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Witnessing the degree of nonclassicality of light
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We introduce an experimentally accessible method to measure a unique degree of nonclassicality, based on
the quantum superposition principle, for arbitrary quantum states. We formulate witnesses and test a given state
for any particular value of this measure. The construction of optimal tests is presented as well as the general
numerical implementation. We apply this approach on examples such as squeezed states, and we show how to
formulate conditions to certify a particular degree of nonclassicality for single- and multimode radiation fields.
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I. INTRODUCTION

An established way to identify nonclassicality of a quantum
state is given by the features of the Glauber-Sudarshan P

representation [1,2]. It is based on the notion of coherent states
to mark the border between quantum and classical physics. A
state is nonclassical if its P function fails to be interpreted as a
classical probability [3,4]. Although the P function cannot
be measured directly in general, a filtered version of this
quasiprobability has been introduced [5] and experimentally
observed [6–8].

Beyond the mere identification, during the past years
different attempts were made to quantify nonclassicality. One
of the early approaches is based on the trace distance of a
given quantum state to the set of all classical states [9–11].
Analogously, a number of distance-based nonclassicality mea-
sures were proposed, e.g., the Bures distance [12], or measures
based on the Hilbert-Schmidt norm [13,14]. An information-
science-based approach was formulated in terms of the Fisher
information [15]. Other methods use the occurring negativities
of the P function. For example, the amount of Gaussian noise
which is necessary to remove the negativities of the P function
was proposed to quantify the nonclassicality [16–18].

Alternatively, a method to quantify the nonclassicality of
a quantum state was defined by the potential of the state to
generate entanglement [19]. This led from the quantification of
nonclassicality to the quantification of entanglement, which is
a similarly cumbersome problem. One possibility to quantify
entanglement is the Schmidt number [20–23]. Among other
attempts of entanglement quantification, this measure is most
closely related to the quantum superposition principle being
the foundation of quantum correlations; cf., e.g., Ref. [24].
As the quantification of nonclassicality and of entanglement
are similar problems, our idea adapts the knowledge from
entanglement quantification to quantify the amount of non-
classicality.

Recently, the amount of nonclassicality for pure and mixed
quantum states has been defined from two points of view:
an operational and an algebraic one, denoted as degree of
nonclassicality [25]. The algebraic amount of single-mode
nonclassicality has been shown to be identical to the amount
of entanglement in the output ports of a beam splitter [26].
This measure is based on the decomposition of a quantum
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state in terms of superpositions of coherent states, which
resemble the classical harmonic oscillator most closely [27].
The more superpositions of coherent states are required
for the representation of the state under study, the more
nonclassical quantum interferences are produced. For the
notion of entanglement this directly relates to the Schmidt
rank for pure states [28], or the Schmidt number for mixed
ones [29].

In the present contribution, we formulate a witness ap-
proach in order to determine the degree of nonclassicality. This
is done via the formulation and solution of an optimization
problem regarding a given number of superpositions of
coherent states. For the solution of this optimization problem,
we present specific analytical relations and a general numerical
approach. This allows us to formulate accessible constraints to
verify a certain degree of nonclassicality. We apply our method
to different states. Moreover, we generalize our approach to
witness the degree of nonclassicality in multimode scenarios.

This paper is structured as follows. We introduce the
witnessing method in Sec. II together with the derivation of
optimization constraints. In Sec. III, we study analytical and
numerical approaches for the witness construction together
with experimentally relevant examples of quantum states.
A generalization to multimode systems is given in Sec. IV.
Finally, a summary and conclusions are given in Sec. V.

II. WITNESSES FOR THE DEGREE
OF NONCLASSICALITY

We start with a brief recapitulation of the quantification
of nonclassicality. Afterwards, we introduce witnesses for the
amount of nonclassicality. Eventually, we formulate necessary
and sufficient conditions for a certain degree of nonclassicality
and study the subsequent properties.

A. General definition

The main idea for the considered quantification is a
decomposition of a quantum state into superpositions of
coherent states,

|ψr〉 = λ1|α1〉 + · · · + λr |αr〉, (1)

where λk ∈ C \ {0} and |αk〉 are coherent states (for k =
1, . . . ,r). The number of superpositions r is our nonclassicality
measure for pure states [25,26]. Quantum superpositions
induce quantum interferences and nonclassical correlations,
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which can be used as a resource for applications in quantum
information science. This is due to the fact that the degree of
nonclassicality can be perfectly mapped to the same amount
of entanglement in terms of the Schmidt number.

