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Abraham and Minkowski momenta in the optically induced motion of fluids
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Does the Abraham or the Minkowski momentum describe the momentum transport of light in media? Here we
show that this is a question of fluid dynamics. In momentum transport, neither the Abraham nor the Minkowski
momentum is fundamental, but they emerge depending on the fluid-mechanical response of the medium on
the light. If the fluid is not brought into motion, the Minkowski momentum emerges, if it moves the Abraham
momentum appears.
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I. INTRODUCTION

According to McIntyre [1],

Controvercies over the “momentum” of waves have repeatedly
wasted the time of physicists for over . . . a century. The
persistence of the controvercies is surprising, since regardless
of whether classical or quantum dynamics is used the facts
of the matter are simple and unequivocal, are well checked
by laboratory experiment, are clearly explained in several
published papers, and on the theoretical side can easily be
verified by straightforward calculations.

It is indeed surprising [2] that the momentum of waves, and
here, in particular, the momentum of light, has been the subject
of controversy since 1909 [3,4]. “The argument has not, it is
true, been carried on at high volume, but the list of disputants
is very distinguished” [5].

Are the facts of the matter simple and unequivocal?
Consensus has been reached on the meaning of the two
principal contenders for the momentum of light in media:
The Minkowski momentum is the canonical, and the Abraham
momentum the kinetic, momentum [6]. The Minkowski
momentum corresponds to the wave; the Abraham momentum,
to the particle aspects of light [7]. Or, from a geometrical
perspective [8], the Minkowski momentum is the covariant,
and the Abraham momentum the contravariant, momentum
with respect to the geometry of light in media [9]. However, as
Brillouin [10] wrote in 1925, “It is not ultimately the density of
momentum which matters, but rather the flux of momentum.” In
this paper we show how subtle the question of the momentum
flux of light is.

The physical situation considered here can hardly be
simpler: light is propagating through two homogeneous media
with a planar interface; part of the light is transmitted, the
rest is reflected. Depending on the balance between the
incoming and the outgoing momentum flux, the interface
experiences a pressure difference that may lead to measurable
physical effects that ought to be “well checked by laboratory
experiment” [1]. But are they? Three experiments [11–13], the
first by Ashkin and Dziedzic [11], seem to show that the mo-
mentum transported across the interface is Minkowski’s; one
experiment [14] indicates quantitatively that it is Abraham’s.
This paper is inspired by the latter experiment; it asks, and
hopefully answers, the question how such seemingly similar
experiments on the momentum transport of light can show
such different modes of behavior.

The calculations required to solve this puzzle cannot “be
easily verified by straightforward calculations” [1], as they
involve fluid mechanics. The paper derives an analytical
solution of the linearized stationary Navier-Stokes equation
[15,16]. The solution describes the velocity profile of a viscous
fluid in response to an incident light beam that, as it turns
out, facilitates the transport of the Abraham momentum. The
transport of the Minkowski momentum emerges trivially if
the light is not able to put the fluid in motion. However, the
paper cannot discriminate between the precise circumstances
in which one or the other mode of momentum transfer appears;
this is left to future research.

II. MOMENTUM BALANCE

Let us begin at the beginning—the fact that a dielectric
medium consists of individual building blocks, molecules and
atoms—and consider the mechanical force of light on them.
Suppose that the light is sufficiently off resonance such that
we can safely ignore absorption and dissipation. Note that in
this case we implicitly neglect the dissipative force of light
[17] that leads to the radiation pressure on atoms used, e.g., in
laser cooling. Nevertheless, as we see in the next section, the
remaining reactive force accounts for the radiation pressure on
bulk media.

