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Quiet broadband light
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The interference of waves evenly separated in frequency generates a periodic signal, whose intensity
fluctuations depend on the phases of the individual waves. A fundamental question in telecommunications
and acoustics is the minimization of the peak-to-average-power ratio (PAR): for a given spectrum, how to arrange
the phases of the individual frequency components to ensure minimal intensity fluctuations of the resulting
signal? For a flat spectrum a near-optimal solution is brought by the so-called Newman phases, commonly used
in acoustic and radio waves. Here we transpose this property into the optical domain and prove the possibility to
suppress the intensity fluctuations resulting from intermodal beating of a broadband comb of optical frequencies,
whose phases are set according to a generalization of the Newman phases. We demonstrate experimentally a
broadband laser, whose intensity contrast (defined as the standard deviation-to-mean ratio) is reduced down to
0.54 as compared to 1 when the phases are set randomly.
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I. INTRODUCTION

Minimizing the fluctuations of a signal is a problem
common to acoustics, radar, sonar, and wireless telecommu-
nications where it is known as the peak-to-average power
ratio (or PAR) problem: for a given discrete spectrum how
to arrange the phases of the spectral components, to achieve
the smallest peak factor, that is, to minimize the intensity
fluctuations resulting from intermodal beating? This question
is particularly crucial in communications schemes based on
orthogonal frequency division multiplexing (OFDM) and in
data processing, where the amplification of strongly fluctuating
signals results in severe intermodulation nonlinear distortion
and spectral spreading [1]. Interestingly this simple problem
is still open and no systematic optimal solution has been
provided yet [2–5]. However it turns out that particular choices
of the phases lead to relatively low peak factors: among
them the Rudin-Shapiro phases enable small peak factors
but in the specific case of 2p frequency components [6,7].
This restriction is lifted by the so-called Schroeder phases
which enable remarkably low peak factors with no condition
on the number of modes nor on their relative amplitude.
Schroeder phases were deduced from considerations on the
asymptotic spectra of certain frequency-modulated signals [8].
Assume a periodic signal expressed as the Fourier series
s(θ ) = ∑N

n=1

√
pn/2 cos(nθ + ϕn) where pn is the relative

power of the n harmonic (
∑N

n=1 pn = 1). When the phases are
set according to ϕn = ϕ1 − ∑n−1

l=1 (n − l)pl the peak factor is
strongly reduced and the resulting signal appears very similar
to a chirped frequency-modulated wave displaying constant
amplitude and monotonous instantaneous frequency [8,9]. In
the case of a flat spectrum (pn = 1/N) the phases reduce
to ϕn = ϕ1 − πn2

N
and match the set of phases introduced

earlier by Newman in the frame of polynomial extremal
problems [10,11] (Fig. 1). Since then, Newman phases have
been largely popularized in various domains where the PAR
must be minimized, from acoustics [12–14] and adaptive noise
control [15] to radar [16] and wireless communications [17].
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In classical optics, the inverse problem is much more
common: the maximization of the peak power, e.g., by mode-
locking techniques, enables us to generate trains of ultrashort
pulses to reach nonlinear regimes or to provide a sharp
temporal selectivity for ultrafast applications. Consequently
the question of minimizing the (classical) fluctuations of
multimode light by a specific arrangement of the phases
of the individual frequency components, has been largely
ignored. However this problem could bring solutions to reduce
the distortion in optical amplifiers, and to avoid deleterious
nonlinear effects in fibers such as spectral broadening and
nonlinear coupling between distinct frequencies. Nevertheless,
notice that the transposition of the results obtained so far for
radio or acoustic waves to optics imposes certain requirements
on the comb of optical frequencies. First the effects of
quantum noise should be negligible with respect to the classical
intermode fluctuations and second, the relative amplitudes of
the individual frequencies should remain constant at the time
scale of the measurement.

In this paper we provide the demonstration of a broadband
laser delivering a large number of equidistant optical frequen-
cies, whose intensity fluctuations resulting from intermodal
beatings are significantly lowered by a specific arrangement
of the phases. The paper is structured as follows: in the
first part after discussing the measurement of the intensity
fluctuations of light, we generalize the concept of the Newman
phases and exhibit many other specific sets of quadratic
phases enabling us to reduce the intensity fluctuations of a flat
comb of optical frequencies. In the second part we report the
experimental demonstration of a Ti:Sa laser containing about
2500 frequencies whose phases have been set according to
the generalized Newman phases. We demonstrate a reduction
of the contrast of the intensity fluctuations by a factor of 2,
compared to the case where the phases are set as random.

