2 + 4Ã(r)

L
k2

0 − m(m + 1)

r2

]
�̃r = 0. (21)

For a spherical mirror Ã(r) ≈ −r2/(2Rc), so Eq. (21)
becomes an equation for a harmonic oscillator

∂2�̃r

∂r2
+

[
k̃2 − 2r2

RcL
k2

0 − m(m + 1)

r2

]
�̃r = 0, (22)

which has eigenvalues k̃ so that for the whole resonator we get

k = 2π (l + 1/2)

L
+ 4√

LRc

(2q + |m| + 1), (23)

where q is the radial quantization number for the modes. We
assume that the height of the mirrors is limited by protrusion
X0, which for profile (31) discussed below is equal to

X0 = x0

(
1 − exp

[
− r2

m

2Rcx0

])
. (24)

Now we find that the modes become bound if

k = 2π (l + 1/2)

L
+ 4√

LRc

(2q + |m| + 1) <
2π (l + 1/2)

L − 2X0
,

(25)

which shows that single-mode operation of the FP cavity
becomes feasible for

1 � πX0

2λ

√
Rc

L
� 1

2
. (26)

We see that condition (26) is similar to condition (10) for WGM
cavity, including the fact that it predicts only an approximate
range of parameters for single-mode operation. Also, it does
not give any estimates of Q factors of modes. For these
reasons, in the next section we present additionally numerical
calculations of modes based on the Fresnel integral approach.

B. Fresnel integral equation approach

We start from the same scalar wave equation (1) as
for WGM resonators. However, as we are interested in
eigenmodes, it is convenient to use an equivalent formulation
of problem through Fresnel integral equations [33,34],∫

G(�x1,�x2)�2(�x2) d �x2 = ξ�1(�x1), (27a)∫
G(�x1,�x2)�1(�x1) d �x1 = ξ�2(�x2), (27b)

G(�x1,�x2) = − i

2π
exp

{
i

[ |�x1 − �x2|2
2

−y1(�x1) − y2(�x2)

]}
, (27c)

where �1 and �2 stand for complex field amplitudes at
the surface of mirrors, G(x1,x2) is the kernel, d �x1,2 =
x1,2dx1,2dφ1,2, and ξ is eigenvalue. We use a polar coordinate
system with dimensionless coordinates x1, x2, which relates to
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physical radial coordinate r (dimensional) as x1,2 = r1,2
√

k/L,
k = 2π/λ is the wave number, and L is FP cavity length.
Dimensionless functions

y1(�x1) = kh1(�x1), y2(�x2) = kh2(�x2), (28)

describe the mirror profile; the physical profile h1, 2 of mirrors
(dimensional) is a deviation from the mirror plane which
depends on corresponding coordinates �x1, �x2.

For a FP cavity with two identical and axiosymmetric
mirrors, functions �1 and �2 should be equal to each other. We
perform integration over azimuthal angle and reduce set (27) to
single equation which has different kernels for axiosymmetric,
dipolar (and so on) modes [33,34],∫

g(x1,x2)�1(�x2) x2dx2 = ξ�1(x1), (29a)

g(�x1,x2) = −i�+1J�(x1x2) exp

{
i

[
x2

1 + x2
2

2

−y1(x1) − y2(x2)

]}
, (29b)

where J� is a Bessel function of the first kind and � is the
angular index (� = 0 for axisymmetric modes, � = 1 for dipole
modes and so on).

The solution of set (29) provides field distribution �1 on
each mirror, where the absolute value of eigenvalue ξ gives
the value of round-trip diffraction loss L = 1 − |ξ |2.

C. Numerical modeling of a single-mode FP cavity

The reasoning related to the possibility of creation of a
single-mode-family cavity seems to be rather general and
applicable to any kind of cavity. To verify this intuitive
conclusion we consider a FP cavity shaped as shown in
Fig. 1(b) with operational wavelength λ, length L, radius of
curvature Rc, and radius of mirrors rm,

λ = 1.5 μm, L = 1.5 cm, (30a)

Rc = 0.78 cm, rm = 0.325 mm, (30b)

ρ = Rc

L
= 0.52, a = rm

√
kL = 5.43, (30c)

where ρ is dimensionless curvature radius and a is dimension-
less mirror radius. We have chosen parameters (30) so that
FSR of the considered FP cavity was the same as for WGM
cavities discussed above.

We chose the shape of the mirror similarly to the WGM
cavity,

A(r) = x0 exp

(
− r2

2Rcx0

)
, h1,2 = x0 − A(r), (31)

where A(r) describes deviation from the mirror plane related
to functions h1,2 defined in (28). The particular shape is
selected so that the curvature radius of the mirror stays the
same as the optimal curvature of a spherical FP cavity with
given dimensions. Our simulation shows that this condition
corresponds to the lowest loss of the fundamental mode.