Consider a single molecule or atom interacting with
light. The particle should be small enough so that we can
regard it as an induced electric dipole of polarizability α

and mass m moving at velocity v. We could also consider
the contribution coming from the magnetic dipole, but the
results will be completely analogous to the purely electric
case. The electric dipole experiences the electric field as the
potential [18]

V = −α

2
E′2. (1)

The resulting force is proportional to the gradient of the
intensity of light and is known as the optical gradient force
or optical dipole force. Note that the dipole responds to the
electric field E′ in its own rest frame, i.e., in a frame comoving
with the particle, which differs from the electric field E in the
laboratory frame. From special relativity we get to lowest order
in v/c [18],

E′2 = E2 − 2v · (E × B), (2)
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where B denotes the magnetic induction. Throughout this
paper we use SI units. As usual, c denotes the speed of light
in vacuum. Note that the distinction between laboratory and
comoving frame becomes significant in the momentum of the
particle [8]. Indeed, we obtain from the Lagrangian

L = m

2
v2 − V (3)

the canonical momentum

p = ∂L

∂v
= mv − αE × B. (4)

We see that the canonical momentum p differs from the kinetic
momentum mv by αE × B (which is known as the Röntgen
interaction [19,20]). This difference is one reason for the
Abraham-Minkowski controversy [3,4,21], although not the
only one, as we are going to see.

Let us now proceed from the individual particles to bulk
media. Imagine that many of such point dipoles constitute a
fluid of mass density ρ and flow velocity u described by the
continuity equation

∂tρ + ∇ · (ρu) = 0. (5)

Suppose, for simplicity, that the canonical momentum p is
given by the gradient of the velocity potential ϕ times the
mass m such that

u = ∇ϕ + α

m
E × B. (6)

For Bose-Einstein condensates [22] ϕ is proportional to the
phase of the mean-field wave function. For more general
fluids, the assumption expressed in Eq. (6) has the advantage
that we can easily write down the Lagrangian density LM

that generates the equations of motions. From the Lagrangian
we can deduce the constitutive equations of the medium
and, from them, calculate the momentum balance. As the
resulting equations of motion can also be deduced from
general thermodynamical arguments [23,24], we expect that
our results remain the same irrespective whether or not p
can be expressed as a gradient. In the case of a gradient p, the
Lagrangian density LM should generate the Bernoulli equation
[15,16]

∂tϕ + u2

2
− α

2m
E2 + W = 0 (7)

in addition to the continuity equation, (5). Here W denotes the
enthalpy that, for isentropic motion [16], is directly related to
the pressure p by

∇W = ∇p

ρ
. (8)

We write down the Lagrangian density

LM = −ρ

(
∂tϕ + u2

2
− α

2m
E2 + W

)
. (9)

The Euler-Lagrange equation for ρ trivially gives the Bernoulli
equation, (7), while the Euler-Lagrange equation for ϕ gener-
ates the continuity equation, (5), as required. The negative sign
in front of ρ was chosen such that the action is minimal for
the field-free case, where we also obtain for the energy density

ρu2/2 + p. These features uniquely determine the Lagrangian
density LM.

Let us now add to LM the Lagrangian density LF of the
free electromagnetic field, with

LF = ε0

2
(E2 − c2B2), (10)

where ε0 denotes the electric permittivity of the vacuum. We
thus have, for the total Lagrangian density,

L = LM + LF. (11)

Writing the electric field and the magnetic induction in terms
of the vector potential A in Coulomb gauge,

E = −∂t A, B = ∇ × A, (12)

we obtain [20] from the total Lagrangian, (11), Maxwell’s
equations

∇ · D = 0, ∇ × E = −∂t B,
(13)∇ · B = 0, ∇ × H = ∂t D,

with the constitutive equations

D = ε0[(1 + χ )E + χu × B],

H = ε0(c2 B + χu × E) (14)

and the susceptibility

χ = αρ

ε0m
. (15)

These are the constitutive equations of a moving medium [23]
to lowest order in u/c. From them we deduce the momentum
balance. In the Appendix we derive, from the equation of
continuity, (5), the Bernoulli equation, (7), the isentropic
relation, (8), Maxwell’s equations, (13), and the constitutive
equations, (14) and (15),

∂t (ρ∇ϕ + D × B) + ∇ · (ρu ⊗ u)

= ∇ ·
(

σ + ε0

2
χE′21 − p1

)
. (16)