The set Sr denotes the closure of all pure states with a
number of superpositions less than or equal to r . We aim to give
a general nonclassicality measure. Hence, we need to consider
mixed states as well. Therefore, a convex roof construction
yields [25]

ρ̂r =
∫

|ψr 〉∈Sr

dPcl(ψr ) |ψr〉 〈ψr |. (2)

Here, Pcl is a classical probability distribution. Hence, all these
states ρ̂r are elements of the closed, convex set of states Mr ,

Mr = conv{|ψr〉 〈ψr | : |ψr〉 ∈ Sr}, (3)

where the closure is performed with respect to the trace norm.
Now it is possible to properly define a degree of nonclassicality,
DNcl, for a quantum state ρ̂ by

ρ̂ ∈ Mr ⇔ DNcl(ρ̂) � r, (4)

ρ̂ /∈ Mr ⇔ DNcl(ρ̂) > r, (5)

ρ̂ ∈ Mr \ Mr−1 ⇔ DNcl(ρ̂) = r. (6)

This means that the degree of nonclassicality is equal to r , if
and only if ρ̂ lies in Mr , but not in Mr−1.

B. Witnessing approach

For witnessing this degree we may apply the Hahn-Banach
separation theorem (see, e.g., Ref. [30]) as it is visualized
in Fig. 1. It allows us to separate a closed, convex set and
a single state—not being an element of this set—from each
other. The formulation of the theorem in our specific scenario
is the following. For any state �̂ /∈ Mr there exists a Hermitian
operator K̂ such that

〈K̂〉 =Tr(�̂K̂) > br (K̂), (7)

FIG. 1. Schematic representation of the application of the Hahn-
Banach separation theorem. The closed, convex, nested sets Mr are
depicted for several r . The degree of nonclassicality is determined
by tangent hyperplanes. Here, all states on the right-hand side of
this tangent cannot be elements of Mr . By the determination of the
parameter br , it is possible to decide whether a state lies in Mr or
not.

with

br (K̂) = sup
|ψr 〉∈Sr

〈ψr |K̂|ψr〉
〈ψr |ψr〉 . (8)

The least upper bound br (K̂) denotes the maximally attainable
expectation value of K̂ for states in Mr . We may formulate
this condition in terms of a witness operator

Ŵr = br (K̂)1̂ − K̂. (9)

This operator has the property that

Tr(ρ̂rŴr ) � 0 for all ρ̂r ∈ Mr , (10)

and Tr(�̂Ŵr ) < 0, for the considered state �̂ /∈ Mr . This
implies DNcl(ρ̂) > r .

We obtain that

Eq. (4) ⇔ ∀Ŵr : Tr(ρ̂Ŵr ) � 0, (11)

Eq. (5) ⇔ ∃Ŵr : Tr(ρ̂Ŵr ) < 0. (12)

Consequently, we can formulate the following necessary and
sufficient condition. A quantum state �̂ has a degree of
nonclassicality of r , DNcl(�̂) = r , if and only if

∃Ŵr−1 : Tr(�̂Ŵr−1) < 0 and ∀Ŵr : Tr(�̂Ŵr ) � 0.

This statement is identical to the definition in Eq. (6).
Moreover, let us comment that one could also use the

infimum for the construction of a witness,

Ŵ ′
r = K̂ − b′

r (K̂)1̂ and b′
r (K̂) = inf

|ψr 〉∈Sr

〈ψr |K̂|ψr〉
〈ψr |ψr〉 .

(13)

Thus, we could write for Tr(�̂Ŵ ′
r ) < 0,

〈K̂〉 = Tr(�̂K̂) < b′
r (K̂). (14)

This means that the measured expectation value, 〈K̂〉, is below
the bound b′

r (K̂), which is the minimal possible expectation
value of K̂ for states with a degree of nonclassicality of r . Due
to the nested structure of the sets, we have the general relation

M1 ⊂ M2 ⊂ · · · ⊂ M∞,

b1(K̂) � b2(K̂) � · · · � b∞(K̂), (15)

b′
1(K̂) � b′

2(K̂) � · · · � b′
∞(K̂).

