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The balances of the electromagnetic powers and momentum flows for the system of a dielectric particle and a
dielectric slab waveguide are studied. The emphasis is made on the regime when whispering gallery resonances
in the particle are excited. The excitation is achieved by a guided mode that has either transverse electric or
magnetic polarization. The scattering problem is solved by using an analytical representation of the solution
with subsequent numerical approach to find the scattered fields with high accuracy. It accounts rigorously for
the interaction between the particle and the waveguide. It is found that the propelling force on the particle can
be comparable to or even exceed the value of the momentum flow of the incident mode. This is related to a
highly anisotropic angular distribution of the bulk radiation that can carry some noticeable momentum in the
longitudinal direction. The bulk radiation carries also nonvanishing momentum in the transverse direction giving
rise to a difference in the transverse forces experienced by the particle and by the waveguide. The strong coupling
between the particle and the waveguide operating in the single-mode regime is shown to upshift slightly the
resonant frequencies with decreasing gap between the particle and the waveguide.
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I. INTRODUCTION

The appearance of electromagnetic pressure associated
with the electromagnetic fields is one of the key results
of the Maxwell theory [1]. Due to the smallness of the
electromagnetic forces that create the pressure, their effect
can be seen most easily either on very large scales (for
example, galaxy formation) or on very small scales. While
the existence of forces were confirmed experimentally as far
back as 1901 [2], their applications started to emerge much
later, after the invention of laser [3].

Considering the forces on small dielectric objects, there
are several research directions that are of current interest.
One direction is designing new photonic devices in which
the operation is related to the optical force acting on their
components [4]. A typical example is the force created by
a mode supported by two parallel waveguides [5,6]. This
force can be significantly enhanced when the waveguide
is coupled to a resonator [7–9] and used for tuning the
optical transmission [10]. This enhancement goes together
with narrow spectral linewidth of resonators such as microring
filters [11]. Another direction is the manipulation of dielectric
particles with optical fields, in particular with applications
for the “lab-on-chip” approach for chemical and biological
analysis [12]. The optical fields can be created either by
optical beams in uniform medium (including free space) [13]
or by evanescent fields of attenuated-total-reflection prisms or
waveguides [14–17]. The force acting on a particle can also be
enhanced by coupling the waveguide to a whispering-gallery-
mode (WGM) [18], ring [19], or photonic-crystal-defect [20]
resonator. Optical forces can be used for selective particle
sorting as required by microsphere resonator circuits [21].
Recently, it was experimentally demonstrated that the modes
of a tapered optical fiber can create large resonant forces on
polystyrene spheres supporting WGMs [22]. The force created
on the WGM particle was estimated to be comparable to

*avmaslov@yandex.ru

the flow of the electromagnetic momentum of the incident
mode [23,24] or even exceed it [25]. Strong resonant pulling
force acting on WGM particles can also be obtained using the
excitation with backward waves [26].

Focusing specifically on applications that use waveguides,
photonic devices rely on the transverse force which, unlike the
longitudinal one, can bend the suspended portion of a waveg-
uide and enable the control of the optical coupling and modal
transmission [7,8]. On the other hand, the experiments on
particle propulsion rely on both the longitudinal (propelling)
force that moves the particle along the waveguide as well as on
the transverse (trapping) force that holds the particle near the
waveguide. There is a fundamental difference between these
forces. The propelling force is created by the momentum flow
of the initial guided mode. A finite value of the momentum flow
puts a limit on the propelling force. The transverse force, on
the other hand, is not limited by the incident momentum. This
allows a significant build-up of the transverse force, especially
using resonators.

Because of the interest in the optical propulsion technology,
there is a need to look at the same time on both the
longitudinal (propelling) and transverse (trapping) forces in
the configuration that can be relevant to the experimental
situations. In Ref. [23], the interaction of a dielectric particle
with a surface wave supported by a metal boundary was
studied. Here, a similar approach is extended to study a
more realistic case in which the particle is excited using a
dielectric slab waveguide. Both polarizations of the incident
mode (transverse electric and magnetic) are considered. A
comparison of the forces on the particle when it is excited by
a plane wave and by a guided mode is made.