Here E′2 denotes the electric-field intensity in a locally
comoving frame, as in Eq. (2) with v = u, and σ is Abraham’s
stress tensor,

σ = D ⊗ E + B ⊗ H + χu ⊗ ε0 E × B

− 1
2 (E · D + B · H) . (17)

The Abraham tensor consists of Maxwell’s stress tensor [18]
plus the Ruhstrahl contribution χu ⊗ ε0 E × B due to Abra-
ham [4]. One verifies by direct calculation that Abrahams’s
tensor, as given by Eq. (17), is symmetric for moving media
with the constitutive equations, (14), whereas Maxwell’s stress
tensor is not symmetric in this case. Formula (16) holds for
dilute media where the particles constituting the media do not
directly influence their electromagnetic response such that the
susceptibility χ is proportional to the density ρ, as in Eq. (15).
Otherwise, the explicit χ in formula (16) needs to be replaced
by ρ (∂χ/∂ρ) [23,24].
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Let us now remove the scaffolding of our derivation and
write down the essential results. Although we have borrowed
a few elements of relativity, most of them are not relevant
in practice (at least for the existing experimental tests of
the momentum of light). For electromagnetic radiation the
magnetic induction B scales like E/c in SI units, so we ignore
the contributions of motion in the constitutive equations:

D = ε0(1 + χ )E, H = ε0c
2 B. (18)

We define the quantity

g = ρ∇ϕ + D × B, (19)

for which we obtain, from Eq. (16) in the nonrelativistic
limit,

∂t g + ∇ · (ρu ⊗ u) = ∇ ·
(

σ + ε0

2
χE21 − p1

)
(20)

with Maxwell’s stress tensor

σ = D ⊗ E + B ⊗ H − 1
2 (E · D + B · H) . (21)

Equation (20) describes a conservation law. As ρ∇ϕ accounts
for the canonical momentum of the fluid, we interpret the con-
served density, (19), as the total momentum density of light and
matter. The term D × B denotes the Minkowski momentum
density of light [3]. We thus conclude that temporal changes in
the Minkowski momentum are mirrored by temporal changes
in the canonical momentum. For Bose-Einstein condensates,
ϕ corresponds to the phase of the wave function, so the
Minkowski momentum is imprinted on the phase and appears
in matter-wave interferometry, in agreement with experiment
[25]. However, with the help of relationship (6), we may also
express the total momentum density of Eq. (19) in terms of the
kinetic momentum density ρu. All we have to do is subtract
χε0 E × B from Minkowski’s D × B and use the constitutive
equations, (18). We obtain

g = ρu + E × H
c2

, (22)

where E × H is the Abraham momentum density [4]. There-
fore, temporal changes in the Abraham momentum result
in mechanical motion, again in agreement with experiment
[26].

However, other experimental tests of the momentum of light
in media are based on changes in space and not in time. For
example, at the interface between two homogeneous media,
where light is partially reflected and may exert mechanical
forces, the media vary in space and not in time. What
matters here is the momentum transport in space, and not the
momentum conservation in time. The momentum transport is
described by the right-hand side of the conservation law of
Eq. (20), which reveals a much more complex picture than the
ambiguity between Abraham and Minkowski momentum in
Eqs. (19) and (22). Three terms contribute to the momentum
transport: the stress tensor σ of the electromagnetic field, the
dipole potential of Eq. (1), and the internal pressure p of the
medium. Suppose that the pressure balances the energy density
of the induced dipoles,

p = ε0

2
χE2, (23)

apart from an overall constant. In this case, the diver-
gence of Maxwell’s stress tensor σ , where σ is given by
Eq. (21), describes the force density on the dielectric medium.
What is the momentum transfer at the interface between two
media?

