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We consider the dynamics of an array of mutually interacting cavities, each containing an ensemble of N

two-level atoms. By exploring the possibilities offered by ensembles of various dimensions and a range of
atom-light and photon-hopping values, we investigate the generation of multisite entanglement, as well as the
performance of excitation transfer across the array, resulting from the competition between on-site nonlinearities
of the matter-light interaction and intersite photon hopping. In particular, for a three-cavity interacting system
it is observed that the initial excitation in the first cavity completely transfers to the ensemble in the third
cavity through the hopping of photons between the adjacent cavities. Probabilities of the transfer of excitation of
the cavity modes and ensembles exhibit characteristics of fast and slow oscillations governed by coupling and
hopping parameters, respectively. In the large-hopping case, by seeding an initial excitation in the cavity at the
center of the array, a tripartite W state, as well as a bipartite maximally entangled state, is obtained, depending on
the interaction time. Population of the ensemble in a cavity has a positive impact on the rate of excitation transfer
between the ensembles and their local cavity modes. In particular, for ensembles of five to seven atoms, tripartite
W states can be produced even when the hopping rate is comparable to the cavity-atom coupling rate. A similar
behavior of the transfer of excitation is observed for a four-coupled-cavity system with two initial excitations.
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I. INTRODUCTION

In cavity quantum electrodynamics (QED), which studies
interaction of light and matter, atomic systems are used to
embody qubits thanks to the fact that two suitably selected
internal electronic states, selected by (quasi)resonant light
fields, can be used to coherently store information over
considerable time scales. Photons are very effective to transfer
information due to their high transport speed and large
bandwidth. A high-finesse cavity provides good insulation
against the environment. A good cavity can store photons
for a long time before they are dissipated. These facts have
proved cavity QED to be a very useful platform for processing
quantum information [1–7]. An alternative to the cavity-QED
scenario is provided by its solid-state analog, termed as a
circuit QED, where superconducting qubits are coupled to
strip-line resonators [8–10]. When compared to cavity QED,
the solid-state platform has the advantages of strong coupling,
a well-determined number of standing-still qubits, and greater
promise for scalability.

A requirement of distributed quantum information process-
ing (QIP) is the coupling of distant qubits embodying the nodes
of a quantum network. Such coupling would be instrumental
to the achievement of state transfer among various nodes of the
system and the generation of distributed entanglement. Atoms
confined in remote cavities may be coupled by connecting
the resonators via optical fibers. In this context, one of the
early proposals focused on the conversion of an atomic state
into a superposition of Fock states of a cavity-field mode
[11]. This scheme effectively uses an optical fiber to transfer
the state prepared in one cavity to the atom accommodated
within a second, remote resonator. The use of a sequence of
laser pulses instead of an optical fiber has been suggested to
minimize the chance of decoherence due to losses in the fiber
[12]. There are various techniques to minimize population of

the cavity modes or fiber while performing a quantum state
transfer [13]. Alternatively, a sufficiently strong cavity-fiber
coupling effectively eliminates the degrees of freedom of the
fiber from the dynamics of the system [14]. Similarly, the use
of a highly detuned qubits-cavity mode reduces the chance
of cavity-mode population. Thus a careful manipulation of
the atom-cavity interaction insures high-fidelity swap and
entangling gate generation.

Systems of coupled cavities have received much attention
recently [15–21] due to the easy handling of the individual sites
(using an optical laser) and the presence of relatively long-lived
atomic states suitable for encoding quantum information.
Furthermore, such systems provide a number of degrees
of freedom to control dynamics of the system in a better
way where photons are allowed to hop between neighboring
cavities. Coupled-cavity models have potential applications
in QIP as well, since a control and measurement of individual
lattice sites and an almost lossless guiding and coupling of light
pulses at slow group velocities are available in such systems.
The coupling among the cavities can be controlled in many
ways, which offers great deal of freedom and flexibility to
engineer the transfer of quantum states via photonic processes.