II. MEASUREMENT OF THE INTENSITY FLUCTUATIONS
OF BROADBAND LIGHT

In acoustics or radio-wave communications several esti-
mators of the intensity fluctuations can be provided, like the
crest factor, the peak-to-peak amplitude, or the PAR [12]. In
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FIG. 1. (Color online) Reduction of the intensity fluctuations of
a flat comb of N optical frequencies arranged according to the
Newman phases. The evolution of I (θ ) = |∑N

n=1 e−inθ+iϕn |2 with the
dimensionless time θ is computed for both Newman phases (i.e.,
ϕn = −πn2/N , in blue) and random phases (in green) for different
values of N (10, 50, 250, and 1250). The degree of second-order
coherence at zero delay g2(0) (see text) is equal to 2.0 ± 0.1 in all
four cases of random phases, while it is equal respectively to 1.21,
1.09, 1.04, and 1.02 in the cases of the Newman phases.

optics the usual way of quantifying the intensity fluctuations
is the degree of second-order coherence (or second-order
autocorrelation function) defined as g(2)(τ ) = 〈I (t)I (t+τ )〉

〈I (t)〉2 where
I (t) is the intensity of the optical field and 〈 〉 denotes
the average over time. The value of g(2)(τ = 0) gives a
particularly simple estimation of the intensity fluctuations: for
instance, perfectly coherent light and phase-modulated light
display no (classical) intensity fluctuations which corresponds
to g(2)(0) = 1. On the contrary, a set of N equidistant
optical frequencies with constant phases as in mode-locked
lasers show maximum intensity fluctuations and g(2)(0) = N .
When the phases are chosen at random the behavior is
similar on average to chaotic light and g(2)(0) = 2 in the
limit where N is large [18]. The degree of second-order
coherence is also directly linked to the contrast of the intensity

defined as C =
√〈I 2〉−〈I 〉2

〈I 〉 =
√

g(2)(0) − 1. Experimentally
the technique of second harmonic generation (SHG) enables
us to record g(2)(τ ): the interferometric autocorrelation (IAC)
trace recorded by measuring the SHG at the output of a
two-beam interferometer and averaged over the fringes is
proportional to g(2)(0) + 2g(2)(τ ) where τ is the time delay
of the interferometer. For comparison, theoretical plots of the
degree of second-order coherence and the IAC trace in the case
of random and Newman phases are plotted in Fig. 2.

III. GENERALIZATION OF THE NEWMAN PHASES

We now demonstrate a generalization of the Newman
phases. Consider a set of N equidistant optical frequencies
labeled by n with amplitudes equal to E0h(n) and separated
by the angular frequency ωs (h vanishes outside the domain

FIG. 2. (Color online) Top: comparison of the degree of second-
order coherence g(2)(τ ) in the case of a flat spectrum of 100
equidistant optical frequencies with phases set as random (green, left)
and according to the Newman phases ϕn = −πn2/N (blue, right).
Bottom: corresponding normalized IAC |[E(θ ) + E(θ + θτ )]2|2. The
red trace is the average over the fringes. The peak-to-baseline ratio of
the fringes are close to 4 : 1 and 8 : 3 in the case of the random and
Newman phases respectively while the peak-to-baseline ratio of the
average traces are 3 : 2 and 1 : 1 respectively.

0 � n � N − 1). In link with the Newman phases, we consider
a quadratic dependence of the phases. The resulting electric
field is

Eϕ(t) = E0

∑

n

h(n)e−i(ω0+nωs )t ei(n2/2)ϕ, (1)

where ω0 is the angular frequency of the first spectral
component. Note that ϕ can be seen as the curvature of the
parabola of the phases and that when ϕ = 2π/N and h(n) = 1
for 0 � n � N − 1 (flat spectrum), the phases of the modes
match the Newman phases. In the frame rotating at ω0 and
introducing θ = ωst , the electric field rewrites

Eϕ(θ ) = E0

∑

n

h(n)e−inθ ei(n2/2)ϕ. (2)

The Poisson summation formula applied to the expression
of the intensity Iϕ(θ ) = Eϕ(θ )E∗

ϕ(θ ) = |Eϕ(θ )|2 yields [19]

Iϕ(θ ) = I0

∑

n,m

H (m,n − mϕ/2π )e−imθ ei(m2/2)ϕ, (3)

where I0 = |E0|2 and H (x1,x2) = ∫ N

0 h(y +
x1)h(y)e−2iπyx2dy. In the two-dimensional plane, H (x1,x2) is
a function centered at the origin and the widths of H along x1

and x2 scale respectively as N and 1/N .
The degree of second-order coherence at zero delay is

g(2)
ϕ (0) = 〈Iϕ(θ )2〉

〈Iϕ(θ )〉2
. (4)