III. PLANAR INTERFACE

Consider the propagation of light between two uniform
media with a planar interface. The media shall have the
refractive indices n1 and n2 (Fig. 1), where the refractive index
is related to the susceptibility by

n2
ν = 1 + χν. (24)

In each medium, light propagates with the local wave number
kν , which depends on nν and the angular frequency ω or the
free-space wavelength λ as

kν = nν

ω

c
= nν

2π

λ
. (25)

Suppose that the light propagates predominantly perpendicular
to the dielectric interface, in the z direction (Fig. 1). In this
case, the vector potential Aν is given by the expression

Aν = α
√

P e−iωt

√
2ε0n1c ω

(Tνu+ν(r) eikνz + Rνu−ν(r) e−ikνz) + c.c.,

(26)

where c.c. denotes the complex conjugate. The vector α

describes the polarization direction, a unity vector orthogonal
to the z direction, and u±ν(r) are the profiles of the incident
and reflected beams with the transmission and reflection
coefficients Tν and Rν . The constant P describes the power of
the light field. For light coming from medium 1 (Fig. 1) we
have

T1 = 1, R2 = 0. (27)

As a consequence of the field equations, (12) and (13), and
the constitutive equations, (18), the vector potential in the

FIG. 1. Light shall propagate in the z direction perpendicularly
to the planar interface between two infinitely extended media with
uniform refractive indices n1 and n2.
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Coulomb gauge [18] obeys the Helmholtz equation in each
homogeneous region,(∇2 + k2

ν

)
Aν = 0, (28)

and hence (∂2
x + ∂2

y + ∂2
z + k2

ν )u±ν exp(±ikνz) = 0. In the
paraxial approximation [27] we assume that the beam profile
does not vary much in the propagation direction and hence
we may ignore the second z derivative of u±ν . We obtain the
optical Schrödinger equation:(±2ikν ∂z + ∂2

x + ∂2
y

)
u±ν = 0. (29)

At the interface we put u−ν = u+ν ; the reflection and trans-
mission are then completely described by Rν and Tν . As
the Schrödinger equation, (29), conserves the norm, we may
require ∫ +∞

−∞

∫ +∞

−∞
|u±ν(r)|2 dx dy = 1. (30)

The intensity of the incident light is given by

I (r) = P |u+1(r)|2. (31)

We see this from a calculation of the Poynting vector E × H
averaged over an optical cycle that describes the energy flux
and hence the intensity. We consider the incident light, i.e.,
put R1 = 0, ignore the evolution of u(r), and obtain the z

component of the Poynting vector, Eq. (31), as required. Note
that from the normalization, Eq. (30), it follows that P is
indeed the incident light power.

Consider the electromagnetic stress at the interface, de-
scribed by the stress tensor of Eq. (21). Without loss of
generality we put the polarization vector α in the x direction.
We obtain from the field equations, (12), and the constitutive
equations, (18), for the vector potential specified by Eq. (26)
with Eqs. (24), (25), and (31), the field correlations

〈DxEx〉 = n2
νI

n1c
(|Tν |2 + |Rν |2 + 2|Tν ||Rν | cos �ν),

(32)

〈ByHy〉 = n2
νI

n1c
(|Tν |2 + |Rν |2 − 2|Tν ||Rν | cos �ν),

with �ν = kνz + φν . The φν denote the phases of TνR
∗
ν and the

angle brackets indicate that we have averaged over an optical
cycle. We have also neglected derivatives with respect to x

and y. All other correlation functions constituting the stress
tensor of Eq. (21) vanish, so σ is diagonal. Since σ depends
essentially only on z, the momentum transfer ∇ · σ is thus
solely given by σzz, for which we obtain

σ (ν)
zz = −n2

νI

n1c
(|Tν |2 + |Rν |2). (33)

To check whether this result makes physical sense, suppose
that the incident light propagates in empty space (n1 = 1) and
is totally reflected (R1 = 1). In this case we have σ (1)

zz = −2I/c

and σ (2)
zz ∼ 0, so the total momentum transfer amounts to twice

the incoming momentum flux I/c, as one would expect. Light
exerts a pushing force on the total reflection, which we may
easily understand if the medium is a metal with negative ε =
1 + χ2. In this case, n2 is purely imaginary, so the field and

hence σ (2)
zz exponentially decays in the medium, and χ2 is

negative, which corresponds to a repulsive dipole potential
according to Eq. (1). Less intuitive is the pushing force if the
reflection is created by a Bragg mirror [27] made of periodic
layers with real refractive indices. In this case, the field also
decays after each period and the incident light is completely
reflected, so the momentum transfer is positive as well and
amounts to 2I/c, although χ is always positive. Presumably,
the pressure balance of Eq. (23) in the medium creates an
overall pushing force.