There is a well-established definition for a degree of
entanglement—the so-called Schmidt number [20]. Schmidt
number witness methods have been formulated [22,31], being
analogous to the nonclassicality approach given above. For
example, this leads to witnesses which apply to Gaussian
states [32] or in microcavity systems [33]. In the following, we
propose an optimization scheme for the witnesses in Eqs. (9)
and (13).

C. Optimization problem

So far, we studied the definition of the degree of nonclas-
sicality and the formal construction of measurable witness
operators of this property. For the application of the construc-
tion scheme of Ŵr from a general Hermitian operator K̂ [see
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Eqs. (8) and (9)], we need to compute the value of br (K̂). This
parameter is defined as the least upper bound of the normalized
expectation value of K̂ for elements in Sr . Hence, we have the
optimization problem

br = 〈ψr |K̂|ψr〉
〈ψr |ψr〉 → optimum, (16)

where the optimization is performed with respect to |ψr〉 ∈ Sr .
The maximum br (K̂) of all optima br is

br (K̂) = sup{br}. (17)

Similarly, we have for the witness construction in Eq. (13),
b′

r (K̂) = inf{br}. Using Eq. (1), we may rewrite

br =
∑r

k1,k2=1 λ∗
k1

λk2

〈
αk1

∣∣K̂∣∣αk2

〉
∑r

k1,k2=1 λ∗
k1

λk2

〈
αk1

∣∣αk2

〉 . (18)

For finding the least upper bound of this quantity, we can
use the necessary optimality conditions

0 = ∂br

∂λ∗
k

and 0 = ∂br

∂α∗
k

, (19)

for k = 1, . . . ,r . The first equation can be computed as

0 = 〈αk|K̂|ψr〉
〈ψr |ψr〉 − 〈ψr |K̂|ψr〉〈αk|ψr〉

〈ψr |ψr〉2
. (20)

If we use the definition (16) of br , this expression reduces to

r∑
l=1

〈αk|K̂|αl〉 λl = br

r∑
l=1

〈αk|αl〉 λl. (21)

It is convenient to write Eq. (21) in a vectorial notation,

GK̂λ =br G1̂λ, (22)

with λ = (λl)rl=1 ∈ Cr being the optimal coefficients in Eq. (1)
and the matrix

GL̂ =(〈αk|L̂|αl〉)rk,l=1 (23)

for operators L̂. Useful properties of the map L̂ 
→ GL̂ are
studied in the Appendix.

We observe that the value br corresponds to a generalized
eigenvalue of Eq. (22). This also allows us in the following
systematic treatment to apply standard methods for eigenvalue
problems. In order to find the bounds sup{br} and inf{br} for
an increasing number of possible superpositions r , we have
to increase the dimensionality of the underlying eigenvalue
equation (22).

The second condition in Eqs. (19) is a little bit more so-
phisticated. First, we recall the relations ∂α∗ 〈α| = 〈α|(â − α

2 )
and ∂α∗ |α〉 = (−α

2 )|α〉. Hence, we may rewrite the optimality
condition as

0 = λ∗
k〈αk|

(
â − αk

2

)
K̂|ψr〉 + λk〈ψr |K̂

(−αk

2

)|αk〉
〈ψr |ψr〉

−〈ψr |K̂|ψr〉
[
λ∗

k〈αk|
(
â − αk

2

)|ψr〉 + λk〈ψr |
( − αk

2

)|αk〉
]

〈ψr |ψr〉2
.

(24)

Using Eq. (20), this expression simplifies to

0 = λ∗
k(〈αk|âK̂|ψr〉 − br〈αk|â|ψr〉). (25)

Without a loss of generality we can assume that λk �= 0, since
the case λk0 = 0 for some k0 would simply correspond to a
degree of nonclassicality of r0 < r . This allows us to formulate
another vectorial eigenvalue equation,

GâK̂λ =br Gâλ. (26)

For obtaining a physical interpretation of this constraint, we
may perform a summation over all k = 1, . . . ,r in Eq. (25).
This yields

〈ψr |âK̂|ψr〉 = br〈ψr |â|ψr〉. (27)

Now we multiply Eq. (21) with α∗
k , and use α∗〈α| = 〈α|â†. A

summation over k gives

〈ψr |â†K̂|ψr〉 = br〈ψr |â†|ψr〉. (28)

Finally, the difference of Eq. (27) and the conjugated Eq. (28)
reads as

〈ψr |[â,K̂]|ψr〉 = 0. (29)

Note that this condition may be alternatively written in
vectorial notation as 0 = λ†G[â,K̂]λ. Although the derivation
of this condition was not so trivial, its physical interpretation
is quite surprising. The optimal state |ψr〉 has a vanishing
mean value of the quantum-mechanical commutator of the
observable K̂ and the field component â.