An extensive study of the dynamics of two coupled
cavities, each containing a single two-level atom, has been
carried out in the past [20–22], which has very recently
been extended by Zhong et al. [23] to the case of three
mutually interacting cavities. In the strong-coupling regime
(� � J ), cavities embedded with quantum dots [24], atoms
[25], and superconducting qubits [26] have been proposed
for the implementation of quantum logic gates and the
construction of different types of quantum networks [27–30].
Similarly, photon-blockade effects have been studied, thus
paving the way to observation of the predicted polari-
tonic Mott insulator phase [16,18]. In the strong hopping
regime, various aspects of the transfer of quantum excitations
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between qubits without populating cavity modes have been
analyzed [14,15,17,19,20].

A promising alternative to the single-atom scenarios ad-
dressed above is embodied by the use of ensembles of atoms,
all collectively coupled to the single mode of radiation of a
cavity. The collective character of the coupling between N

atoms and light enhances the atom-field interaction strength
by a factor

√
N , an effect that has already been experimentally

demonstrated in an interesting study [31]. Such enhancement
is advantageous, as it allows for the implementation of fast
quantum gates at moderate laser intensities. A sample of
N excited atoms was shown to form a collective dipole
moment, which leads to effects such as a fluorescence intensity
proportional to N2 and a quantum dynamics N times faster
than that for a single atom [32]. The collective states of an
ensemble can be used to realize quantum memories and store
information, thus offering the opportunity of having large
quantum registers in a single atomic ensemble [33].

In this paper, we discuss the dynamics of M coupled
cavities, each containing an ensemble of N two-level atoms.
The transfer of excitations under a large range of operative
conditions is demonstrated and explored by tuning the system’s
control parameters. We find that, for a judicious choice of
N , a three-atom W state [34] can be obtained even for
coupling and hopping strengths of comparable values. In
the case of large hopping strengths, a three-atom W state
and two-atom maximally entangled states are obtained for
ensembles containing many two-level atoms. We find that
a four-cavity system with initial excitations in the second
and third ensemble undergoes a similar transfer of excitations
among the atoms of different cavities.

II. MODEL AND DYNAMICS

We consider a unidimensional array of M mutually coupled
single-mode microcavities (mode frequency ωc) (see Fig. 1).
Adjacent cavities are assumed to be close enough to ensure
the mutual transfer of photons via evanescent fields. As the
probability for this mechanism to occur drops exponentially
with the distance between the cavities, only nearest-neighbor
interactions will be considered. The cavities are doped with
an ensemble of N two-level atoms each. We call {|a〉,|b〉}
the excited and ground state of each atom, respectively, and

FIG. 1. (Color online) Sketch of the physical configuration stud-
ied in the paper. We consider an array of cavities coupled via hopping
fields and containing an ensemble of two-level atoms each. The atoms
are collectively coupled with the cavity field. We show a two-site
subsystem of a longer array.

assume they are separated by the Bohr frequency ωab. Each
atom interacts via electric-dipole coupling with the mode of
the respective cavity. The free Hamiltonian for the system is
thus (we assume units such that � = 1)

Ĥ0 =
M∑

j=1

(
ωcâ

†
j âj + ωab

N∑
k=1

σ̂ z
kj

)
, (1)

where â
†
j (âj ) is the creation (annihilation) operator of the j th

cavity mode, and σ̂ z
kj is the z-Pauli matrix of the kth atom

of the ensemble in such a cavity. By imposing the resonant
condition ωc � ωab and assuming collective coupling of the
atoms in an ensemble to the respective cavity field, the overall
coupling Hamiltonian in the interaction picture takes the form

ĤI = −
M∑

j=1

Jj âj â
†
j+1 +

M∑
j=1

�j â
†
j Ŝ

−
j + H.c., (2)

where we have introduced the Dicke lowering operator of the
atoms within the j th cavity Ŝ±

j = ∑N
k=1 σ̂±

kj and the single-
atom ladder operator σ̂+

kj = (σ̂−
kj )† = |a〉〈b|. Equation (2)

contains two different contributions. The first term and its
Hermitian conjugate are responsible for the tunneling of
photons between adjacent cavities (occurring at rate Jj ). The
second term and its Hermitian conjugate account for the in situ
resonant exchange of excitations, at a rate �j , between each of
the N elements of an ensemble and the corresponding cavity
field mode.