While the system of a resonator and a slab is different and
geometrically simpler than that consisting of a microparticle
and a tapered fiber used in the experiments [22], the two
systems share an important ingredient—the presence of a
strong coupling between their parts. This should give rise
to similar qualitative features of the momentum flow and
related propelling forces. The transverse force, on the other
hand, may depend more strongly on the geometry of the
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interaction region. Furthermore, the resonator-slab system
allows one to obtain a very accurate solution without any
further approximations such as neglecting the interaction
between the waveguide and the particle which is often used in
three-dimensional geometry [27].

The study of the interaction of a resonator with a slab is not a
new problem. In fact, a large number of papers were devoted to
understanding the properties of the system as well as to develop
rigorous mathematical approaches to tackle it. This includes
the use of integral method [28–30], finite-difference time-
domain [31], and finite element in the frequency domain [32]
approaches. However, the focus of the previous studies were
only on such properties as transmission and reflection of
guided modes. The balances of the electromagnetic flows in
such systems, the properties of the propelling force, and the
relation between the force and the momentum flows have not
been considered. From this point of view, the present study
of both the electromagnetic and optomechanical properties
sheds more light on the physical processes in the system. In
particular, it is found that the longitudinal force on the particle
can be comparable or even exceed the value of the momentum
flow of the incident mode. This is related to a highly anisotropic
angular distribution of the bulk radiation that can carry some
noticeable momentum in the longitudinal direction. The bulk
radiation is also shown to carry nonvanishing momentum in
the transverse direction. This momentum should give rise
to a difference in the transverse forces experienced by the
particle and by the waveguide. The strong coupling between
the particle and the waveguide operating in a single-mode
regime is also shown to give rise to a small frequency upshift
with decreasing gap between the particle and the waveguide.

The paper is organized as follows. Section II specifies
the physical model. Section III introduces basic equations,
and describes the solutions of the scattering problem and
calculation of forces. Section IV presents the properties for
each component of the system (scattering properties for a
particle in free space and the dispersion properties of a slab
waveguide) and for the whole system (the excitation of the
particle by a guided mode). Section V gives our conclusion.

II. FORMULATION OF THE PROBLEM

The studied physical model is illustrated in Fig. 1.
We consider a dielectric particle (cylinder) that scatters a
guided mode of the dielectric slab. The scattering particle is
characterized by its radius R and dielectric constant εs . The
particle is surrounded by a background with dielectric constant
εb. The slab has thickness L and dielectric constant εg . The
distance (gap) between the slab and the particle is d. The
initial guided mode has power P0 and frequency ω. As a result
of the scattering, transmitted and reflected guided modes are
created. Only the case when the waveguide supports one mode
at the given ω, i.e., single-mode regime, will be explored. The
scattering also produces bulk radiation that carries power P +

b

in the upper and P −
b in the lower half-spaces. The result of

the scattering is the creation of the optical force F that acts
on the particle. Our aim is the analysis of the scattered
radiation, the balances of the electromagnetic powers and
momentum flows, and the properties of the created force.
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FIG. 1. (Color online) Geometry of the problem: a particle scat-
ters an incident guided mode supported by the slab.

We consider only the two-dimensional geometry shown in
Fig. 1. Within this geometry, two possible polarizations are
studied. The first case is when the electric field of the incident
mode has only z component [transverse electric (TE)]. The
second case is when the magnetic field of the incident mode
has only z component [transverse magnetic (TM)]. For all
situations studied in this paper, the particle and waveguide
are made of the same material with

√
εs = √

εg = 1.4. The
background is free space with εb = 1.

III. SOLUTION OF THE PROBLEM

To find the force, we first solve for the field distribution
created by scattering. After that, we calculate the force based
on the Lorentz formula and show that it is consistent with
that from the conservation of the flow of the electromagnetic
momentum. We treat explicitly the TM case. This allows us
to keep the notation simple and to refer to [23], which also
considers the TM case. The TE case can be obtained with
a rather straightforward modification of the formulas and,
therefore, only results are given.

