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Three-level spin system under decoherence-minimizing driving fields: Application to
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Within the framework of a general three-level problem, the dynamics of the nitrogen-vacancy (NV) spin is
studied for the case of a special type of external driving consisting of a set of continuous fields with decreasing
intensities. Such a set has been proposed for minimizing coherence losses. Each new driving field with smaller
intensity is designed to protect against the fluctuations induced by the driving field at the preceding step with
larger intensity. We show that indeed this particular type of external driving minimizes the loss of coherence,
using purity and entropy as quantifiers for this purpose. As an illustration, we study the coherence loss of an NV
spin due to a surrounding spin bath of 13C nuclei.
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I. INTRODUCTION

Three-level systems arise in many physical contexts. A
particularly interesting case is the effective Hamiltonian of
the electronic spin with three states, |mS〉 = |−1〉,|0〉,|1〉, of a
nitrogen vacancy (NV) center in diamond that serves currently
as a platform for addressing a variety of fundamental questions
and applications in quantum information (see, for example,
Refs. [1–25]). Field-free NV centers in diamond possess very
long decoherence times even at room temperature. On the
other hand, a precise control of the dynamics of NV spins is
achievable via external driving fields rendering possible the
use of NV impurity spins as sensors in magnetic resonance
force microscopy [26,27].

For practical applications, particularly in quantum infor-
mation processing, the loss of coherence is a critical issue
and ways to minimize it are of vital importance. In the last
few years, the protection of the state of the system from the
environment has been addressed by applying fast and strong
pulses [28–33]. The motivation behind such pulsed dynamical
decoupling is attributed to Hahn’s “spin-echo” experiment
where refocusing pulses are used to decouple the spin and
the environment [34]. However, spin echo is related to the
collective effect for a macroscopic number of spins and thus
not directly applicable to quantum logic gates.

The basic problem for quantum logic gates is commutation
between the decoupling pulses and the control pulses. In spite
of the success of pulsed dynamical decoupling schemes in
decoupling the deleterious effects of environment, their role
has been found to be complicated when implemented with
quantum logic gates [35]. NV centers usually are surrounded
by 13C nuclear spins and cannot be completely decoupled
from the unwanted interactions with that 13C spin-based
environment. The resulting loss of coherence of the central NV
spin has been a serious concern for the usage of NV centers
in quantum computing. The environment acts effectively as a
random magnetic field which contributes to the energy level
splitting of the NV center, leading to decoherence. Therefore,
a challenge for any protection scheme for NV centers is to
minimize the effect of this random magnetic field.

In order to achieve flexibility in implementing various high
fidelity quantum logic tasks, a continuous wave dynamical de-
coupling scheme has been introduced recently [11,36–41] with
the following basic idea: An equally weighted superposition
of the states |−1〉,|1〉 can result in states with eigenvalues
insensitive to the random field. Such an equally weighted
superposition can be obtained by applying two off-resonant
continuous microwave driving fields to |0〉 → |1〉, |0〉 →
|−1〉. This scheme is easily realizable experimentally and
was successful in controlling to some extent the decoherence
of quantum states due to the environment. While protecting
the NV center from the influence of the environment, this
scheme has, however, collateral effects as well, itself being
a source of another type of decoherence identified with
unavoidable fluctuations of the amplitude of the driving pulses.
Random and systematic fluctuations arising from the driving
field (microwave) may reduce the coherence time of the
quantum state of the NV spins.

In a recent paper, Cai et al. [42] have considered a particular
type of external driving scheme termed as concatenated
continuous decoupling scheme. This scheme is designed to
minimize the loss of coherence due to the environment and
also from the fluctuations of the amplitude of driving field.
The main idea of their proposed driving protocol is to provide
a set of continuous driving fields with decreasing intensities. A
smaller intensity of the driving field naturally leads to a lower
absolute value of fluctuations. In such a driving protocol, each
new driving field with a smaller intensity is supposed to protect
against the fluctuations caused by the driving field acting at the
preceding step with a larger intensity. This driving protocol
is quite complicated, however, for practical applications in
the case of a three-level system. Other papers [43,44] have,
therefore, addressed this issue for a three-level system only
for a simpler driving case.

To go further, we consider a method that has been
developed to study the time dependence of a general three-
level system [45–47] which, in principle, allows the study
of arbitrary driving. In the present work, we utilize this
method [45–47] to study the NV three-level spin system
and consider the nonmonochromatic external driving scheme
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FIG. 1. (Color online) A level diagram for the NV center with
time-dependent driving fields.

proposed by Cai et al. [42]. Our ultimate goal is to minimize
the loss of coherence between the NV spin system and the
driving field. We investigate the loss of coherence due to
neighboring 13C nuclear spins and check the applicability of
nonmonochromatic external driving schemes to minimize the
loss. For this purpose, we quantify the coherence between the
spin system and the driving field in terms of purity [48] and
entropy.