The collective nature of the coupling between the atoms
of an ensemble and the field of the respective cavity suggests
the use of the Holstein-Primakoff (HP) transformation that
maps a collective spin-N/2 particle into an effective boson
with associated creation and annihilation operators b̂

†
j and b̂j

(j = 1, . . . ,M) such that [35]

Ŝ+
j = (Ŝ−

j )† =
√

Nb̂
†
j Âj , Ŝz

j = b̂
†
j b̂j − N/2. (3)

The Hermitian operator Âj = (1 − b̂
†
j b̂j /N )1/2 in Eq. (3)

allows the Dicke operators to satisfy the SU(2) algebra.
Assuming a uniform distribution of coupling rates across the
array, the interaction Hamiltonian in Eq. (2) takes the form

ĤHP � −
M∑

j=1

J âj â
†
j+1 +

M∑
j=1

�
√

Nb̂
†
j Âj âj + H.c. (4)

The strength of the nonlinear term entering Eq. (4) results
from the trade-off between 〈b̂†j b̂j 〉 and N . For a “mesoscopic”

number of atoms per ensemble, we can expand Âj in the
power series of 1/N , stopping at the first order. Physically,
this implies that the number of implanted two-level atoms
per cavity should be large enough for the HP transformation
to be valid but sufficiently small not to blur any nonlinear
effect. By introducing the truncated form of Âj in Eq. (4), the
Hamiltonian of the system becomes

ĤHP �
M∑

j=1

(
�

√
Nb̂

†
j aj − J â

†
j âj+1− �

2
√

N
b̂
†2

j b̂j âj + H.c.

)
.

(5)
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A careful look of Eq. (5) reflects its interesting structure:
the term �

√
N (b̂†j âj + b̂j â

†
j ) embodies a two-mode mixing

process, while (�/2
√

N )(b̂†j n̂j âj + n̂j b̂j â
†
j ) [with n̂j = b̂

†
j b̂j ]

encompasses the nonlinear character of the interaction, no-
ticeably linked directly to the number of excitations of the HP
boson at site j . The Heisenberg equations of motion for the
two bosonic species involved in the dynamics thus read

i∂t âj = −J (âj+1 + âj−1) + �
√

N (1 − b̂
†
j b̂j /2N )b̂j ,

i∂t b̂j = �
√

Nâj − �

2
√

N

(
2b̂

†
j b̂j âj + b̂2

j â
†
j

)
. (6)

In what follows we solve the above equations numerically,
studying the features of the entangling dynamics arising from
the competition between on-site nonlinearity and intersite
hopping against the controlling parameters of our model.

III. ANALYSIS OF THE DYNAMICS: MULTIPARTITE
ENTANGLEMENT GENERATION

To fix the ideas, we assume homogeneous couplings across
the array, the same number of atoms per ensemble, and the
same value of � per site. Needless to say, this assumption
would not be met in an experimental implementation, where
fabrication and coupling inaccuracies would induce small
differences in the values of such parameters. However, such
analysis goes beyond the scope of this paper and will be
performed elsewhere [36]. Noticeably, the effects of disorder
in arrays of coupled cavities have been studied in Refs. [37]
and [38] for both small- and large-scale arrays.

A. Comparable coupling and hopping

As a first limiting case we consider a situation when
coupling of the ensembles to their local modes and hopping
of photons between the neighboring cavities are of nearly the
same strength, i.e., � � J . This provides an equal chance of
localized excitation transfer in a certain cavity and hopping of
the fields between various cavities.