D. Transformation properties

Useful characteristics of our equations are transformation
properties. For example, one could use an operator K̂ ′ = μ1̂ +
νK̂ instead of K̂ . Using the properties of the map G, it turns
out that the eigenvalues exhibit the same transformed structure,

GK̂ ′ = μG1̂ + νGK̂ ⇒ b′
r = μ + νbr . (30)

We could also consider an operator

K̂β = D̂(β)K̂D̂(β)†, (31)

where D̂(β) = exp[βâ† − β∗â] is the displacement operator.
This displaced operator has the same extremal values as the
initial operator br,β = br , whereas the optimal state |ψr〉 is
decomposed in terms of displaced coherent states D̂(β)|αk〉
(k = 1, . . . ,r). Analogously to the displacement, we can
perform a phase rotation:

K̂ϕ = exp[−iϕn̂]K̂ exp[iϕn̂], (32)

where again the extremal values remain unperturbed, br,ϕ =
br , and the coherent states are rotated in phase space,
exp[−iϕn̂]|αj 〉 = | exp[−iϕ]αj 〉.

More generally, one can show with some simple algebra that
any operator � with the property �(|α〉〈α|) = |α′〉〈α′|, for an
invertible function α′ = f (α), does not change the optimal
values br . One example is the transposition (|α〉〈α|)T =
|α∗〉〈α∗|. Such transformation properties are useful for the
construction of a whole class of witnesses from a single one.
The considered operations do not change the optimal values br ;
they transform them in a unique form, for example, Eq. (30).
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Therefore, the optimization problem needs to be solved for
only one element of a complete class of Hermitian operators.

E. Preliminary results

We may summarize our preliminary findings. A method to
witness the degree of nonclassicality has been formulated in
terms of Hermitian operators K̂ . The corresponding bounds
br (K̂) and b′

r (K̂) for r ∈ N are given by the maximal or
minimal eigenvalue of Eq. (22), respectively. These bounds
give the maximal or minimal expectation value of K̂ for all
elements in the set Mr . Whenever the expectation value,
〈K̂〉 = Tr(ρ̂K̂), exceeds the upper or lower bound, we find
that ρ̂ /∈ Mr , i.e., DNcl(ρ̂) > r . The optimal state |ψr〉 =∑r

k=1 λr |αr〉 fulfills the optimization constraints formulated by
the eigenvalue problem in Eq. (22), and it exhibits a vanishing
mean value of the commutator in Eq. (29). Additionally, we
studied useful transformation properties of our approach.

III. SOLUTIONS, NUMERICAL IMPLEMENTATION, AND
EXAMPLES

Let us now apply our method to some examples. We
consider analytical and numerical solutions for different
degrees of nonclassicality r . Some examples are devoted to
finding necessary and sufficient witnesses for pure states.

A. Formal solutions

In the case r = 1, the optimization condition in Eq. (22)
simplifies to b1 = 〈α1|K̂|α1〉. We may also study an operator
f̂ = f (â†,â), which is a function f of annihilation â and
creation operators â†. We define

K̂ = :f̂ †f̂ : and br = |f (α∗
1 ,α1)|2 � 0, (33)

where : · : denotes the normal ordering prescription. In this case
we get from our approach—using the witness construction in
Eq. (13) including the minimal eigenvalue b1—the consistent
construction of witnesses for nonclassicality:

Ŵ1 = K̂ − 0 = :f̂ †f̂ : (34)

(cf., e.g., Ref. [34]). Note that in the case b′
r (K̂) =

infα1 |f (α∗
1 ,α1)|2 > 0, the witness Ŵ1 is not optimal. This

means that the witness Ŵ
(opt)
1 = :f̂ †f̂ : − b′

r (:f̂ †f̂ :)1̂ is even
finer than Ŵ1; see Ref. [35] for the equivalent definition of
finer or optimal entanglement witnesses.