II. MODEL

The NV center in diamond consists of a substitutional
nitrogen atom with an adjacent vacancy. The total spin of
the many-electron orbital ground state of the NV center is
described by the spin triplet S = 1, mS = −1,0,1. States with
different mS are separated by a zero-field splitting which is of
the order ω0 = 2.88 GHz [11]. This kind of splitting is intrinsic
to the NV spin system, originating from spin-spin interactions
leading to the single-axis spin anisotropy DS2

z ∼ ω0 [49],
where Sz is the component of spin along the quantization
axis. Throughout this paper, we set � = 1. When an external
magnetic field �B0 is applied such that μB | �B0| < ω0, the
degeneracy is removed due to the Zeeman shift of the levels
|−1〉 and |1〉. The amplitude of the Zeeman shift is proportional
to the term ∼B0Sz. Microwave fields drive Rabi oscillations
between ground |0〉 and the excited states |±〉.

The Hamiltonian of a single NV spin system is given by

HNV =
∑
i=±1

(
−�i |i〉〈i| + �i

2
(|0〉〈i| + (|i〉〈0|)

)
. (1)

Here �i and �i denote the detunings and Rabi frequencies of
the two microwave transitions. For a weak magnetic field such
that μB | �B0| � ω0, one can neglect the level splitting and set
�−1 = �+1, and similarly for the driving fields, �−1 = �+1.
In this case, the Hamiltonian in Eq. (1) couples the ground
state |0〉 to the “bright” superposition of the excited states,
|b〉 = 1√

2
(|−1〉 + |1〉). Therefore, the model is equivalent to an

effective two-level system. However, if the external magnetic
field is strong enough, then we have to proceed with a
three-level model in Eq. (1). A level diagram for the NV spin
system is shown in Fig. 1. In the basis |0〉, |−1〉, and |1〉, the

Hamiltonian in Eq. (1) can be rewritten as (to simplify notation
we abbreviate �±1 ≡ �±; �±1 ≡ �±)

H =

⎛
⎜⎝

0 �−
2

�+
2

�−
2 −�+ 0

�+
2 0 −�+

⎞
⎟⎠. (2)

For fixed values of �− and �+, the above model Hamil-
tonian is time independent and its time evolution can be
easily calculated. However, the solution is nontrivial for a
time-dependent Hamiltonian with parameters � and � time
varying functions. In what follows, we will consider a special
time-dependent concatenated continuous decoupling (CCD)
driving scheme which not only suppresses the decoherence due
to the environment but also nullifies the effects of fluctuations
in the driving field itself. This special driving has been
implemented in experiments recently and the performance
in improving the coherence time of the state of the system
against environmental fluctuations has been found to be
exceptional.

Introduced by Cai et al. [42], this special CCD driving
scheme can control the coherence time of the NV spin by
protecting it against fluctuations of the driving field at the
preceding level. Before using this CCD scheme for the three-
level NV centers, we will briefly discuss its implementation
using a simpler two-level system. Consider a two-level system
given by the following Hamiltonian:

H = H0 + H1
d , (3)

where the first term H0 = ω
2 σz is the Hamiltonian in the

absence of the driving field. It describes a system with two
eigenstates |↑〉 and |↓〉 (eigenstates of Pauli matrix σz) with
eigenvalues ω↑(=+ω/2) and ω↓(=−ω/2). But environmental
noise may cause fluctuations in ω↑ and ω↓. In an attempt
to protect the state of the system against such fluctuations,
a driving field term in the Hamiltonian H1

d = �(t)σx on
resonance with the energy difference ω between the two
eigenstates is introduced. In the simplest case, we choose a
continuous wave periodic driving field given by

�(t) = �1 cos(ωt). (4)

In the interaction picture with respect to H0, we find
HI = eiH0tH1

de
−iH0t , and subsequently, using the rotating

wave approximation, HI = �1
2 σx . The new eigenstates |→

〉x = 1√
2
(|↑〉 + |↓〉) and |←〉x = 1√

2
(|↑〉 − |↓〉) are dressed

states and eigenstates of Pauli matrix σx . Thus the effect of
fluctuation is only to induce transitions among the dressed
states. In this formalism, the effects of fluctuations arising
due to environment are suppressed. However, in realistic
experiments, the fluctuations arising due to the limited stability
of the microwave source will still cause fluctuations in the
energies of the dressed states. This fluctuation can be taken as
a stochastic noise term in the amplitude of the first-order term.

In order to achieve protection from the fluctuations arising
due to the driving field, a concatenated set of continuous
driving fields can be used to decouple the system with these
fluctuations. The fluctuation due to the driving field up to the
first-order term �1 cos(ωt) can be suppressed by introducing
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a second-order term such that

�(t) = �1 cos(ωt) + 2�2 cos

(
ωt + π

2

)
cos(�1t). (5)

This second-order term in the driving field is in resonance with
the energy gap between dressed states due to the first-order
term. Thus, in the above equation, Eq. (5), the first term protects
the system from the fluctuations arising due to the surroundings
while the second term minimizes the fluctuations due to the
first term. The amplitude of the second-order driving, �2, is
smaller than �1. In the Appendix, we explicitly show how
the effects of fluctuations caused by environment and driving
fields simultaneously are reduced by using the CCD driving.