A. Finding the electromagnetic fields

We assume a ∼e−iωt dependence for all complex fields. The
magnetic field of the incident TM mode (propagating in the +x

direction) has the following form for y > −a (a = R + d):

Hi
z (x,y > −a) = B0e

ih0x−�0(y+a), (1)

where H0 is the value of the magnetic field at y = −a

boundary. The wave number h0 and the decay constant �0

are defined by the dispersion properties of the guided modes
described in Sec. IV B.

The total field inside the particle is represented in terms of
the cylindrical functions:

Hz(r) =
∑

n

AnJn(ksr)einϕ, r < R, (2)

where An are some unknown complex coefficients and
ks = √

εsω/c. The total field outside of the particle can be
represented as a sum of the initial field (1) and scattered field:

Hz(r) = Hi
z (r) + Hs

z (r). (3)
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The scattered field can be represented as a field created by
some effective magnetic current j (ϕ) localized on the particle
surface:

Hs
z (r) =

∫ 2π

0
dϕ′j (ϕ′)G(r,r′), (4)

where G(r,r′) is the Green’s function for the system consisting
of the background material and the slab. To adopt the approach
of Ref. [23], we need to change the reflection coefficient in the
integral representation of the Green’s function. The reflection
and transmission coefficients for a TM plane wave (with h

being the x component of its wave number) incident on the
slab are

rbg = (1 − ξ 2)eiφg (eiφg − e−iφg )D−1, (5a)

tbg = 4ξ eiφgD−1, (5b)

where

D = (1 + ξ )2 − (1 − ξ )2e2iφg ,

and ξ = gbεg/(ggεb), φg = ggL, and gg,b =√
εg,bω2/c2 − h2. Replacing Eq. (19) of Ref. [23] with

Eq. (5a) gives the required G(r,r′). The rest of the solution
procedure remains the same. Similar to Eq. (2), we can expand
the effective currents into angular components

j (ϕ) =
∞∑

n=−∞
jne

inϕ. (6)

Matching the tangential components of the fields inside and
outside of the particle, we obtain a system of linear equations,
which solving gives the expansion coefficients An and jn.
These coefficients allow us to find all scattered fields, both
guided by the slab and propagating in the bulk medium. In
particular, the distribution of the far-field radiation is needed
for finding the balances of power and of momentum flow. The
magnetic field in the far-field region is

Hz(r) = f (ϕ)√
kbr

e−iπ/4+kbr . (7)

The far-field distribution f (ϕ) in Eq. (7) is

f (ϕ) = i

√
π

2

∑
n

jn(−i)nJn(kbR)

×
{

[einϕ + rbg(kbx)e−inϕ+2ikbya], 0 < ϕ < π,

einϕ−ikbyLtbg(kbx), π < ϕ < 2π,

(8)

where kbx = kb cos ϕ, kby = kb sin ϕ, and kb = √
εbω/c. The

reflection rbg and transmission tbg coefficients are given by
Eq. (5).

B. Finding the electromagnetic force

There are three convenient ways to find the electromagnetic
force acting on the particle using the known field distribution.
We start with applying the Lorentz formula for the force acting
on a dielectric object. The Lorentz force F consists of two terms

F = Fe + Fm, (9)

where

Fe =
∫

d	 σEσ , Fm = 1

c

∫∫
dS

∂P
∂t

× B. (10)

The first term Fe describes the sum of all forces acting on
small surface polarization charges σ d	 due to the presence
of the field Eσ created by other sources. The surface charge
density σ is related to the jump of the bulk polarization P.
The polarization P is obtained from the electric field and
permittivity. In calculating Eσ , the fields on both sides of the
surface can be used to exclude the field created by the charge
itself. The second term Fm describes the force acting on the
bulk current created by the oscillating polarization P. The elec-
tric component of the force appears only on the surface of the
particle, while the magnetic component is distributed over the
volume.