Consider now the case of two homogeneous media with
n1 < n2 and a sharp planar interface. The reflection and
transmission coefficients are given by the Fresnel coefficients
[18]

R1 = n1 − n2

n1 + n2
, T2 = 2n1

n1 + n2
. (34)

We obtain from expression (33) the force density

fz = (∇ · σ )z = 2n1
n1 − n2

n1 + n2

I

c
δ(z), (35)

which, for n1 < n2, pulls medium 2 back to the direction
the light comes from. The δ function in Eq. (35) indicates
that the force density is concentrated at the interface. We can
understand fz as the gradient ∂zpMrad of the pressure

pMrad =
{(

1 + R2
1

)
n1I/c: z < 0.(

1 − R2
1

)
n2I/c: z > 0.

(36)

We may interpret pMrad as the radiation pressure à la
Minkowski, because it consists of the Minkowski momentum
nνI/c with the appropriate prefactors describing reflection
and transmission: in the region of incidence, z < 0, the
prefactor is the sum of the ingoing and the reflected part;
and in the region with z > 0 the prefactor accounts for
the remaining transmitted light—there it is the difference
between the ingoing and the reflected part. We thus get the
impression that the momentum transfer is governed by the
Minkowski momentum: the Minkowski momentum emerges
as the effective optomechanical momentum. We may also
read the force density fz as the gradient of the difference
in fluid pressure, where the pressure is given by Eq. (23),
because

p2 − p1 = ε0

2

(
n2

2 − n2
1

) 〈E2〉 = 2n1
n2 − n1

n2 + n1

I

c
. (37)

This pressure difference must be counterbalanced by the
surface tension [15] causing an outward bulge of the fluid
with a higher index, in agreement with experiments [11–13].
Yet She et al. [14] have observed the exact opposite, an
indentation of the fluid surface by the same magnitude. How
is this possible?

IV. FLUID DYNAMICS

The pulling force of the light is a consequence of the
balance between the fluid pressure and the optical dipole force:
along the beam the light puts a lateral force on the fluid that
the pressure compensates, but as the pressure is isotropic, it
also acts on the interface between the two media, bulging it
out. Therefore, a pushing force can only appear if the light
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potential is not balanced by the pressure. In this case, local
forces are acting in the bulk of the medium, causing it to flow.
Consequently, to explain the experiment of She et al. [14], we
must consider the fluid mechanics driven by the dipole force
of light.

Suppose that medium 1 is simply air (empty space) and
medium 2 is an incompressible fluid with some viscosity η

such as the water or oil in the experiment [14]. To keep the
notation simple, we drop the reference to the medium, the index
2, in the quantities referring to it. Incompressibility implies
that

ρ = const and hence χ = const. (38)

From the continuity equation, (5), it follows that

∇ · u = 0. (39)

We assume the electromagnetic field to be stationary such that

∂t 〈E × H〉 = 0, (40)

where, as in the previous section, angle brackets indicate
averaging over an optical cycle. In addition, we obtain from
Eqs. (A6), (A7), and (A9) in the limit u/c → 0 and the
incompressibility, Eq. (38),

0 = ∂t 〈D × B〉 = ∇ · 〈σ 〉 + (∇χ )
ε0

2
〈E2〉 = ∇ · 〈σ 〉. (41)

Inserting Eqs. (40) and (41) in the conservation law of
Eq. (20) for the Abraham momentum of Eq. (22) we obtain
the Navier-Stokes equation [15,16],

ρ [∂t u + (u · ∇)u] = ∇
(

ε0

2
χ〈E2〉 − p

)
+ η∇2u, (42)

where we have used the incompressibility relations, (38) and
(39), and included the viscosity of the fluid by adding the
term η∇2u to the force density (which is the only source of
viscosity for incompressible fluids [16]). As the fluid evolves
on much longer time scales than the optical oscillations,
we are justified in averaging the dynamics over an optical
cycle.