Let us continue with the case r > 1. For r = 2, the vectorial
form in Eq. (22) is an eigenvalue problem of a 2 × 2 matrix.
The solutions for such a problem are known, and here they
read as

b±
2 =1

2

[
Tr

(
G−1

1̂
GK̂

) ± �
]
, (35)

� =
√[

Tr
(
G−1

1̂
GK̂

)]2 − 4 det
[
G−1

1̂
GK̂

]
. (36)

More generally, r > 2, the eigenvalue problem in Eq. (22) has
no such simple solution. In such a scenario, one has to find
the roots of the characteristic polynomial. The characteristic

polynomial of the eigenvalue problem (22) reads as

0 =χ (br ) = det[GK̂ − br G1̂]. (37)

In this general case, the minimal or maximal root br of this
polynomial for arbitrary choices α1, . . . ,αr yields the value of
b′

r (K̂) or br (K̂), respectively.

B. General numerical implementation

Based on Eq. (37), we can formulate a proper numerical
implementation. This is given by the following approach:

(i) compute the minimal or maximal root of χ ; and
(ii) minimize or maximize this root over the choice of

(α1, . . . ,αr ) ∈ Cr .
This general method allows us to construct the bounds for any
measured observable K̂ . Then the method has to be applied as
follows. The experiment yields the expectation value 〈K̂〉. This
value can be compared with the bound for arbitrary degrees of
nonclassicality r; see Eqs. (7) and (14).

As an example, let us consider a witness based on
quadrature variances: K̂ = [�x̂(ϕ)]2. Note that this operator is
only bounded from below. Due to the displacement invariance,
cf. Eq. (31), and the phase rotation invariance, cf. Eq. (32), we
can—without loss of generality—restrict our considerations
to

K̂ = x̂(0)2 = (â + â†)2 = 2â†â + â2 + â†2 + 1̂. (38)

First, for r = 1 the quadrature variance of coherent states is
bounded from below by one, b′

1(K̂) = 1. Second, for arbitrary
states (r = ∞) we have a minimum b′

∞(K̂) = 0, obtained by
infinitely squeezed states.

We summarize the numerically obtained boundaries for
some values r in Table I. Additionally, the corresponding
bounds to the squeezing power are given. For states with a
quadrature variance below the boundary b′

r (K̂), the degree of
nonclassicality is larger than r . The chosen observable yields
a clear relation between the observed degree of nonclassicality
and the squeezing strength. For the so-far strongest realized
squeezing of 12.7 dB [36], the corresponding degree of
nonclassicality is r = 8; cf. Table I.

TABLE I. Minimal expectation values b′
r (K̂) for states in the set

Mr of the observable K̂ = [�x̂(ϕ)]2. Whenever the squeezing power
of the experimentally realized state ρ̂ exceeds the squeezing bounds,
we have DNcl(ρ̂) > r .

r b′
r (K̂) Squeezing

1 1.000 000 0.00 dB
2 0.443 071 3.54 dB
3 0.256 447 5.91 dB
4 0.169 295 7.71 dB
5 0.121 006 9.17 dB
6 0.091 245 10.4 dB
7 0.071 510 11.4 dB
8 0.057 702 12.4 dB
9 0.047 638 13.2 dB
...

...
...

∞ 0 ∞
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C. Pure states

In order to check whether a pure state is of a particular
degree of nonclassicality, one may compute its distance dr to
the set Sr ,

dr = Tr

(
|ψ〉〈ψ | − |ψr〉〈ψr |

〈ψr |ψr〉
)2

→ min , (39)

where |ψ〉 is the quantum state under study and |ψr〉 is
a coherent superposition state with a known degree of
nonclassicality. This expression—taking the normalizations
into account—is

dr = 2

[
1 − 〈ψr |(|ψ〉〈ψ |)|ψr〉

〈ψr |ψr〉
]
. (40)

A careful look at this distance yields the proper choice for the
construction of a witness, namely,

K̂ = |ψ〉〈ψ |. (41)

The value of br (K̂) gives the information which of the
cases (4)–(6) holds true. If br (K̂) is equal to 1, dr = 0, then
the state |ψ〉〈ψ | lies in the set Sr . If br (K̂) is smaller than 1,
dr > 0, then the state is not in the setSr . Combining both facts,
we observe that we found an optimal, necessary, and sufficient
witness for arbitrary pure state |ψ〉:

Ŵr = br (|ψ〉〈ψ |)1̂ − |ψ〉〈ψ |. (42)

It is worth mentioning that 〈Ŵr〉 < 0 also detects a degree of
nonclassicality beyond the pure state. However, in the mixed-
state case 〈Ŵr〉 � 0 does not imply a degree less than or equal
to r . So for a mixed state this witness might not be the best
choice.