For TM polarization, all quantities entering into Eq. (10)
can be expressed using the expansion of the magnetic field (2)
inside the particle. This allows one to integrate the Bessel
functions and obtain the following expression for the x

component of the Lorentz force (for εb = 1):

Fe
x = (εs − 1)

2ε
3/2
s

c

ω

∑
n

Re(AnA
∗
n+1)

[
(n + 1)J 2

n+1(s)

+ nJ 2
n (s) + εs − 1

s
n(n + 1)Jn(s)Jn+1(s)

]
, (11)

Fm
x = −εs − 1

2ε
3/2
s

c

ω
s
∑

n

Re(AnA
∗
n+1)Jn(s)Jn+1(s), (12)

where s = ksR. Re(ξ ) denotes the real part of a complex
number ξ . The y components of the force can be calculated by
taking the imaginary parts instead of the real parts in Eqs. (11)
and (12). Note that the coefficients An represent the expansion
of the total field inside the particle. According to (11) and (12),
the existence of force requires the presence of at least two
nonzero coefficients An. Expressions (11) and (12) allow one
to calculate the force without any time-consuming integration
procedures since all integrations were carried out analytically
using the cylindrical functions.

Another approach to find the force is to use the Maxwell
stress tensor. While the application of the Lorentz formula
requires integration over the volume of the particle, the
Maxwell stress tensor requires only integration over the surface
outside the particle. Expressing the propelling force Fx for TM
polarization using the Maxwell stress tensor one obtains

Fx = R

8π

∫ 2π

0
dϕ

[(
E2

ρ − E2
ϕ − H 2

z

)
cos ϕ − 2EρEϕ sin ϕ

]
,

(13)

where all fields are real and evaluated just outside the particle.
It is convenient to express the fields outside the particle through
the fields inside it using the usual boundary conditions. Using
the expansion of the internal fields and integrating over the
angle one arrives at exactly the same formula as the total force
given by the sum of (11) and (12). As expected, the Lorentz
formula and Maxwell stress tensor give the same result for
the force in terms of the expansion coefficients for the fields
inside. Using (13) gives the total force, rather than its electric
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and magnetic components separately; see Eqs. (9) and (10).
The components can still be separated even using the Maxwell
stress tensor if one also integrates the tensor over the surface
just inside the particle and uses the result to extract the force
acting on the surface. Indeed, the electric component of the
propelling force Fe

x in Eq. (10) can be written as

Fe
x = (εs − 1)R

8π

∫ 2π

0
dϕ

[
(εs + 1)E2

ρ cos ϕ − 2EρEϕ sin ϕ
]
,

(14)
where the fields are real and evaluated inside the particle. The
same expression is obtained by taking the difference in (13)
evaluated outside the particle and inside it and then expressing
the fields outside in terms of the fields inside.

For TE polarization, the electric component of force in (9)
is absent since there are no surface charges. The magnetic
component of force is given by the same formula (12) as for
the TM case except that An are the coefficients that describe
the electric field Ez and there is an additional multiplier equal
to −εs .

The force acting on the particle-waveguide system can
also be found by considering the change of the flow of the
electromagnetic momentum created by the incident mode and
all scattered modes. The incident guided mode with wave
number h0 and power P0 creates the momentum flow M0

which is equal to

M0 = h0

ω
P0. (15)

The same formula can be used to find the momentum flow of
the reflected and transmitted guided modes. For scattered bulk
radiation, the momentum flow can be calculated by using its
far-field distribution f (ϕ). We also mention that the force in
a multiport system can be calculated by finding variations in
the transmission and reflection coefficients under some small
displacement [33].

IV. RESULTS

Before considering the interaction between a particle and
a waveguide, we study their individual properties. First,
we start by considering the scattering of a plane wave on
the particle. This allows us to identify the resonant modes
of the particle and their spectral signatures. We study two
quantities—the scattering cross section and the propelling
force. Second, we study the waveguiding properties of the
slab. And finally, we move to the scattering of the guided
mode by the particle. This allows us not only to obtain the
properties of the particle-waveguide system but also to identify
its distinguishing features.

A. Free-space scattering

The problem of scattering of a plane wave by a particle
in free space can be solved by expanding the fields inside
and outside as well as the incident plane wave in terms of
Bessel functions and applying the boundary conditions. The
scattering cross section is then obtained by either calculating
the power in the far-field region or by taking the scattering
amplitude in the forward direction.
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FIG. 2. (Color online) (a) Scattering σsc/D and (b) radiation
pressure σrp/D cross sections as functions of kR for a plane wave
with TE or TM polarizations incident on a scattering particle with√

εs = 1.4 in free space
√

εb = 1.