We turn next to the more general case with level splitting
not neglected and two driving fields distinguished by ± as in
Fig. 1. In each driving field, we consider as above first order,
and second order. These are

�
(I)
± (t) = �

(1)
± cos(ω±t) (6)

and

�
(II)
± (t) = �

(1)
± cos(ω±t) + 2�

(2)
± cos

(
ω±t + π

2

)

× cos(�(1)
± t). (7)

Similarly we may consider third-order driving fields as

�
(III)
±1 (t) = �±1 cos(ω±t) + 2�±2 cos

(
ω±t + π

2

)
cos(�±1t)

+ 2�±3 cos(ω±t) cos(�±2t). (8)

In Eqs. (6)–(8), ω± are frequencies of oscillation of the
driving fields and �

(1)
± , �

(2)
± , and �

(3)
± are amplitudes of first-,

second-, and third-order terms, respectively. As discussed
in the Appendix for a simple two-level system, the rotating
wave approximation demands �

(3)
± � �

(2)
± � �

(1)
± ; therefore,

we choose the amplitudes of the driving field appropriately
in our numerical calculations. The point to be noted is that
higher-order terms protect the fluctuations arising from the
preceding order term. For example, for a driving field up
to second order, the first-order term evolves the initial state
|0〉 (eigenstate of NV Hamiltonian without driving field) to
dressed states which are protected against fluctuations due to
the environment (see the above discussion and appendix for
our simple case). However, they are vulnerable to fluctuations
arising due to the driving field itself. The reason for such
fluctuations in the driving field is due to the limitation of
microwave sources in practical applications. The second-order
term, however, protects these dressed states against the noise
in the first-order driving field itself.

III. CONCATENATED CONTINUOUS DECOUPLING
SCHEME FOR NV SPIN

In the preceding section, we discussed a special time-
dependent driving field �(t) given by Eq. (6) when considered
up to a first-order term, Eq. (7) when a second-order term is also
involved, and Eq. (8) when a third-order term is also included.
This driving is special in the sense that it protects the state of
the NV spin against the fluctuations from the environment and
the driving field itself.

In this section, we will solve the time-dependent Hamil-
tonian, Eq. (1), for this special time-dependent driving using
a unitary integration method discussed in Refs. [45–47]. In
order to solve this time-dependent Hamiltonian, let us present
it in a block diagonal form [45–47] as

H = H (N) =
(

H (N−n) V

V † H (n)

)
. (9)

In the above equation, the diagonal blocks H (N−n) and H (n) are
(N − n)- and n-dimensional square matrices. In what follows,
the superscript in parentheses indicates the dimension of the
square matrices. Here N = 3, n = 1 for our interest:

H (2) =
(

H11 H12

H21 H22

)
, H (1) = H33,

(10)

V =
(

H13

H23

)
, V † = (H31 H32),

but we set up what follows more generally. H11,H12, . . . are
elements of the Hamiltonian.

The time evolution of this Hamiltonian can be written as
U (3)(t) = Ũ1Ũ2 [45–47], where

Ũ1 =
(

I (2) z(t)

0† I (1)

)(
I (2) 0

w†(t) I (1)

)
(11)

and

Ũ2 =
(

Ũ
(2)

0

0† Ũ
(1)

)
. (12)

Here, I (2) and I (1) are identity matrices of dimensions 2 and
1, respectively, and

z(t) =
(

z1(t)

z2(t)

)
, w†(t) = [w1(t) w2(t)], (13)

for our case. 0 is a zero vector of dimension two. Ũ
(2)

and Ũ
(1)

are block diagonals of the evolution operator U (3)(t), and the
tilde symbolizes that matrices need not be unitary.

The block diagonal form of the unitary operator is advanta-
geous to solve the equation of motion iU̇

(3) = H (3)(t)U (3)(t),
which reduces to (an overdot will denote derivative with
respect to time)

i ˙̃U2 = Heff(t)Ũ2, (14)

where

Heff = Ũ−1
1 H (3)Ũ1 − iŨ−1

1
˙̃U1. (15)

As Ũ2 is block diagonal, the right-hand side of Eq. (14) must
ensure the vanishing of the off-diagonal blocks of Heff . This
leads to a condition for z(t) as

i ż = H (2) z(t) + V − z(t)[V †z(t) + H (1)]. (16)

A similar set of equations for w(t) can also be given, which
is related to z(t) as [45–47]

z(t) = −γ1w(t) = −w(t)γ2, (17)

where γ 1 = I (2) + z(t)z†(t) and γ 2 = [I (1) + z†(t)z(t)]−1. In
our particular case, the components of the z(t) vector are given
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by

iż1 = �−(t)

2
z2(t) + �+(t)

2
[1 − |z1(t)|2] + z1(t)�+,

(18)

iż2 =
(

�−(t)

2
− �+(t)

2
z2(t)

)
z1(t).