Figure 2 shows the results of our numerical simulations of
the dynamics of both fields [cf. panels (a)–(c)] and ensembles
[panel (d)], where the probabilities of excitation are plotted
vs the time evolution. Obviously, the smaller the time step the
more accurate the results of numerical simulations. Here we
take �t = 10−4, which is sufficiently reasonable for accurate
results against J/� = 1 and N = 10. As initial conditions,
here we assume that all the cavities are prepared in vacuum
states [a1,2,3(0) = 0], and there is a single excitation only in
the first cavity’s ensemble, i.e., [b1(0) = 1,b2(0) = b3(0) = 0].
The plots shown in Figs. 2(a)–2(c) give the evolution of the
system in first, second, and third cavity modes, respectively.
The corresponding dynamics of the ensembles is given in
Fig. 2(d), where the red solid, thick dashed black, and thin
dashed blue lines represent excitations in the first, second, and
third cavities of the system, respectively.

Evolution of the system in Fig. 2 clearly reflects the
transfer of excitations among the cavities. The transformation
process of the quantum excitation takes place in the following
way. Energy in the form of excitation initially present in
the ensemble of cavity 1 first transfers to its corresponding

(a)

(b)

(c)

(d)

FIG. 2. (Color online) Probabilities of excitation transfer vs time
for cavity modes (a)–(c) and ensembles (d), where the solid, thick
dashed, and thin dotted lines represent the cases of excitations in the
first, second, and third cavity, respectively. Here a single excitation
is taken only in the ensemble of the first cavity, i.e., b1(0) = 1,

while all the three-cavity modes are initially in their vacuum states.
The dynamics of the system corresponds to the resonance case with
J/� = 1 and N = 10 qubits per ensemble.

mode. Then, through cavity-cavity hopping, the energy in
cavity mode 1 transfers to cavity mode 2, where it causes
excitation of the local ensemble. The phenomenon in cavity
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2 is a bit involved because it is coupled with both cavities
1 and 3 through hopping apart from coupling to its local
ensemble. In the next step, the excitation transfers to cavity
mode 3 from cavity mode 2, which induces excitation in
ensemble 3. Then the reverse process takes place, which
ultimately leads to the excitation of cavity mode 1 and then
the corresponding ensemble, and thus the process repeats again
and again.

The probabilities of excitation of cavity modes (Pc1 − Pc3)
shown in Fig. 2 clearly reveal the presence of some fast
and slow characteristic oscillations. Here fast oscillations
represent the excitation transfer between an ensemble and
the localized cavity mode, while the slow oscillations are
due to the transfer of excitation between the adjacent cavities
caused by cavity-cavity hopping. The periods of fast and slow
oscillations for the current values of parameters are Tf = 1/3
and Ts = 3, respectively. Here the initial excitation in the
ensemble of cavity 1, following the process of excitation
transfer, eventually reaches to the mode and ensemble of cavity
3. It is worth mentioning that during half of the slow period
of excitation, the mode of cavity 3 becomes fully excited.
The probabilities of excitation transfer as high as 100% are
observed in the present study. The probability of excitations
of cavity 2 is halved and its frequency of excitation is doubled
as compared to the cavities at the ends, which is due to
simultaneous coupling of the middle cavity with the modes
of the first and third cavities. In a recent study, Zhang and
Li [21] discussed the resonant interaction of a system of two
coupled cavities each having a single two-level atom. It was
shown that at certain times, the energy is fully transferred
from one quantum subsystem to the other. When the coupling
strengths are comparable in magnitude, the role of competition
becomes important, which results in a complicated amplitude
modulation behavior. The effects of detuning on a system of
two coupled cavities each having a single two-level atom have
been studied by Jun et al. [22]. It was shown that for coupling
rates of comparable strengths, the probability of excitation of
cavity modes is only 4%. In another interesting study related
to three coupled cavities each enclosing a single two-level
atom, Zhong et al. [23] showed that the probability to transfer
excitations to the cavity modes is at most 50%. In the presence
of detuning, the probability of finding a photon in each of the
three modes further decreases to values that are always less
than 0.12% [23].