For the case of the FP cavity with identical mirrors we
solved a discrete analog of Eqs. (29) numerically using the
Hankel transform, resulting in considerable reduction of the

evaluation time without accuracy loss (see [35] for details).
Among all solutions we selected those with |ξ | close to unity
and found the corresponding eigenfunctions. The round-trip
loss L = 1 − |ξ |2 allows finding finesse and the Q factor of
the selected resonator modes: Q = 2πL/(λL).

The FP cavity with profile (31) has no bound modes if x0

is small enough [Fig. 3(b)]. The fundamental mode becomes
bound when x0 reaches 7 μm. The higher-order modes are still
unbound at this point. An increase of x0 results in the increase
of a Q factor of the fundamental mode while the Q factor of the
other modes does not change. The first dipole mode becomes
bound for x0 > 9 μm, which is indicated by the increase of
its Q factor. The maximum Q factor of the fundamental mode
reaches 1010 at this point, and the ratio between Q factors of
the fundamental and the first dipole modes reaches 1000.

D. Mirror shape optimization

We reported on simulations performed for a FP cavity that
has a shape similar to that of the selected WGM cavity. This is
done to confirm that both single-mode FP and WGM cavities
have similar properties. We also found that Q factors of FP
cavities depend on properties of shapes of their mirrors rather
significantly, while single-mode WGM cavities are not very
sensitive to their morphology. In this section we illustrate how
changes in mirror morphology alter properties of the FP cavity
modes.

We consider a FP cavity with identical mirrors having shape

A(r) = x0e
−η(1+αη+βη2), η ≡ r2

2Rcx0
, (32)

where fitting parameters α and β are varied to get a com-
bination of low diffraction loss of fundamental (main) mode
(round-trip loss has to be L < 70 ppm, which corresponds to
quality factor Q � 109) and high loss of the other modes. The
optimization is performed for each selected x0 value. We found
that the first dipole mode as well as the first axiosymmetric
mode have the highest Q factors after the fundamental mode,
so results for those modes only are presented (see Table I).
The corresponding plots of Q factors for the fundamental, first
axiosymmetric, and main dipole modes are shown in Fig. 7.

The optimized simulation shows that by choosing suitable
fitting parameters one can realize the “single-mode” cavity
(i.e., ratio between Q factors of main and next mode is larger

TABLE I. List of parameters α, β we used for different depths
x0 for profile (32); for depth x0 = 9, 10 μm we put α = 0, β = 0.
The last column is the minimal ratio of diffraction losses of the main
dipole mode (or first axiosymmetric mode) to losses of the main
mode.

x0 (μm) α β Loss ratio

3 −0.1 0.3 150
4 0.2 0.425 110
5 0.2 0.25 390
6 0.12 0.175 570
7 0.116 0.05 690
8 0.0862 0.7 14 500
9, 10 0 0
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FIG. 7. (Color online) Dependence of the Q factors of the funda-
mental, first axisymmetric, and first dipole modes on the protrusion
height FP cavity mirror profiles controlled by parameters α, β listed
in Table I.

or about ∼103) with relatively small shape deformation, x0 �
5 μm. It is important that the Q factor of the main mode
is rather high and the diffraction-limited round-trip loss is
exceptionally small, L � 7 ppm, in contrast with more modest
numbers predicted by earlier studies [20,21].

Moreover, we found combinations of fitting parameters that
provide extremely small diffraction losses of the main mode,
for example,

x0 = 9.23 μm, α = 0.156, β = 0.606, (33)

Qmain = 1.3 × 1013, Qdipole = 6.6 × 109. (34)

This corresponds to round-trip losses of the main mode L ∼
0.0042 ppm. However, a small change in fitting parameters
(α or β) by several percentage points results in a many times
increase of diffraction losses of the main mode. It means that
the mode becomes relatively unstable (difficult to realize in
experiment) and we did not take this result into consideration.

IV. DISCUSSION

While the behavior of Q factors of a single-mode FP
resonator is qualitatively similar to the behavior of the
single-mode WGM cavity, there are certain differences. The
range of x0 values required for the single-mode operation is
different. The curvature of the FP mirror is important, while
the curvature of the WGM cavity protrusion is unimportant.
The bound WGMs tend to have very high identical Q factors,
while bound modes of a FP cavity have different Q factors
even for an ideally matched spherical mirror. The protruded
structure has much smaller dimensions than those of the
single-mode WGM cavities, while the spatial change of the
mirror profile has comparable dimensions with the mirror size
in the case of the FP cavity. The mirror deformation does not
look as the exaggerated view of Fig. 1 (see mirror profile in
Fig. 6). Another difference between single-mode WGM and
FP cavities is related to the fact that the WGM cavities are
monolithic. The modes are localized in the nonlinear material

and a change in intensity profile of light in the mode can
modify its properties, including the Q factor.