Equation (14), after using Eq. (16), has only diagonal blocks
on both sides. The components in explicit matrix form are
given as

i

⎛
⎜⎜⎝

( ˙̃U2)11 ( ˙̃U2)12 0

( ˙̃U2)21 ( ˙̃U2)22 0

0 0 ( ˙̃U2)33

⎞
⎟⎟⎠

=

⎛
⎜⎝

H eff
11 H eff

12 0

H eff
21 H eff

22 0

0 0 H eff
33

⎞
⎟⎠

⎛
⎜⎝

(Ũ2)11 (Ũ2)12 0

(Ũ2)21 (Ũ2)22 0

0 0 (Ũ2)33

⎞
⎟⎠,

where the components of the effective Hamiltonian are

H eff
11 = −�+(t)

2
(z1(t) − w1(t)[1 − |z1(t)|2])

+w1(t)

(
�+z1(t) + �−(t)

2
z2 − iż1

)
,

H eff
12 = �−(t)

2
[1 + w2(t)z2(t)]

+w2(t)

(
�+z1(t) + �+(t)

2
(1 − |z1(t)|2) − iż1

)
,

H eff
21 = [1 + w1(t)z1(t)]

(
�−(t)

2
− �+(t)

2
z2(t)

)
− iw1(t)ż2,

H eff
22 = −�+ + w2(t)

[
z1

(
�−(t)

2
− �+(t)

2
z2(t)

)
− iż2

]
,

and

H eff
33 = −�+[1 + w1(t)z1(t)] − �−(t)

2
[w2(t)z1(t)

+w1(t)z2(t)] − �+(t)

2
{w1(t)[|z1(t)|2 − 1]

− z1(t)[1 + w2(t)z2(t)]} + i [w1(t)ż1 + w2(t)ż2] .

(19)

The components of the effective Hamiltonian given by
Eq. (19), together with Eq. (18), are sufficient to calculate
the operator Ũ2. Also the solutions for z(t) [and w(t)] are
enough to calculate Ũ1. Here we note that operators Ũ1 and Ũ2

are not unitary. A unitarization procedure can be performed by
following Ref. [46] although it is not necessary, their product
guaranteed to be unitary for a Hermitian Hamiltonian by the
above construction. For the sake of unitarization, we should
take into account the product

Ũ
†
1 Ũ1 =

(
γ −1

1 0

0† γ 2

)
=

(
g1 g†

1 0

0† g2 g†
2

)−1

, (20)
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FIG. 2. (Color online) Level population |C1|2 plotted as func-
tions of time for a fixed driving, a first-order driving field, and a
second-order driving field given by Eqs. (6) and (7). The parameters
for first- and second-order driving fields are ω+ = ω− = 0.15, �(1)

± =
0.9, �

(2)
± = �

(1)
± /2, and �+ = −1. Oscillations in level population

due to the oscillating driving field can be easily distinguished. Time
scale is defined by zero field splitting ω0 and is of the order of a
nanosecond.

and perform a gauge transformation using Hermitian square
root matrices g1 and g2 as

U1 = Ũ1

(
g1 0

0† g2

)
(21)

and

U2 =
(

g1
−1 0

0† g−1
2

)
Ũ2. (22)

A useful quantity for investigation is the level population,
defined as |Ci |2 = |〈i|ψ(t)〉|2, where i = 1,2,3 and ψ(t) =
U (3)(t)|1〉. Here levels |0〉, |−1〉, and |1〉 in Fig. 1 are relabeled
as |1〉, |2〉, and |3〉. In all the studies below, we calculate the time
evolution from t = 0 to tmax. Figure 2 displays the population
in the first level as a function of time for fixed driving
and oscillating driving fields given by Eqs. (6) and (7). The
parameters are set arbitrarily. The oscillations in the driving
field change the level population significantly. In Fig. 3, we
extend to larger time, again with an arbitrary set of parameters,
and show also populations for all three levels. The evolution
operator is calculated by the method discussed above. In Figs. 2
and 3, since we consider �+(t) = �−(t), this results in equal
population in levels 2 and 3, so that |C2

2 | and |C2
3 | overlap.

For the first-order driving, we see that as time progresses
the population in level 1 decreases from its maximum value,
reaching a lowest value of 0.4. Correspondingly, the population
in levels 2 and 3 rises from zero to 0.3 for both. For longer
times, level populations oscillate, with recurrences of the
populations at t = 0. For the case of second-order driving,
similar oscillations and recurrences occur albeit at different
values of t , with the additional feature that the population in
level 1 drops to zero at certain points, with levels 2 and 3
correspondingly rising to 0.5.
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FIG. 3. (Color online) Level populations |Ci |2 = |〈i|ψ(t)〉|2, i =
1,2,3 as functions of time. (a) Solid lines correspond to first-order and
(b) dashed lines to second-order driving fields. Parameters same as in
Fig. 2, ω+ = ω− = 0.15, �

(1)
± = 0.9, �

(2)
± = �

(1)
± /2, and �+ = −1,

but results extended to larger time. Green and blue curves of Fig. 2
now in red, solid and dashed, respectively. Time scale is defined by
zero-field splitting ω0 and is of the order of a nanosecond.