The dynamics of the ensembles (Pa1 − Pa3) is given in
Fig. 2(d), where the solid, thick dashed, and thin dotted lines
represent excitations in the ensembles of first, second, and
third cavities, respectively. One of the interesting results here
is that the excitations of the ensembles follow the pattern
of excitations of cavity modes, which was not reported for
resonant interaction of two- and three-cavity systems with
single two-level atoms [21,22]. In the case of large detuning
for two and three coupled cavities, the mode excitation was
suppressed and the transfer of excitations from one atom to
the other was found to be carried out by virtual photons
[22,23]. The number of atoms per ensemble N is an important
parameter in the evolution of our system. It is noted that for
N = 30, while keeping other parameters as in Fig. 2, the period
of fast oscillations changes to Tf = 1/15 while the period of
slow oscillation remains static. This confirms that the local

(b)

(a)

FIG. 3. (Color online) Probabilities of excitation transfer vs time
for ensembles in three (a) and four (b) coupled cavities. The dynamics
of the system correspond to the resonance case with J = � = 3 and
the other parameters are (a) N = 5, b1(0) = b3(0) = 0, b2(0) = 1 and
(b) N = 10, b1(0) = b4(0) = 0, b2(0) = b3(0) = 1.

transfer of excitation increases by increasing the number of
qubits in the ensemble.

The behavior of the system dramatically changes if instead
of ensemble 1, the initial excitation is taken in the ensemble of
cavity 2. We reveal evidence of the formation of a W state at
t = 0.55 for N = 5, as shown in Fig. 3(a), unlike the previous
study [23] where W states were found only in the presence of
detuning (� = 5 �). It is noted that the position of W states can
be controlled by tuning the number of atoms in the ensemble,
e.g., it shifts to t = 2.0 for N = 7. It is clear that tuning of
the number of atoms in an ensemble can provide control over
the entanglement of the system. The dynamical equation (6)
is applicable for any number of coupled cavities. Here we
find that for a four-cavity system with two initial excitations
in the ensembles of second and third cavities, the transfer of
excitation takes place from cavities 2 and 3 to cavities 1 and 4
[cf. Fig. 3(b)].

B. Large hopping

Next we investigate the dynamical behavior of our system
for the large-hopping J � � limit. In this case, fields of the
neighboring cavities are more strongly coupled as compared to
the coupling of the ensembles to their local cavity modes. As
a result, the hopping terms in Eq. (6) play the dominant role in

033813-4



DYNAMICS OF INTERACTING DICKE MODEL IN A . . . PHYSICAL REVIEW A 90, 033813 (2014)

(b)

(a)

(c)

t

FIG. 4. (Color online) Probabilities of excitation transfer vs time
for cavity modes (a) and ensembles (b) and (c), where the solid, thick
dashed, and thin dotted lines represent excitations in the first, second,
and third cavity, respectively. The dynamics of the system correspond
to the large-hopping case with parameters J = 40,� = 1,N = 20,
and b1(0) = 1.

the evolution process. In Fig. 4 probabilities vs time are plotted
where the various parameters are J = 40, � = 1, and N = 20.
Again, all the cavity modes and ensembles 2 and 3 are assumed
to be prepared in the initial ground state with b1(0) = 1.
Figure 4(a) gives the behavior of various modes of the
cavities where the solid, thick dashed, and thin dotted curves
correspond to first, second, and third cavities, respectively. It
shows that fields of the cavities have small probabilities of
excitation as compared to the previous case of comparable
coupling-hopping. Here probabilities of various modes do
not follow the pattern of oscillations for the corresponding

ensembles. Oscillations of modes 1 and 3 have nearly double
frequency as compared to the oscillations of their respective
ensembles and also contain sudden jumps. A careful look at the
frequency of oscillations of cavity mode 2 indicates that it is
90 times greater than its corresponding ensemble’s frequency.
This is obviously due to the J � �, and the simultaneous
linking with cavities 1 and 3.