The force can be calculated by substituting the expan-
sion for the fields inside the particle into the Lorentz
formula (11),(12). It is convenient to normalize the force to
the power of the plane wave P0 incident on the geometrical
cross section equal to its diameter D = 2R. Alternatively, one
can calculate the force from the momentum flow and express
it in terms of the cross section for radiation pressure σrp [13]:

cFx

P0
= σrp

D
. (16)

The cross section for radiation pressure is related to the
extinction σext and scattering σsc cross sections and to the
far-field distribution f (ϕ):

σrp = σext − 〈cos ϕ〉σsc, (17)

where

〈cos ϕ〉 =
∫

dϕ cos ϕ|f (ϕ)|2∫
dϕ|f (ϕ)|2 . (18)

We calculated the left-hand side of (16) using the Lorentz
formula and the right-hand side using the far field and obtained
a perfect agreement.

The scattering and radiation pressure cross sections are
shown in Figs. 2 and 3. The cross sections are plotted as
functions of the dimensionless parameter kR with k = ω/c.
The scattering cross section shows a slow modulation with
series of small and narrow peaks. These peaks correspond to
the excitation of various order resonances. The most narrow
peaks correspond to the excitation of WGMs. We refer as
WGMs only to the modes with the lowest radial number. A
remarkable feature is that the excitation of WGMs is much
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FIG. 3. (Color online) Same as Fig. 2 but for larger kR.

more pronounced in the radiation pressure (or optical force)
spectrum as compared to that in the scattering spectrum.
However, the peaks of forces related to WGMs still remain
comparable to the background level. The difference between
TE and TM polarizations is mostly in the shift of the WGM
resonances.

To understand the increased efficiency of the WGM
excitation by guided modes later, let us look at the phase
velocities of the WGMs. The phase velocity vph = c/nph

at the surface of the resonator is determined by its phase
index

nph = nc

ωR
, (19)

where ω is the frequency of the corresponding mode with
azimuthal number n. The phase index for a WGM is found
from the position of the corresponding scattering peak and its
n. Another important property is the quality (Q) factor for
the resonances that can be found by dividing the position of
the peak to its FWHM (full width at half maximum). The
phase index and the Q factor as functions of kR are plotted in
Fig. 4. The phase index grows monotonically with increasing
azimuthal number n or the parameter kR. The index for the
TE modes is slightly greater than for the TM modes at similar
values of n or kR. The phase index is between the values
of the refractive indices of the background (

√
εb = 1) and the

particle (
√

εs = 1). This is explained by the partial localization
of energy inside and outside of the particle. The modes with
n < 15 have rather small Q factors and are not shown in
Fig. 4. On the other end, for n > 55, the Q factor becomes
very large. The numerically calculated Q factors in Fig. 4(b)
are fitted quite well with log10 Q ≈ −0.481 + 0.145kR for
TM polarization and log10 Q ≈ −0.269 + 0.146kR for TE
polarization. In practice, Q factors for the modes with large n

will be limited by various absorption or scattering mechanisms
that are not included in the considered model.
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FIG. 4. (Color online) (a) Phase index for WGMs with azimuthal
numbers 15 � n � 55 for a particle with

√
εs = 1.4. The dots show

the calculated values for each mode and the line is a guide to the eyes.
The larger dots show the modes with indices which are multiples of
five. (b) Q factors for the WGMs. The dots show the calculated values
and the straight lines are linear fits that extrapolate Q factors to the
values of kR outside of the fitted range.