Let us expand the discussion to systems with dissipation. It
should be noted that till now we have not included fluctuations
due to environment or driving field. We first analyze the
system using a Liouville–von Neumann–Lindblad equation
containing dissipation and decoherence terms and solve it
using the unitary integration method. We will start with a
Liouville–von Neumann–Lindblad master equation for the
density matrix, which has the following form [50,51]:

iρ̇ = [H,ρ] − i

2
(L†Lρ + ρL†L − 2LρL†), (23)

with H given by Eq. (9). The Lindblad opeartor L in the above
equation introduces irreversible dissipation and decoherence
to the system and is taken in the form

L =
√


λ
(G)
i =

√



⎛
⎜⎝

0 1 0

1 0 0

0 0 0

⎞
⎟⎠. (24)

Here λ
(G)
i are the Gell-Mann matrices [52].


 in the above equation sets the rate of relaxation due to
dissipation. It may be noted that the evolution of ρ in Eq. (23)
may be nonunitary but the form of the equation preserves
trace operation of ρ as well as positivity of probabilities.
More mathematical details related to such superoperators
and dynamical semigroups can be referred to in Ref. [53].
Substituting the above form of the Lindblad operator into
Eq. (23), the nine elements of the density matrix can be written
as

iρ̇11 = −i
(ρ11 − ρ22) − �−(t)

2
ρ12 − �+(t)

2
ρ13

+ �+(t)

2
ρ31 + �−(t)

2
ρ21,

iρ̇12 = i
ρ21 + (�+ − i
)ρ12 + �−(t)

2
(ρ22 − ρ11)

+ �+(t)

2
ρ32,

iρ̇13 = �+(t)

2
(ρ33 − ρ11) +

(
�+ − i




2

)
ρ13 + �−(t)

2
ρ23,

iρ̇21 = i
ρ12 − (�+ + i
)ρ21 + �−(t)

2
(ρ11 − ρ22)

− �+(t)

2
ρ23, (25)

iρ̇22 = �−(t)

2
(ρ12 − ρ21) + i
(ρ11 − ρ22),

iρ̇23 = �−(t)

2
ρ13 − �+(t)

2
ρ21 − i




2
ρ23,

iρ̇31 = �+(t)

2
(ρ11 − ρ33) −

(
�+ + i




2

)
ρ31 − �−(t)

2
ρ23,

iρ̇32 = −�−(t)

2
ρ31 + �+(t)

2
ρ12 − i




2
ρ32,

iρ̇33 = �+(t)

2
(ρ13 − ρ31).

Though we have shown explicitly the evolution of the
nine components of the density matrix in terms of nine
coupled equations, the tracelessness of the right-hand side of
Eq. (23) guarantees the preservation of Trρ. Hence one
equation can be eliminated during the evolution. In order to
calculate the evolution of the density matrix, we define ξ1 =
ρ11, ξ2 = ρ12, ξ3 = ρ13, ξ4 = ρ21, ξ5 = ρ22, ξ6 = ρ23, ξ7 =
ρ31, ξ8 = ρ32. Hence, instead of the Hamiltonian [Eq. (1)]
and the Liouville–von Neumann–Lindblad equation of motion
[Eq. (23)], we can now cast it in the form

iξ̇ = P(t)ξ (t), (26)

where

ξ̇ (t) = (ξ̇1(t), ξ̇2(t), ξ̇3(t), ξ̇4(t), ξ̇5(t),

ξ̇6(t), ξ̇7(t), ξ̇8(t), ξ̇9(t)), (27)

and P(t) is a 9 × 9 matrix whose elements are drawn from
Eq. (25). We solve Eq. (26) for the particular type of
time-dependent driving fields discussed in Eqs. (6) and (7).
A quantity of interest is purity that quantifies entanglement
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FIG. 4. (Color online) Purity is plotted as a function of time for
constant, first-order, and second-order driving fields. For comparison,
the case of no driving field is also shown. As we include higher-order
driving fields, the purity of the system improves significantly. In all the
cases, 
 = 0.05 and �+ = 0.9. For time-dependent driving fields, the
parameters are ω+ = 1.0, ω− = 0.35, �

(1)
+ = 1.0, �

(1)
− = 0.8, �

(2)
± =

�
(1)
± /2, and �

(3)
± = �

(2)
± /2. Time scale is defined by zero-field splitting

ω0 and is of the order of a nanosecond.

between the driving field and atom. It is given as

P (t,|ψ〉) = Tr[ρ̂2], (28)

where ρ̂ = |ψ(t)〉〈ψ(t)| and

|ψ(t)〉 = C1(t)|0〉 + C2(t)|−1〉 + C3(t)|1〉. (29)

In Fig. 4, the purity P (t,|ψ〉) is plotted as a function of time
for no driving, constant driving, first-order, second-order, and
third-order driving fields. The first-, second-, and third-order
drivings are given by Eqs. (6), (7), and (8). In all the cases,
ω+ = 1.0 and ω− = 0.35. It can be seen that higher-order
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FIG. 5. (Color online) Purity for second-order driving field is
plotted as a function of time for 
 = 0.05, 0.1, and 0.5. As in previous
figures, ω = 0.15, �(1)