The dynamics of the ensemble of the cavities is shown
in Fig. 4(b), which indicates that the initial excitation in
ensemble 1 has transferred 100% to ensemble 3, in spite of
the small probability of excitation of the modes of different
cavities. Here the pattern of the excitation transfer has a regular
shape with a continuously varying amplitude. The periods of
excitation for the fast oscillations Tf of the ensembles at first
and third cites are equal and are 10 times the excitations of
the ensemble in the second cavity. Apart from being much
slower, the excitation transfer of the second cavity is only 50%
of the initial excitation; nevertheless it plays a good mediating
role for the transfer of excitation between cavities 1 and cavity
3. In the middle of the plot, the excitation transformation of
the second cavity gets the dominant role as compared to the
other channels, which are dominant in the beginning and at the
end of the plot. The same behavior repeats as time progresses,
which is depicted in Fig. 4(c).

For the initial excitation being in ensemble 2, i.e., for
b2(0) = 1 [cf. Fig. 5], the probabilities of excitation of cavity
modes drops further, as shown in Fig. 5(a), from a bit higher
value [see Fig. 4(a)]. A similar behavior was reported in [23]
for a system of three coupled cavities containing a single
two-level atom. The dynamics of the ensembles is given in
Fig. 5(b), which shows the presence of tripartite W states at
t = 2.8 and t = 6.3 and the bipartite maximally entangled state
at t = 4.5. A four-cavity system having initial excitations in
ensembles 2 and 3 also behaves in a similar way, as shown in
Fig. 5(c). It may be pointed out that for three coupled cavities
each having a single two-level atom, the occurrence of a W
state has been previously reported [23]; however, the overall
process of excitation transfer was much slower as compared
to the case of an atomic ensemble.

C. Strong coupling

The next special case to be discussed is the one with
the strong coupling. Here, � � J , i.e., the ensembles, are
more strongly coupled to the local modes of their respective
cavities than the hopping of the fields between the two
adjacent cavities. We consider the same initial conditions
[a1,2,3(0) = b2,3(0) = 0 with b1(0) = 1] as were taken in the
previous two cases. Evolution of the system for the parameters
� = 10,J = 1.0, and N = 10 is presented in Fig. 6, where
panels (a)–(d) give the probabilities of the cavity modes and
ensembles. There is a rapid transfer of excitation between
the ensemble and the local mode of the cavity due to the
high value of coupling, i.e., � = 10, while the transfer of
excitation between adjacent cavities is much slower than the
large-hopping case. During the process of transformation, a
slowly varying amplitude phenomenon is observed due to
the field-hopping effect. The transfer of excitation of the
ensembles follows the pattern of the respective modes similar
to the comparable coupling-hopping case. It can be noted that
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(b)

(a)

(c)

t

FIG. 5. (Color online) Probabilities of excitation transfer vs time
for cavity modes (a) and ensembles (b) and (c). The dynamics of
the system correspond to the large-hopping case with J = 40, � =
1, N = 20, and other parameters are (a) and (b): three cavities with
b1(0) = b3(0) = 0,b2(0) = 1 and (c) four cavities, b1(0) = b4(0) =
0, b2(0) = b3(0) = 1.

the excitation is transferred completely to the ensemble of
cavity 3 through the field of the adjacent cavity 2. Here the
behavior of the middle cavity is similar to that shown for a
comparable coupling-hopping case.