Since Iϕ(θ ) is real we have in the general
case 〈Iϕ(θ )2〉 = I 2

0

∑
m,n,l H (m,n − mϕ/2π )H ∗(m,n + l −
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FIG. 3. (Color online) Top: Plot of g(2)
ϕ (0) as a function of ϕ in the

case of N = 100 modes with equal amplitude. Bottom left: zoom of
g(2)

ϕ (0) in the vicinity of ϕ/2π = p/q with p/q = 0,1/2 and 3/5 from
top to bottom. The horizontal span is 6π/100. The dips correspond
to the generalized Newman phases ϕ̂ = 2π (p/q ± 1/qN ). The
corresponding intensities Iϕ̂(θ ) are plotted in the right column and
the values of g

(2)
ϕ̂ (0) are equal to 1.06, 1.09, and 1.15 respectively (top

to bottom).

mϕ/2π ). Because the extension of H along the second coordi-
nate scales as 1/N , only the term l = 0 has a significant contri-
bution and 〈Iϕ(θ )2〉 = I 2

0

∑
m,n |H (m,n − mϕ/2π )|2. More-

over, 〈Iϕ(θ )〉2 = I 2
0 (

∑
n H (0,n))2 = I 2

0 H (0,0)2.
Interestingly it can be shown that g(2)

ϕ (0) (as a function
of ϕ) tends to the so-called Thomae’s function, i.e., T (ϕ) =
1/q when ϕ = 2πp/q where q < N (Fig. 3) [19]. Note
that g(2)

ϕ (0) shows dips not only in the vicinity of ϕ =
2kπ (more precisely at ϕ = 2kπ ± 2π/N which corresponds
to the Newman phases) but also in the vicinity of any
rational value of ϕ/2π . In the following we prove that
at these locations g(2)

ϕ (0) tends to unity when N becomes
large.

We define ϕ̂ = 2π (p/q ± 1/qN ). Again Newman phases
correspond to the specific case where p = 0 and q = 1.

Defining H0 = H (0,0) = ∫
h2(y)dy,

g
(2)
ϕ̂ (0) =

∑
m,n

∣∣H
(
m,n − mp

q
∓ m

qN

)∣∣2

H 2
0

. (5)

For the same reason as before the terms in the numerator having
a significant contribution correspond to m = kq, k integer, and

n = mp

q
. Then g

(2)
ϕ̂ (0) =

∑
k |H (kq,∓ k

N
)|2

H 2
0

.

Again only the first terms (labeled by k) in the numerator
contribute significantly. In the limit where N is large kq is
much smaller than N and H (kq, ∓ k

N
) ≈ H (0, ∓ k

N
). Using

Parseval’s theorem,

g
(2)
ϕ̂ (0) ≈

∑
k

∣∣ ∫ N

0 h2(y)e±i2π(k/N)ydy
∣∣2

H 2
0

= N
∫

h4(y)dy

| ∫ h2(y)dy|2 ,

(6)

which is equal to unity in the case of a flat spectrum. Therefore
the intensity fluctuations tend to vanish when the phases of the
modes are equal to ϕ̂ = 2π (p/q ± 1/qN ), which constitutes
a generalization of the Newman phases. In the following these
phases are called generalized Newman phases.

IV. GENERATION OF A COMB OF OPTICAL
FREQUENCIES WITH QUADRATIC PHASES

IN FSF LASERS

We now turn to the experimental implementation of quiet
(or near constant intensity) broadband light. In optics, the
generation of combs of optical frequencies with identical (or
linear) phases is routinely achieved in mode-locked lasers.
However a comb of optical frequencies with quadratically
varying phase is more challenging to achieve since it requires a
dispersion between adjacent modes linearly increasing with n,
implying a very large group velocity dispersion. An interesting
possibility is offered by linearly chirped fiber Bragg gratings
but is restricted to combs with large frequency spacings [20].
However it turns out that a CW injection-seeded frequency
shifted feedback (FSF) laser is a simple and flexible solution
for the generation of an optical frequency comb with quadratic
phases [21]. Recall that a FSF laser cavity is closed of the +1
(or −1) diffraction order of an acousto-optic frequency shifter
(AOFS). Each time a photon makes a round trip in a (linear)
FSF cavity, its frequency is shifted by twice the frequency of
the acoustic wave fs/2. When operating without an external
seeding, the resulting spectrum is modeless and the resulting
laser field is similar in terms of statistical properties, to a
chaotic field [i.e., g(2)(0) = 2] [22]. When a FSF cavity is
seeded with a single frequency laser the resulting spectrum
consists in a comb of optical frequencies with a frequency
spacing equal to fs . Interestingly it can be shown that the
phases of the modes of the comb evolve quadratically with n