± = 0.9, �(2)
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(1)
± /2, and �+ = −1. It can be

seen that increasing the decoherence 
 reduces the purity. Time scale
is defined by zero-field splitting ω0 and is of the order a nanosecond.
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FIG. 6. (Color online) The evolution of entropy is plotted for no
driving, constant driving, first-order, and second-order drivings. In
all the cases, 
 = 0.05 and �+ = 0.9. For time-dependent driving
fields, the parameters are ω+ = 1.0, ω− = 0.35, �

(1)
+ = 1.0, �

(1)
− =

0.8, �
(2)
± = �

(1)
± /2, and �

(3)
± = �

(2)
± /2. Time scale is defined by zero-

field splitting ω0 and is of the order of a nanosecond.

fields improve the purity of the state. In order to maximize the
purity in our numerical calculation we set the amplitude of the
successive order terms as �

(2)
± = �

(1)
± /2 and �

(3)
± = �

(2)
± /2.

Along with these amplitudes, other optimized parameters are
�

(1)
+ = 1.0, �

(1)
− = 0.8, ω+ = 1.0, ω− = 0.35, and �+ = 0.9.

We illustrated the dependence on the parameter 
 of the purity
in Fig. 5 for driving fields up to second-order terms for an
arbitrary choice of parameters. We see that the smaller the
value of 
, the more pure the state of the system at any
particular time.

In Fig. 6, we calculate the time evolution of another
quantity besides purity, namely, entropy defined as S =
−Tr(ρ log3 ρ) [54]. For this three-level system, we use the
base-3 logarithm, so as to standardize entropy to be zero for
a pure state and unity for the opposite case of a completely
random mixed state. The evolution of the entropy towards an
asymptotic value is consistent with the purity evolution shown
in Fig. 4. With any dissipation, coherences are finally lost, the
density matrix reaching a diagonal form. For the populations
noted earlier before dissipation is introduced, taking those sets
as the entries of a diagonal density matrix predicts values of P

and S as follows: for (0,1/2,1/2), P = 1/2, S = 0.631; for
(0.4,0.3,0.3), P = 0.34, S = 0.991, and for the completely
random state (1/3,1/3,1/3), P = 1/3, S = 1. Note that the
values of purity and entropy nearly coincide for the last two
cases.

IV. FLUCTUATIONS DUE TO SPIN BATH

With their unique physical properties, NV centers are
attractive for application in solid state quantum information
processing. However, considering NV centers as isolated
objects and neglecting environmental effects is unrealistic.
Most NV centers are surrounded by 13C nuclear spins and,
therefore, cannot be completely decoupled from the unwanted
interactions with a 13C spin-based environment. The loss of
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coherence of the central NV spin by a spin bath of surrounding
13C nuclei has been a serious concern for the usage of NV
centers in quantum computing.

In the previous sections, we demonstrated the advantage of
the CCD driving protocol in minimizing decoherence effects
in the three-level NV spin model. However, that treatment of
decoherence effects was quite general. In this last concluding
section, we will study particular aspects of the CCD driving
protocol for an NV center coupled to the 13C spin bath. This
coupling leads to a random fluctuating contribution in the
detuning term �i in Eq. (1) that cannot be completely captured
by a purely dissipative term in the Lindblad master equation.
In what follows, we demonstrate that the CCD driving protocol
extends also to the random fluctuations and thus can minimize
decoherence effects that are also specific to the 13C spin bath.
In doing so we will also take care of fluctuations arising from
the microwave source itself.

The hyperfine coupling of the NV spin to the 13C nuclear
spins causes a dephasing of the central spin [2,10,31,41,55,56].
In principle, the quantum state experiences a random field due
the bath spins. Such effects are generic in nature and also
applicable for other solid state qubits such as spins in quantum
dots. The effect of the fluctuating random field term can be
represented by a term Hhf = Szẑ · ∑

j Aj · �Ij (≡Szbz) in the
Hamiltonian, where Aj is the hyperfine coupling of the j th
nuclear spin �Ij to the NV spin and bz = ∑

j Aj · �Ij . Here we
neglect the transverse component of the hyperfine coupling
because the effects arising from that component are negligibly
small [55]. This hyperfine coupling provides effectively a
fluctuating field bz.

In a mean-field approximation, the random field bz can
be considered as a mean field due to all the neighboring 13C
nuclei that results in a net fluctuating detuning of the driving
frequency of the pulse from resonance [30]. Thus the random
field bz can be incorporated in the Hamiltonian of the NV spin
by considering an effective detuning �+ + ζ (t) and �− + ζ (t)
to the excited levels mS = +1 and mS = −1, where ζ (t) is a
random time-dependent sequence incorporating the fluctuating
field. The modified Hamiltonian of the NV spin in the presence
of random fields can thereby be written as

HNV =
∑
i=±1

(
[−�i + ζ (t)]|i〉〈i| + �i

2
(|0〉〈i| + (|i〉〈0|)

)
.