Now, let us compute the value br (K̂) for K̂ = |ψ〉〈ψ |. This
means that we have to solve

G|ψ〉〈ψ |λ = br G1̂λ. (43)

Since we have a rank 1 operator, G|ψ〉〈ψ | = g|ψ〉 g†
|ψ〉 with

g|ψ〉 = (〈αi |ψ〉)ri=1, we get the maximal solution for

λ = G−1
1̂

g|ψ〉 and br = g†
|ψ〉G

−1
1̂

g|ψ〉. (44)

1. Finite superposition states

For constructing the witness in Eq. (42), let us consider
finite superposition states, R � r ,

|ψ〉 =
R∑

k=1

κk|βk〉. (45)

Let us comment that one can show a general relation for the
case |βk1 − βk2 | � 1 (for all k1 �= k2) in Eq. (45). Then, we
get almost orthogonal vectors 〈βk1 |βk2〉 ≈ 0. This leads to a
maximal solution (44) for the finite superposition state,

br (|ψ〉〈ψ |) ≈ max
{∣∣κk1

∣∣2 + · · · + ∣∣κkr

∣∣2}
, (46)

where the maximum is taken over all pairwise different indices,
ki �= ki ′ . See also the related method for Schmidt number
witnesses [22].

0.0 0.5 1.0 1.5 2.0
β

0.2

0.4

0.6

0.8

1.0
b1

FIG. 2. The maximal projection, b1 = b1(|ψ〉〈ψ |) (solid line), of
the even coherent state with the set of states with a minimal degree of
nonclassicality S1 is shown in dependence of the coherent amplitude
|β| of the coherent components of |ψ〉. The dashed lines depict the
limiting values 1 and 0.5 for |β| → 0 and |β| → ∞, respectively.

As an example, we may study the compass state [37],

βk = βe
2πi
R

k,
(47)

κk =
(

R∑
k1,k2=1

exp
[ − |β|2 + |β|2e 2πi

R
(k2−k1)

])−1/2

,

being a generalization of the even coherent state for R =
2 [38,39]. In Fig. 2, we plot b1 = b1(|ψ〉〈ψ |) for the case
R = 2 depending on the |β|, which is the separation between
the two components, |β〉 and | − β〉, of the even coherent state.
We observe that the overlap with the set of classical states S1

is quite large, b1 ≈ 1, for small coherent amplitudes, and it
saturates for |β| → ∞ at the expected value b1 = 0.5.

In general, the compass state in Eqs. (47) contains R

coherent superpositions of coherent states where each state
has a certain phase rotation. Hence for the compass state, for
br in Eq. (46) with the coefficients in Eq. (47), holds in the
limit of infinite amplitudes, |β| → ∞, that

br = br

(
lim

|β|→∞
|ψ〉〈ψ |

)
= r

R
for r < R, (48)

and br = 1 for r � R. This defines the threshold for the amount
of nonclassicality r , witnessed by the compass state. This
results in the bound b1 = 0.5 in Fig. 2 for R = 2.

2. Infinite superposition states

Second, let us address the more general case in the Fock
basis expansion,

|ψ〉 =
∞∑

n=0

ψn√
n!

â†n|vac〉, (49)

for the rank 1 test operator K̂ = |ψ〉〈ψ |. Since the squeezed
vacuum states have a large number of applications, it is
interesting to investigate in particular their strength of non-
classicality,

for even n: ψn = 1√
μ

(
− ν

2μ

)n/2 √
n!

(n/2)!
, (50)

for odd n: ψn = 0, (51)
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FIG. 3. The bounds br = br (|ψ〉〈ψ |) (solid line, r = 1; dashed
line, r = 2; dotted line, r = 3) are shown in dependence of the
squeezing parameter ξ , which defines the squeezed vacuum state
|ψ〉. We find that a stronger squeezing yields a smaller bound to be
violated to verify a degree of nonclassicality above r .

where μ = cosh(ξ ) and ν = ei arg ξ sinh(ξ ), or |ψ〉 =
(1/

√
μ)e−νâ†2/2μ |vac〉. From a minimization of the solution in

Eq. (44), we can now compute the projection of the squeezed
vacuum state onto arbitrary subsets Sr . Therefore, it is useful
to take a look at the inner product of the coherent state and the
squeezed vacuum state [40], as it is used in the calculation,
〈α|ξ,0〉 = e−|α|2/2−να∗2/(2μ)/

√
μ.