and can be written as ϕn = πn(n + 1) fs

fc
where fc is the cavity

free spectral range defined as the inverse of the round-trip time
in the cavity [19,21]. The linear term in ϕn results in a simple
temporal shift. The possibility to tune the curvature of the
phase parabola by adjusting fs or fc leads to the demonstration
of ultrahigh repetition rates by a temporal fractional Talbot
effect: when the ratio fs/fc is set as the rational p/q with
q � N the laser emits Fourier transform-limited pulses at
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FIG. 4. (Color online) Sketch of the experimental setup (see
text). The output coupler (OC) of the injection-seeded FSF Ti:Sa
cavity is mounted on a translation stage (TS1). A Michelson
interferometer (MI) and a BBO crystal tuned for SHG at 780 nm
enable us to record the IAC. BS, PD, and PMT stand respectively for
beamsplitter, photodiode, and photomultiplier tube.

a repetition rate equal to pfc = qfs [21]. On the contrary,
adjusting the curvature of the phase’s parabola according to the
generalized Newman phases leads to the possibility of using
this laser architecture to generate quiet (i.e., near constant
intensity) broadband light.

V. EXPERIMENTAL DEMONSTRATION

A linear Z-shaped Ti:Sa laser cavity is closed on the +1
diffraction order of an acousto-optic frequency shifter driven at
40 MHz (fs = 80 MHz). The optical round-trip length of the
FSF cavity is about 3 m, resulting in a cavity free spectral range
fc close to 100 MHz. The cavity output coupler is mounted on
a translation stage for a slight tuning of the free spectral range
(Fig. 4). The Ti:Sa crystal is pumped by a solid-state laser at
532 nm with a power of 4.3 W. The FSF cavity is injected by
a single-mode extended cavity diode laser (ECDL) at 780 nm
(25 mW power, 10 kHz linewidth). The power at the output
of the injected FSF cavity reaches 30 mW and the spectrum
is 200 GHz wide. The beam is then sent into a Michelson
interferometer and a BBO nonlinear crystal tuned for second-
harmonic generation at 780 nm, to record the autocorrelation
trace. When fc is exactly tuned to 100 MHz, the ratio fs/fc is
equal to 4/5 and the laser emits pulses at the repetition rate of
400 MHz, according to the temporal fractional Talbot effect.

When the FSF laser operates without seeding it generates
a 100-GHz broadband modeless spectrum. When externally
seeded, the resulting spectrum consists in a comb (not resolved
by the spectrometer) of about N = 2500 modes separated by
80 MHz. The optical spectra are plotted in Fig. 5. When the
cavity free spectral range is adjusted to fc = 99.990 MHz so
as to match the generalized Newman phases ϕ̂ = 2π (4/5 +
1/12500) the intensity spectrum shows significantly less noise
as compared to the modeless laser (Fig. 5, top right) and the
interferometric autocorrelation trace averaged over the fringes
shows a flat response, contrary to the trace of the modeless
laser which displays a 3:2 peak-to-baseline ratio, as predicted
on Fig. 2 (Fig. 5, bottom left). To infer a precise value of the
g(2)(0) of the CW injection-seeded FSF laser we proceed as

FIG. 5. (Color online) Experimental comparison of the FSF laser
operating without (in green) and with external seeding (in blue) when
the cavity length is adjusted according to the generalized Newman
phase ϕ̂ = 2π (p/q ± 1/qN ) where p = 4, q = 5, and N ≈ 2500 so
as to minimize the intensity fluctuations. Top left: optical spectra of
the laser without (i.e., modeless laser) and with external seeding. The
sharp peak corresponds to the injection laser. Top right and bottom
left: comparison of the RF spectra in the 0–1-GHz range and the
IAC of the laser without and with external seeding. Bottom right:
corresponding SHG signals in the same experimental conditions. The
solid lines are quadratic fits.