(30)

Now we investigate the response of CCD driving in
the presence of fluctuating random fields by evolving the
Hamiltonian (30) and calculating again the purity and entropy
with this new Hamiltonian. Our aim is to demonstrate that the
CCD driving protocol is still efficient, even in the presence of
noise due to surrounding spin bath and a noise due to the
driving field source itself. The random field term in the above
Hamiltonian as well as in the driving field can be modeled as
an Ornstein-Uhlenbeck (OU) process governed by [57]

ζ (t + dt) = ζ (t)e−dt/τ +
√

cτ

2
(1 − e−2dt/τ )nr, (31)

where nr is a unit normal random variable with zero mean
and unit variance, and ζ (0) = 0. τ and c are positive con-
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FIG. 7. (Color online) Purity in the presence of noise of the
surrounding heat bath for a constant driving; for first-order driving
with noise from the MW source itself; and for the second-order
driving case, when the second-order term overcomes the fluctuation
in �

(1)
± . The inset shows second-order driving for varying noise

intensities of the surrounding spin bath with a fixed noise (In = 0.001)
in the amplitude �

(1)
± . Periodic drivings improve the purity in the

presence of noise as compared to the constant driving case. Increasing
the noise strength lowers the purity, as expected. The various noises
for different intensities are also shown. The numerical simulation
has been done for 1000 realizations. Parameters are the same as in
Fig. 4, ω+ = 1.0, ω− = 0.35, �

(1)
+ = 1.0, �

(1)
− = 0.8, �

(2)
± = �

(1)
± /2,

and �+ = 0.9. The relaxation parameter is taken as 
 = 0.05. Time
scale is defined by zero-field splitting ω0 and is of the order of a
nanosecond.

stants called the relaxation time and the diffusion constant,
respectively, of the 13C nuclear spins in the vicinity of the NV
spin of interest. The variance of the OU process is defined
as σ 2 = cτ/2 and the autocorrelation function is given by
〈ζ (0)ζ (t)〉 = σ 2e−|t |/τ [58]. In = σ 2τ (≡cτ 2) is a measure of
the intensity of noise.

In our numerical calculation, the amplitude of random field
fluctuations can be varied by changing the noise intensity In.
We investigated the time evolution of purity using the density
matrix given by Eq. (23) for the Hamiltonian in Eq. (30)
and relaxation parameter 
 = 0.05. Figure 7 shows the purity
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FIG. 8. (Color online) The evolution of entropy is plotted in the
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driving; for first-order driving with noise from the MW source
itself; and the second-order driving case, when the second-order
term overcomes the fluctuation in �

(1)
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driving for varying noise intensities of the surrounding spin bath
with a fixed noise (In = 0.001) in the amplitude �

(1)
± . Parameters are

the same as in Fig. 6, ω+ = 1.0, ω− = 0.35, �
(1)
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(1)
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�
(2)
± = �

(1)
± /2, and �+ = 0.9 and the relaxation parameter 
 = 0.05.

Time scale is defined by zero-field splitting ω0 and is of the order of
a nanosecond.

for various cases with constant and periodic drivings in the
presence of noise with intensity In = 0.25 due to spin bath of
surrounding 13C nuclear spins. In order to improve the purity of
the system when a first-order periodic driving is applied, the
fluctuations inherent within the driving field start dephasing
the quantum state of the NV spin. Here we consider the noise
due to the MW source very small (In = 0.001) in comparison
to the noise due to the surrounding spins. The second-order
term as discussed in the previous section and given by Eq. (7)
overcomes the fluctuations arising due to the first-order term
and improves the purity. The averaging is done over 1000
realizations. The inset of Fig. 7 shows the effect of noise
on the purity for the second-order CCD driving case where
fluctuations are arising due to the neighboring spin bath and
due to the MW source itself. The fluctuations due to the MW
source are manifested in the amplitude of the first-order driving
field. As the noise strength increases, the purity of the system
declines but not as much as in the case of constant driving.
Hence, CCD driving holds merit over constant driving and
dephasing is minimized in the presence of the inherent noise
of driving fields.

A similar analysis for entropy is shown in Fig. 8. Here we
see that the entropy for the CCD driving case is smaller than
in the case of constant driving. However, while overcoming
the fluctuations due to the neighboring spins and the source
itself, the introduction of higher-order driving fields lowers
the entropy. The findings in Fig. 8 are consistent with that
in Fig. 7. The inset of Fig. 8 shows the evolution of entropy
for second-order driving for different noise intensities in the
presence of inherent noise of the driving fields. As expected,
again, increasing the noise strength increases the entropy. Thus

we conclude that the nonmonochromatic CCD driving is useful
to minimize losses of the quantum state of the NV spin in the
presence of noise due to 13C nuclei, of interest for using NV
spins as qubits in quantum information.