In Fig. 3, we show the computed bounds br = br (|ψ〉〈ψ |).
Let us stress that this bound means that whenever the fidelity
〈ψ |ρ̂|ψ〉 exceeds the value of br , we have successfully proven
that DNcl(ρ̂) > r . It is worth mentioning that the results in
Table I are directly given for the quadrature operator in
Eq. (38). For the fidelity studied here, it can be seen that
a high squeezing clearly yields a low overlap with states
in Sr . Additionally, we observe that no finite r and |ξ | > 0
gives the value br = 1; see also Ref. [25]. This means that
the strength of the nonclassicality of a squeezed vacuum
state is infinite—independent of the amount of squeezing,
DNcl(|ψ〉〈ψ |) = ∞. However, it becomes harder to exceed
the bounds br for |ξ | approaching zero. From the experimental
point of view, it is intuitive that an increasing squeezing
in our system results in an increasing verifiable degree of
nonclassicality. The expected result is that, due to finite
measuring time and statistical fluctuations, we can certify a
certain number of quantum superpositions.

IV. MULTIMODE NONCLASSICALITY

Similarly to the single-mode approach, the N -mode de-
gree of nonclassicality may be witnessed. For this pur-
pose, we define for pure states a degree of nonclassicality,
DNcl(|ψr,N 〉〈ψr,N |) = r , by the number of coherent superposi-
tions of multimode coherent states,

|ψr,N 〉 =
r∑

j=1

λj |αj 〉, (52)

with λj ∈ C \ {0} and coherent amplitudes αj ∈ CN (αj �=
αj ′ for j �= j ′). A convex roof construction yields the proper
multimode nonclassicality measure for mixed states. A major

advantage of this notion for the degree of nonclassicality is its
invariance under classical mode transformations,

â′
n =

N∑
n′=1

Un,n′ ân′ , (53)

for n = 1, . . . ,N and a unitary matrix U = (Un,n′ )Nn,n′=1. This
transformation maps coherent amplitudes as α′

j = Uαj , and,
therefore, the structure of Eq. (52) remains invariant. In
particular, we have r ′ = r .

Let us briefly outline how to construct the corresponding
witnesses for DNcl from multimode, Hermitian operators
K̂:

Ŵr,N = br,N (K̂)1̂ − K̂, (54)

with

br,N (K̂) = sup
|ψr,N 〉

〈ψr,N |K̂|ψr,N 〉
〈ψr,N |ψr,N 〉 , (55)

or, equivalently,

Ŵ ′
r,N = K̂ − b′

r,N (K̂)1̂, (56)

with

b′
r,N (K̂) = inf|ψr,N 〉

〈ψr,N |K̂|ψr,N 〉
〈ψr,N |ψr,N 〉 . (57)

The values of br,N (K̂) or b′
r,N (K̂) are given by the least upper

or smallest lower bound of eigenvalues br,N of the equation in
Cr :

GK̂λ = br,N G1̂λ, (58)

with GL̂ = (〈αi |L̂|αj 〉)ri,j=1.
The solutions and numerical implementation can be done

similarly to the single-mode case. Let us also note that the
multimode Schmidt number [41] for an entangled state ρ̂

and a fixed mode decomposition is smaller than or equal
to DNcl(ρ̂) = r; cf. Ref. [26]. Hence, the amount of entan-
glement is bounded from above by the multimode degree of
nonclassicality r , which can be obtained from our witnessing
approach.