While our study is purely theoretical in nature, it is
important to discuss the possibility of fabrication of single-
mode cavities. It may seem that the bound modes are sensitive
to the residual disorder, unavoidable during any fabrication
process. This is not the case with respect to the single-mode
nature of the cavities. The bound fundamental modes are well
localized and a small deterioration of the cavity morphology
distorts them slightly. The unbound modes, on the other
hand, are prone to changes in the quality of the surface
of the cavity and its shape. Moreover, single-mode WGM
cavities were observed experimentally [24,25], which confirms
the feasibility of the concept. Earlier studies left questions
about Q-factor limitation of the single-mode WGM cavity
unanswered, and this paper fills the gap. Single-mode high-Q
FP cavities have to be demonstrated.

It is important to note here that the Q factor of the
single-mode FP resonator exceeds that of the FP resonator
with ideally matched spherical mirrors of identical dimensions.
Our simulation shows that this effect occurs because the bound
mode has a super-Gaussian spatial profile. This mode is stable
with respect to the boundary conditions. On the other hand, Q
factors of single-mode WGM cavities do not exceed Q factors
of multimode devices.

The single-mode WGM cavities considered here and
discussed in Sec. II can be useful for generation of ultrashort
pulses. It was shown that it is possible to retrieve sech-shaped
optical pulses from a microresonator pumped with continuous
wave light [36–41]. The duration of those pulses is given by
the formula

τ ≈ 2

√
−β2

γFPin

, (35)

where β2 is GVD of the cavity modes (β2 < 0 if the dispersion
is anomalous), γ is the effective cubic nonlinearity of the cavity
that depends on the cavity host material nonlinearity and mode
volume, F is the cavity finesse, and Pin is the power of the
continuous wave pump. Equation (35) predicts that the smaller
|β2| is, the shorter the pulse can be.

In previous studies, the GVD of modes of a comparably
large WGM cavity was measured experimentally and it was
found that its actual value is orders of magnitude different
than a theoretical number inferred from material properties
and cavity mode structure [6]. It was concluded that the
difference results from interaction among cavity modes. Mode
interaction is eliminated from single-mode cavities and, hence,
it should be possible to create a cavity with GVD not disturbed
by mode interaction to generate ultrashort optical pulses.

Recently, the usefulness of single-mode cavities for Kerr
frequency comb generation was demonstrated experimentally.
It was shown that cavity morphology can be optimized to create
a single-mode cavity with proper GVD and high Q factor to
generate broad frequency combs with small pump power [42].
The Q factors of the experimentally demonstrated single-mode
cavities reached 8 × 108, which is much better if compared
with earlier experimental observations, but still slightly worse
than the fundamental limit predicted in this work.
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The single-mode FP cavities can be useful for improving
laser gravitational wave detectors such as the Laser Interfer-
ometric Gravitational Wave Observatory (LIGO), because the
dimensionless values (30c) are practically the same as those
planned for LIGO:

λ = 1.064 μm, L = 4 km, (36a)

Rc = 2.076 km, rm = 17 cm. (36b)

The analogy is important since usage of the single-mode FP
cavity will prevent undesirable effects of parametric instability
in laser gravitational wave detectors [14–18]. The parametric
instability occurs as an excitation of the Stokes optical mode
and elastic (mechanical) mode in the body of a cavity mirror if
their frequencies, ωs and ωm, are related to the pump frequency
ω0 as ω0 � ωs + ωm. The threshold of the effect is proportional
to the product of quality factors of pump and Stokes modes.
Stokes modes are usually high-order modes of a conventional
FP cavity. The single-mode resonator does not support those
modes and, hence, does not support parametric instability.

V. CONCLUSION

We have shown that it is possible to create high-Q single-
mode WGM and FP cavities by optimizing their morphology.

We found that the fundamental mode family of those cavities
has quality factors comparable with conventional multimode
cavities, while exceeding quality factors of the other modes
by at least three orders of magnitude. Single-mode FP and
WGM cavities perform in a similar way in spite of their
different physical structure. The combination of the clean
spectra and high-Q factors of the resonator is very promising
for many applications, including generation of broadband Kerr
frequency combs and creation of efficient gravitational wave
detectors.
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