The Navier-Stokes equation, (42), describes the fluid dy-
namics. We see that u = 0 together with the pressure balance,
(23), establishes an obvious solution of the Navier-Stokes
equation, a solution that, as we have seen, conforms to the
Minkowski pressure of light. Suppose now that the light has
brought the fluid into a steady flow with u �= 0 and

∂t u = 0. (43)

Solving the Navier-Stokes equation in all but trivial situations
is notoriously difficult. We were only able to deduce an
approximate solution for the simple model we describe below,
but we argue that the main features of this solution are
sufficiently general. Our mathematical method is inspired
by the optical analog [28] of acoustic streaming [29], but
the physics we consider and hence our results are different.
In optical streaming, an incident light beam is gradually
absorbed due to scattering, whereas in our case the light is
not absorbed and exerts the nondissipative dipole force on the
fluid.

Imagine that the light beam in the fluid is much thinner than
the typical scales of the fluid flow (which are of the order of a
centimeter). We idealize the beam to be infinitely thin. We also
linearize the Navier-Stokes equation, (42), for the steady flow,
Eq. (43), outside the line where the light has a direct effect and
get there

η∇2u = ∇p. (44)

It is useful to cast this equation in a different form. For
incompressible fluids we have ∇ × (∇ × u) = ∇(∇ · u) −
∇2u = −∇2u and hence

η∇ × (∇ × u) + ∇p = 0. (45)

This is the form of the linearized, stationary Navier-Stokes
equation we are going to use. We express u in terms of the
vector stream function [16]

u = ∇ × ψ, (46)

which automatically takes care of the incompressibility con-
dition, Eq. (39). The curl of the linearized Navier-Stokes
equation, (45), gives

∇ × {∇ × [∇ × (∇ × ψ)]} = 0 (47)

within the linear regime of the viscous fluid dynamics. We
seek a cylindrically symmetric solution for ψ that is regular
at the light beam, decays exponentially far away from it, and
satisfies no-slip boundary conditions at the surface of the fluid
and the bottom of the container with depth d. We may assume
that the fluid surface is planar, as in the experiment by She
et al. [14] the surface deformation if of the order of 10 nm, the
beam is about 1 mm wide, and the container a few centimeters
deep.

Let us employ cylindrical coordinates {r,φ,z} with metric
dl2 = dr2 + r2dφ2 + dz2, the light beam being concentrated
in the line at r = 0 and the surface lying at z = 0. We assume
that the vector stream function depends only on r and z and
points in the φ direction,

ψi = (0,ψ(r,z),0), (48)

where ψi is a one-form (a covariant vector) carrying a lower
index [9]. We obtain, from the curl in cylindrical coordinates
[9],

ui =
⎛
⎝ur

0
uz

⎞
⎠ with ur = −1

r
∂zψ, uz = 1

r
∂rψ. (49)

The velocity is a vector and hence carries a superscript index.
Note, however, that the cylindrical coordinates ur and uz are
the same for both one-forms and vectors. Consider a stream
line where dr = urdt and dz = uzdt . We see from Eq. (49)
that here dψ = 0: the stream lines are the contour lines of the
stream function ψ(r,z) (Fig. 2). Next we calculate the curl of
u; we get 0 for its r and z components, and

(∇ × u)φ = r (∂zur − ∂ruz) = −D2ψ, (50)

where D2 is defined as

D2 = ∂2
r − 1

r
∂r + ∂2

z . (51)
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FIG. 2. (Color online) The light beam [vertical (green) bar at left]
puts the fluid into motion, forming a vortex ring around it. The picture
shows the stream lines on a cut through one side of the vortex ring.
The stream lines are the contour lines of the stream function, Eq. (59),
in terms of the scaled coordinates of Eq. (55).