B. Dispersion for a slab waveguide

We now turn to the waveguiding properties of the slab.
Figure 5 shows the phase index (ratio of the propagation wave
number h and free-space wave number k = ω/c) for the guided

 1

 1.1

 1.2

 1.3

 1.4

 0  1  2  3  4  5  6  7  8

h/
k

kL

TE, s
TE, a
TM, s
TM, a

FIG. 5. (Color online) Dispersion for a slab waveguide with√
εg = 1.4. The modes are labeled according to their polarization

(TE, TM) and symmetry of the transverse component of the field
(s: symmetric; a: antisymmetric). The black dots show the operating
points used for Figs. 6 and 8.
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modes. The phase index lies between the refractive indices
of the free space and the material of the slab. In order to
operate in the single-mode regime, we choose kL below the
cutoffs of the second (antisymmetric) modes for each type of
polarization. For the slab, the cutoff conditions (same for TE
and TM polarizations) are

kL = (m − 1)π/
√

εg − εb, (20)

where m = 1,2,3, . . . is the mode order. The single-mode
condition becomes kL < 3.2064. We will investigate the cases
of kL = 3,2 (labeled by dots in Fig. 5). The phase indices for
kL = 3 are nph = 1.2629 (TE) and nph = 1.2037 (TM). The
phase indices for kL = 2 are nph = 1.1946 (TE) and nph =
1.1139 (TM).

C. Distribution of scattered powers

We now turn to the case when a guided mode propagates
along the slab and is scattered by the particle. The scattering
results in the creation of other guided modes and bulk radiation.
Since we operate in the single-mode regime, there is only
one transmitted and one reflected guided mode with powers
Pt and Pr , respectively. The bulk radiation propagates in the
half-spaces above and below the slab with powers P +

b and P −
b ,

respectively. The power conservation states

Pt/P0 + Pr/P0 + P +
b /P0 + P −

b /P0 = 1 (21)

and was verified numerically.
The dependences of the scattered powers on the dimension-

less parameter kR are shown in Fig. 6. The transmission spec-
trum is characterized by a set of narrow dips that correspond
to the pronounced peaks in the scattered bulk radiation. The
reflected power remains very low. These features are related to
the excitation of WGMs. In contrast to the scattering of a plane
wave (shown in Figs. 2 and 3) no other resonances are clearly
observable in the given range of kR. The excitation of WGM
resonances shows maximum at around kR ∼ 25. The decrease
at larger kR can probably be attributed to the decrease of the
phase index of WGMs [see Fig. 4(a)] and reduction of phase
synchronization. However, the incident mode and the WGMs
do not have to be synchronized accurately if the interaction
between the particle and the waveguide is significant at small
values of the gap kd. Note that the scattering characteristics
shown in Figs. 6(a)–6(d) as functions of kR look quite similar
for the two polarizations even though the incident TM mode
has a lower phase index than that for the TE mode; see Fig. 5.
However, the corresponding WGMs for TM polarization also
have a lower phase index, see Fig. 4(a), and, therefore, the
phase mismatch for both polarization is similar for a given
kR. At resonances, the scattered powers in the upper and lower
half-spaces have comparable values. At small kR, when the
scattering does not have significant resonant enhancement, the
scattering in the upper half-space is larger than in the lower
half-space. Furthermore, the scattering of the TM wave is
larger than the TE wave. This is most likely due to longer
evanescent tails of the TM waves; see Fig. 5.

It is interesting to look at the distribution of the scattered
bulk radiation. Figure 7 shows the far-field distributions at two
values of kR: kR = 24.597 and kR = 25.019. All parameters
are the same as for Fig. 6. At one value (kR = 24.597), the
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FIG. 6. (Color online) (a) Transmitted and (b) reflected powers
of the guided mode and scattered bulk radiation in (c) upper and (d)
lower half-spaces as functions of kR for kd = 1.5 and kL = 3.

resonant excitation of the TE mode takes place while the TM
resonance is not excited. At the other value (kR = 25.019),
the resonant excitation of the TM mode takes place while the
TE resonance is not excited. These values of kR correspond
to the excitation of the TE and TM WGMs with azimuthal
number n = 30. The diagrams show normalized distributions
but the scattered power at resonance is much larger than
that at off resonance; see Fig. 6. Although the particle has
a perfect circular shape, the scattered power has strongly
anisotropic distribution. This can be explained by the fact that
the scattering originates in the region where the particle is
very close to the waveguide. The fast oscillations with angle
(at 0 < ϕ < π ) arise from the interference of the fields emitted
directly from the resonator and those that undergo reflection
from the slab. Unlike the case of the initial surface wave guided
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FIG. 7. (Color online) Angular distribution of power in the far-
field region for (a),(c) kR = 24.597 and (b),(d) kR = 25.019. The
other parameters are the same as for Fig. 6.

by a plasma boundary [23], the oscillations are not so deep due
to only partial reflection of the waves from the slab.