The two extreme situations are when one of the coupling
constants and hopping constants is negligibly small as
compared to the other. For � = 1 and J = 0.01 with vacuum
cavity modes, while only b(0) = 1, the system reduces to
the Jaynes-Cummings model. Here fast Rabi oscillations

(b)

(a)

(c)

(d)

FIG. 6. (Color online) Probabilities of excitation transfer vs time
for cavity modes (a)–(c) and ensembles (d), where the solid, thick
dashed, and thin dotted lines represent excitations in the first, second,
and third cavity, respectively. The dynamics of the system corresponds
to the strong-coupling case with parameters � = 10, J = 2, N = 5,
and b1(0) = 1.
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for the reduced single-cavity system is observed in cavity
1. On the other hand, for strong hopping (J = 1) and weak
coupling (� = 0.01), for a three-coupled-cavity model the
initial atomic excitation transfers to the third cavity without
populating the middle cavity.

The initial excitation can be taken arbitrarily in any mode
or ensemble alone or simultaneously in various modes and
ensembles. If a single excitation is considered in cavity 3
instead of cavity 1, the dynamics of the system gets a slight
change only, i.e., the pattern of oscillation in the middle cavity
remains the same, while there is a flipping of transformation
behavior between the other two cavities. On the other hand, if
a single excitation is taken initially in the middle cavity, both
cavities at the end start behaving in the same way, as shown
in Fig. 5(b).

IV. CONCLUSIONS

We have considered an array of M mutually coupled
cavities each containing an ensemble of N two-level atoms.
It is assumed that all the cavities are prepared in the initial
vacuum states, while a single excitation is seeded mostly in the
first site. Our system offers a great degree of freedom to control
its evolution by modulating the parameters, e.g., coupling
of the ensembles to their respective cavities, cavity-cavity
hopping, number of atoms in the ensembles, and position
of the initial excitation. Analytically, the dynamics of the
system is given by coupled differential equations obtained
using the Holstein-Primakoff transformation [35,39]. Here we
have examined evolution of the system generally for three
coupled cavities. A number of interesting cases of compa-
rable coupling-hopping (� � J ), large hopping (J � �),
and strong coupling (� � J ) are discussed in detail.

For the comparable coupling-hopping case, with an initial
excitation taken in the ensemble of cavity 1, we obtained
a 100% transfer of excitation to the modes of cavities 1
and 3. The middle cavity gets a 50% excitation; however,
it attains a frequency of excitation which is almost twice that
of the frequencies in the other two cavities. In addition, it
is noted that dynamics of the transfer of excitation of the
ensembles follow resonances in the probability curves for the

respective cavity modes. The probabilities of excitation were
found to exhibit both fast and slow oscillations. A single fast
oscillation represents a complete transfer of excitation between
the ensemble and its local cavity mode, which is governed
by the coupling constant �. The increase in population of
the ensembles has a positive impact on the rate of these fast
oscillations (see Fig. 3). The slow oscillations are related to
the process of the intersite excitation transfer initiated by the
cavity-cavity hopping constant J .

In the large-hopping regime, excitation of the cavity modes
is much smaller as compared to the equal coupling-hopping.
Nevertheless, these weak excitations of cavity modes are
equally effective to cause the transfer of excitation among
the ensembles of various cavities. Here the ensemble of cavity
2 has a 50% probability of excitation, while the ensemble of
cavity 3 becomes fully excited, as was the case for comparable
coupling-hopping. For an initial excitation seeded in the
middle cavity, we obtained tripartite W states at t = 2.8,
t = 6.3, and a bipartite maximally entangled state at t = 4.5.
It is worth mentioning that a control on the size of the
ensemble provides us an opportunity to obtain a W state
even for comparable coupling-hopping, as shown in Fig. 3.
For the strong-coupling regime, the fast oscillations have a
continuously varying amplitude due to the field-hopping effect.
Here the probability of excitation transfer in the middle cavity
is half as compared to the probabilities in the other two cavities.
The excitation transformation curves of the ensembles follow
resonances of the corresponding mode excitation, just like the
equal coupling-hopping regime.
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