follows: the mobile arm of the interferometer is blocked and the
intensity of the SHG signal is detected for different intensities
of the pump laser, in the cases of both the modeless laser and
the seeded laser. The experimental setup is exactly the same
in both cases. Since the modeless laser displays the statistical
properties of a chaotic source [i.e., g(2)(0) = 2] one deduces
that for the FSF laser g(2)(0) = 1.3 (Fig. 5 bottom right), which
demonstrates intensity fluctuations strongly reduced compared
to a chaotic light source. Note however that this value is higher
than a constant intensity light that would lead to g(2)(0) =
1. This mainly comes from the fact that the experimental
spectrum at the output of the seeded FSF laser is not flat,
which leads to some discrepancy compared to the previous
calculations. According to the experimental spectrum (Fig. 5,

top left) the expected value of g
(2)
ϕ̂ (0) = N

∫
h4(y)dy

| ∫ h2(y)dy|2 is found
to be 1.22 which is closer to the experimental value. Finally we
record successively the interferometric autocorrelation traces
of the (seeded) FSF laser while scanning the cavity length
in the vicinity of ϕ = 2π × 4/5, and observe the transition
from maximal to minimal fluctuations [Figs. 6(a)–6(h)]. When
ϕ exceeds ϕ̂ [Figs. 6(h)–6(j)] the average autocorrelation
trace shows a modulation which is the signature that ϕ/2π

approaches other rational quantities p′/q ′ (with q ′ < N ).
Finally, it is important to justify that this experiment

satisfies indeed the conditions of validity of the transposition,
in the optical domain, of the reduction of the intensity
fluctuations by a specific engineering of the phases. First
quantum noise is negligible in the present case: the average
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(a) (a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

(b)

(c)

(d)

(e)
(f) (j)

(i)(h)(g)

FIG. 6. (Color online) Experimental IAC traces of the injection
seeded laser in the vicinity of the minimum of fluctuations. Left: the
vertical scale [g(2)(τ = 0)] has been adjusted by comparison to the
unseeded laser.

power per frequency component is about 10 μW and the
typical measurement time scale is in the μs range, which
makes the signal-to (quantum)-noise ratio close to 104. Second,
despite the lack of dynamical studies on CW injection-seeding
FSF lasers, it is reasonable to assume that the relative
amplitude of the individual frequencies remains constant at
the measurement time scale. This assumption is supported
by heterodyne measurements between the seed laser and
the laser field at the output of the FSF cavity, which show
that the intensity of the first frequency-shifted modes remain
constant. Moreover, the optical spectrum measured with a
GHz resolution shows no fluctuations in shape or intensity
down to the ms time scale. Finally the intrinsic dynamics

(i.e., relaxation oscillations) of the homogeneous gain medium
applies identically to the whole spectrum and should not affect
significantly the relative amplitude of the individual frequency
components. Therefore our system consisting in a comb of
optical frequencies with quadratic relative phases constitutes
a convincing optical analog of its radio wave or acoustic
counterparts demonstrated so far.

VI. CONCLUSION

We have demonstrated the possibility to lower significantly
the intensity fluctuations of a broadband light source resulting
from intermodal beating, by a quadratic adjustment of the
phases of the modes. Our demonstration applies to near-flat
combs of optical frequencies, with constant relative amplitudes
and negligible quantum noise. We have generalized the
Newman phases and demonstrated that for many other values
of the curvature of the phase parabola, the intensity fluctuations
of a flat spectrum of equidistant frequencies tend to cancel
in the limit of a large number of modes. This general result
could be applied to other fields of wave physics, including
wireless communications, OFDM, acoustics, hydrodynamics,
and even quantum mechanics. Then we have applied this
concept to optics and implemented a laser generating about
2500 modes arranged according to these generalized Newman
phases and displaying intensity fluctuations reduced down
to g(2)(0) = 1.3 (or C = 0.54), that is significantly lower
compared to a chaotic light source for which g(2)(0) = 2 and
C = 1. This demonstration could find applications in DWDM
fiber networks where intensity fluctuations need to be limited
to avoid nonlinear effects responsible for channel cross talk.
Moreover it could bring a solution to the distortion of signals
at the output of optical amplifiers. Additionally the injection
seeded FSF laser constitutes a unique broadband light source
with constant spectrum, constant average power, and photon
statistics easily tunable from super-Poissonian to Poissonian.
Finally it is noteworthy that the generalized Newman phases
investigated in the present work are not the only solution
to minimize the intensity fluctuations of a comb of optical
frequencies. Indeed recall that other sets of phases, including
the Rudin-Shapiro phases, are theoretically expected to ensure
reduced intensity fluctuations. In the specific case where the
phases are restricted to 0 or π , Galois sequences enable also
remarkably small peak factors [7]. However, the practical
implementation of such combs of optical frequencies is still to
be demonstrated.
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