D. Electromagnetic force

Let us now look at the forces acting on the particle.
Figure 8 shows the forces that correspond to the situation
shown in Fig. 6. In general, the dips in the transmission
spectrum correspond directly to the resonant peaks of the
propulsion force. The ratio cFx/P0 exceeds unity. Considering
that the phase indices are nph = 1.2629 (TE) and nph = 1.2037
(TM), the force is comparable to Fx ≈ nphP0/c for both
polarizations. This means that the momentum flow of the initial
wave is transformed into the propelling force on the resonator.
The maximum value of force for the TE excitation is slightly
larger than in the TM case, in agreement with the larger value
of the phase index in the TE case. The smaller phase index
for the TM case and, therefore, longer evanescent tail can also
explain the slightly larger reduction in transmission for small
kR for the TM polarization as compared to that for TE.

Let us now take a lower phase velocity of the initial wave by
choosing a thinner slab kL = 2. The results are shown in Fig. 9.
The thinner slab creates modes with longer evanescent tails
outside of the slab. Therefore, it is natural that the transmission
for small kR decreases faster than for kL = 3. The excitation
of WGMs dominate the spectral features in this case as well.
The minimum of transmission due to the excitation of WGMs
moves to the region of smaller kR. This corresponds to the
efficient excitation of WGMs with slightly lower phase indices,
in agreement with the lower phase index of the incident mode.

The transverse force near the resonances has, in general, an
asymmetric profile; see Figs. 8(c) and 9(c). In some cases,
the peaks are almost antisymmetric, for example, the TM
case shown in Fig. 8. In other cases, the peaks are clearly
asymmetric. Moreover, the asymmetry can also have different
shapes. For example, the asymmetry in the TE case in
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FIG. 8. (Color online) (a) Transmitted power, (b) longitudinal,
and (c) transverse forces for the same parameters as Fig. 6. The
transmission spectrum is replotted from Fig. 6 for convenience.

Fig. 8 is such that the positive high-energy side (repulsion)
is significantly larger than the negative low-energy side
(attraction) of the peak. For the TM case illustrated in Fig. 9(c)
the opposite occurs: the positive high-energy side (repulsion)
is significantly smaller than the negative low-energy side
(attraction) of the peak. The asymmetry of the peaks can
be explained using a phenomenological theory of resonator-
waveguide coupling [8,34]. In that theory, the transverse force
consists of two terms: antisymmetric and symmetric with
respect to the resonant frequency. Depending on the coupling
parameters, the sum of the two terms can produce various
asymmetric shapes. The peaks of the transverse force can
exceed that for the longitudinal force. This does not contradict
the momentum balance.

Figure 9(b) shows that the maxima of the propelling forces
can exceed slightly the momentum flow for the incident mode.
This can only be explained by the noticeable momentum
carried by the scattered bulk radiation. Figure 10 shows
the momentum flow of the scattered bulk radiation along
the x direction. While for small kR the momentum flow
is positive, at resonances at 15 � kR � 30, the momentum
flow can become negative. This partial reflection explains the
appearance of the propelling force that exceeds the momentum
flow of the incident mode. It was verified that the force on the
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FIG. 9. (Color online) Same as Fig. 8 but for kL = 2.

resonator is equal to the difference in the momentum flow of the
incident mode and all scattered fields (transmitted and reflected
modes and bulk radiation). This means that the longitudinal
force on the waveguide is zero.