V. CONCLUSION

We have studied the NV three-level system by applying
a driving field using a CCD scheme. A comparative study
for various orders of driving field is presented. In order to
study qualitatively the characteristics of the system, we have
calculated level populations, purity, and entropy as signifying
entanglement between the field and the atom. Various modes
of oscillations in the level populations can be seen by the
inclusion of higher-order driving field terms. A control of the
level population can be obtained for the higher-order driving
field terms. Also the inclusion of higher-order terms in the
driving field improves the purity of the system. We can also
see the effect of the Lindblad parameter 
 on the purity of the
system. Enhancement in purity is observed as dissipation in the
system is reduced. Also we have shown that the evolution of
entropy of the system gives complementary information. We
have also carefully investigated the quantum state evolution of
the NV spin in the presence of a spin bath comprised of 13C
nuclei. The CCD scheme does well in protecting the state of
the system in the presence of random fields originating from
the spin bath and the fluctuations due to the driving field itself.
In particular, the CCD driving protocol minimizes the entropy
of the system and maximizes purity.
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APPENDIX: CCD SCHEME FOR ENVIRONMENT AND
DRIVING FIELD FLUCTUATIONS: A CASE STUDY FOR A

TWO-LEVEL SYSTEM

Let us consider a two-level system in contact with the
environment. The Hamiltonian of the system is

H0 = ω + ζb(t)

2
σz. (A1)

The role of the spin-bath environment is to modify the
energy gap between the two eigenstates |↑〉 and |↓〉 of the
Hamiltonian. In the above equation ζb(t) is a noise term due to
the spin-bath environment. In order to suppress the magnetic
noise, we employ a continuous periodic driving field. However,
the driving field may also contain fluctuations. Let us consider
a first-order driving field term given by

H
(1)
d = �1[1 + ζ1(t)] cos(ωt)σx. (A2)

In the interaction picture with respect to H 1
0 = ω

2 σz and
subsequently using rotating wave approximation, the effective
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Hamiltonian takes the form

H
(1)
1 = �1[1 + ζ1(t)]

2
σx + ζb(t)

2
σz. (A3)

The dressed states are the eigenstates of the Pauli matrix
σx , i.e., |→〉x = 1√

2
(|↑〉 + |↓〉) and |←〉x = 1√

2
(|↑〉 − |↓〉).

It can be argued here that the magnetic noise term affects
the transition between |↑〉 and |↓〉 while the dressed states
are protected against ζb(t). In this manner we could decouple
the system from the environment. However, the fluctuations
ζ1(t) in the driving field still modify the rate of transition
between dressed states. In order to suppress ζ1(t), we apply a
second-order driving field term given by

H
(2)
d = �2[1 + ζ2(t)] cos

(
ωt + π

2

)
cos(�1t)σx. (A4)

Using this second-order term in the total Hamiltonian and
considering interaction picture with respect to H 1

0 = ω
2 σz

followed by the rotating wave approximation, the effective

Hamiltonian turns out to be

H
(1)
1 = �1[1 + ζ1(t)]

2
σx + �2[1 + ζ2(t)] cos(�1t)σy

+ ζb(t)

2
σz. (A5)

Let us take it further to a second-order interaction picture
with respect to H

(2)
0 = ω

2 σx . The effective Hamiltonian in the
second-order interaction picture will take the form

H
(2)
1 = �2[1 + ζ2(t)]

2
σy + �1ζ1(t)

2
. (A6)

The second-order dressed states are eigenstates of the Pauli
matrix σy , that is, |→〉y = 1√

2
(|↑〉 + i|↓〉) and |←〉y =

1√
2
(|↑〉 − i|↓〉). These second-order dressed states are pro-

tected against fluctuations ζ1(t) due the first-order driving field.
In the procedure discussed here we have adopted rotating wave
approximation which requires �2 � �1.
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[22] G. de Lange, D. Ristè, V. V. Dobrovitski, and R. Hanson, Phys.
Rev. Lett. 106, 080802 (2011).

[23] G. Waldherr, J. Beck, P. Neumann, R. S. Said, M. Nitsche,
M. L. Markham, D. J. Twitchen, J. Twamley, F. Jelezko, and
J. Wrachtrup, Nat. Nanotechnol. 7, 105 (2011).

[24] P. Maletinsky, S. Hong, M. S. Grinolds, B. Hausmann,
M. D. Lukin, R. L. Walsworth, M. Loncar, and A. Yacoby,
Nat. Nanotechnol. 7, 320 (2012).

[25] L. Chotorlishvili, D. Sander, A. Sukhov, V. Dugaev, V. R. Vieira,
A. Komnik, and J. Berakdar, Phys. Rev. B 88, 085201 (2013).

[26] D. Rugar, R. Budakian, H. J. Mamin, and B. W. Chui, Nature
430, 329 (2004).

[27] C.-H. Su, A. D. Greentree, and L. C. L. Hollenberg, Phys. Rev.
A 80, 052308 (2009).

[28] L. Viola, E. Knill, and S. Lloyd, Phys. Rev. Lett. 82, 2417 (1999).
[29] J. Du, X. Rong, N. Zhao, Y. Wang, J. Yang, and R. B. Liu, Nature

(London) 461, 1265 (2009).
[30] G. de Lange, Z. H. Wang, D. Ristè, V. V. Dobrovitski, and R.
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