V. SUMMARY AND CONCLUSIONS

In conclusion, we introduced witnesses to measure the
amount of nonclassicality in quantum systems. This measure
is based on the decomposition of any state into coherent super-
positions of coherent states. For proving that the witnessing
approach is necessary and sufficient, we applied the Hahn-
Banach separation theorem. With this knowledge it has been
possible to formulate optimization equations for the estimation
of the amount of nonclassicality. These equations represent
an eigenvalue problem. Furthermore, different transformation
properties were investigated in order to solve the equations
only once and to get the corresponding bounds for a whole
class of operators. After studying the properties of the measure
and constructing general optimal witness, the problem of
finding the proper witnesses was completely solved for pure
states. Based on the eigenvalue equation structure, a general
numerical algorithm for constructing witnesses was proposed
and implemented. As an example, we studied an unbounded
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operator to measure the degree of nonclassicality in terms
of squeezing. Afterwards we used our method to determine
the amount of nonclassicality of different examples for pure
states with different complexities. The presented approach has
been generalized to determine the amount of nonclassicality
in multimode radiation fields. The relation to witnesses for the
amount of entanglement, in terms of the Schmidt number, was
also considered.

The general nonclassicality measure is given by the number
of superimposed coherent states. The surprising feature of
quantum superpositions has been demonstrated in various
experiments in quantum optics. The presented measure is
not only theoretically accessible, i.e., a computable measure;
by applying our results to experiments, it even becomes a
measurable measure of quantumness. In multimode fields,
the difficulty lies in the fact that field components can be
superimposed in addition to quantum superpositions of states.
We consistently took this fact into account. This was done in
such a way that our criteria are solely sensitive to quantum
interferences. Hence, the available amount of quantumness in
different optical systems can be determined, e.g., for possible
applications in quantum technologies.
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APPENDIX: RING HOMOMORPHISM G

In the following, we provide some properties of the map
L̂ 
→ GL̂. This map is defined for a set of coherent states
{|α1〉, . . . ,|αr〉} as

GL̂ = (〈αi |L̂|αj 〉)ri,j=1. (A1)

This means for the matrix components (GL̂)i,j = 〈αi |L̂|αj 〉,
which can be used to prove all following properties. In order to
prove the ring homomorphism property, let us define a proper
product of two operators:

L̂1 ◦ L̂2 = L̂1Q̂L̂2, with Q̂ =
r∑

k=1

|αk〉〈αk|. (A2)

The standard operator product is written in the usual
form, i.e., without an extra symbol, L̂1L̂2. Obviously, ◦ is

associative. Hence, we get the homomorphism properties
from

Gμ1L̂1+μ2L̂2
= μ1GL̂1

+ μ2GL̂2
, (A3)

GL̂1◦L̂2
= GL̂1

GL̂2
. (A4)

Moreover, the conjugation property is conserved by this
continuous map:

GL̂† =(GL̂)†, (A5)

Glimn→∞ L̂n
= lim

n→∞ GL̂n
, (A6)

which makes G even a C∗-algebra homomorphism,

G : Lin(H → H) → Lin(Cr → Cr ), (A7)

with the set Lin(X → Y ) denoting the corresponding linear
and (typically) bounded operators.

In order to use the map G efficiently, let us consider
additional properties of this calculus:

G1̂GL̂ =GQ̂L̂; (A8)

GL̂λ =(〈αi |L̂|ψr〉)ri=1, (A9)

with λ = (λj )rj=1 ∈ Cr and |ψr〉 = ∑r
j=1 λj |αj 〉 ∈

span{|α1〉, . . . ,|αr〉} ⊂ H;

GL̂â = GL̂ A and Gâ†L̂ = A∗GL̂, (A10)

with A = diag(α1, . . . ,αr ). The Gram-Schmidt matrix of the
studied set of coherent states is G1̂. The pseudoinverse
Q̂+—i.e., Q̂+Q̂ = P̂α1,...,αr

being the projector to the subspace
span{|α1〉, . . . ,|αr〉} and G1̂ = GP̂α1 ,...,αr

—has the property of
a unity:

GL̂GQ̂+ = GL̂Q̂Q̂+ = GL̂P̂α1 ,...,αr
= GL̂. (A11)

Moreover, we find for rank 1 operators the decomposition

G|ψ2〉〈ψ1| = g|ψ2〉 g†
|ψ1〉, (A12)

with the definition g|ψ1(2)〉 = (〈αi |ψ1(2)〉)ri=1. We also get the
result

GL̂ g|ψ〉 = gL̂Q̂|ψ〉 = gL̂◦|ψ〉. (A13)

It is important to mention that all the listed properties are
also valid in the multipartite case, GL̂ = (〈αi |L̂|αj 〉)ri,j=1, with

αj ∈ CN for j = 1, . . . ,N .
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