The y component of the momentum flow of the bulk
radiation is shown in Fig. 11. The upper and lower half-spaces
create momentum flows in the opposite directions. However,
the total momentum flow is not zero. This means that the
transverse force on the particle is not equal to the transverse
force on the waveguide. The total momentum flow of the
scattered bulk radiation has positive y component. This is
related to a slightly large bulk power scattered in the upper
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FIG. 10. (Color online) Momentum flow along the x direction of
the scattered bulk radiation for the same parameters as Fig. 9.
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for each type of polarization. Frame (c) shows the total momentum
flow.

half-space; see Figs. 6(c) and 6(d). Thus the total force
on the particle and the waveguide should have a negative
y component. The appearance of such a difference is a
direct consequence of the scattering. This is in contrast to
the interaction between two parallel waveguides where the
transverse forces acting on the waveguides have opposite
directions due to the absence of scattering.

E. Single resonant peak

We now focus on the properties of a single resonant peak
and how they change with varying gap. In practice, such
measurements are performed by scanning the wavelength,
usually in a relatively narrow range. This leads to changes
in kd and kR at the same time. In this particular situation,
the convenient dimensionless parameters are d/R, L/R, and
kR. However, to be somewhat more specific let us choose
R = 5 μm, L = 0.6 μm and look at the features related to
the excitation of WGMs with n = 30 (see Figs. 12 and 13) by
scanning the wavelength as several values of d. Starting from a
large d, the minimum of transmission initially becomes lower,
reaches zero, and then starts to increase. This is accompanied
by a monotonic broadening of the peak. The peak of the
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longitudinal force correlates well with the dip in transmission.
The transverse force has asymmetric features, as explained in
Sec. IV D.

It is interesting that the decrease in the gap leads to the shift
of the peak into the region of shorter wavelengths (blueshift).
However, the higher index of the slab as compared to free
space is expected to move it towards longer wavelengths. For
example, the redshift is often attributed to the effective increase
of the refractive index or the size of the resonator and it is a
basis for highly sensitive detection of various molecules [35].
Furthermore, one also expects that broadening of the resonance
due to the increased scattering should shift the resonance to
longer wavelengths, according to the general property of a
damped harmonic oscillator. The reason for such a counterin-
tuitive behavior can be the strong interaction with the guided
mode, in contrast to the perturbative approaches that predict
a redshift. Indeed, a decrease in the gap makes the distance
between the phase fronts created by the WGM at the waveguide
location shorter due to the curvature of the resonator surface.
The shorter distance between the phase fronts means that the
synchronization occurs with a guided mode with a larger wave
number, and thus a larger frequency. Thus the strong interac-
tion should increase the frequency of the resonator coupled to
the waveguide. Although the shifts are rather small in Figs. 12
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FIG. 13. (Color online) Same as Fig. 12 but for TM polarization.

and 13, much larger frequency upshifts were predicted when
a WGM resonator is coupled to a surface plasmon [23].

We note that in Ref. [32] the simulations produced the shifts
of the resonant mode downwards or upwards depending on the
microcavity-waveguide configuration and the resonant mode.
The frequency upshift was in the regime when the waveguide
was only slightly above the cutoff condition for the second
mode, while the downshifts were in multimode regimes.
Our simulations with slabs operating in multimode regimes
also resulted in frequency downshifts of the resonances.
Apparently, the single-mode regime plays an important role in
inducing the upshift of the resonant frequency of the resonator.

V. CONCLUSIONS

To conclude, a comprehensive analysis of the optomechan-
ical properties of the system consisting of a particle coupled
to a slab waveguide is presented. The results are obtained by a
rigorous solution of the Maxwell equations and account fully
for the interaction between the particle and the waveguide.
The problem is assumed to be two dimensional and both
polarizations (TE and TM) are investigated. It is shown that the
efficient excitation of the WGMs in the particle by a guided
mode gives rise to the creation of the propelling force on
the particle with values comparable to or even exceeding the
value of the momentum flow of the incident mode. This is
explained by the presence of some longitudinal momentum
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of the scattered bulk radiation in the backward direction.
The bulk radiation has an anisotropic distribution in a wide
angular range. The transverse momentum of the bulk radiation
produces a difference in the magnitudes of the forces acting
on the particle and on the waveguide. It was also shown that
the frequencies of the WGMs in the particle can be slightly
upshifted (blueshift) with decreasing particle-to-slab distance.
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