To find a geometrical meaning for D2 we note that for our
r- and z-dependent ψ pointing in the φ direction, we have
∇ · ψ = 0. Hence

∇2ψ = −∇ × (∇ × ψ) = −∇ × u = D2ψ . (52)

Consequently, D2 describes the Laplacian on one-forms of the
type of Eq. (48). As the Laplacian depends on the geometric
nature of the object it is acting on [9], D2 differs from the
familiar Laplacian ∂2

r + r−1∂r + ∂2
z of a scalar in cylindrical

coordinates. Applying the curl two more times gives, according
to Eq. (47),

D4ψ = 0, (53)

the equation we are going to solve. We write ψ as

ψ = ψ0(�) sin ζ (54)

in terms of the dimensionless variables

ζ = π

d
z, � = π

d
r. (55)

With this ansatz, the flow of Eq. (49) obeys the no-slip
boundary conditions

uz(0) = 0, uz(d) = 0 (56)

at the surface of the fluid and the bottom of the container
(note that z increases with increasing depth; see Fig. 1). For
the Laplacian of Eq. (51) acting on the function defined in
Eq. (54) with the variables of Eq. (55) we have

D2 = π2

d2
D2

�, D2
� = ∂2

� − 1

�
∂� − 1. (57)

We get, for the modified Bessel functions [30] from their
recurrence relations and differential formulas,

D2
�

�2

2
K0(�) = −�K1(�), D2

�

�2

2
I0(�) = −�I1(�),

D2
� �K1(�) = 0, D2

� �I1(�) = 0. (58)

Hence the functions {�K1,�I1,�
2K0,�

2I0} form a fundamental
system of the fourth-order differential equation, (53), with the
ansatz of Eq. (54). The only solution that is decaying for
r → ∞ and regular at r = 0 is

ψ = U r2

2
K0(�) sin ζ, (59)

with the constant parameterU . To calculate the velocity profile
we use the relation

∂�K0(�) = −K1(�), (60)

which also follows from the recurrence relations and differen-
tial formulas of the modified Bessel functions [30]. We obtain,
for the velocity components of Eq. (49),

ur = −U �

2
K0(�) cos ζ,

(61)
uz = U

(
K0(�) − �

2
K1(�)

)
sin ζ.

We have thus found a solution of the fluid dynamics in
the linear regime with the correct boundary and regularity
conditions. It corresponds to a vortex ring around the light
beam (Fig. 2). Our solution depends on the parameterU , which
carries the dimensions of a velocity.

In order to relate the velocity parameter U to the intensity
of the light beam, we need to calculate the pressure from
the linearized Navier-Stokes equation, (45). We obtain from
Eqs. (50), (57), and (58)

(∇ × u)φ = U �K1(�) sin ζ, (62)

and consequently,

[∇ × (∇ × u)]r = −1

r
∂z (∇ × u)φ = −π2

d2
U K1(�) cos ζ,

(63)

[∇ × (∇ × u)]z = 1

r
∂r (∇ × u)φ

= π2

d2
U 1

�
∂� �K1(�) sin ζ. (64)

From relation (60) of the modified Bessel functions and
[30]

1

�
∂� �K1(�) = −K0(�), (65)

we see that η∇ × (∇ × u) is the gradient of a scalar, the
pressure

pB = −ηU π

d
K0(�) cos ζ, (66)

as it should be according to the linearized Navier-Stokes
equation, (45). Note, however, that the z component of the
flow velocity of Eq. (61) diverges logarithmically for r → 0,
as K0(�) ∼ −γ − ln(�/2), where γ is Euler’s constant and
K1(�) ∼ �−1 [30]. Consequently, near the light beam the flow
must enter the nonlinear regime of the full Navier-Stokes
equation, (42). Moreover, our solution of the linear equation,
(45), suggests the existence of an additional, localized contri-
bution to the pressure. To see this, integrate [∇ × (∇ × u)]z
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over an infinitesimally small disk around r = 0. Read the
right-hand side of Eq. (64) as the two-dimensional divergence
in polar coordinates [9] of a vector field pointing in the �

direction and having the amplitude (π/d)UK1(�) sin ζ . From
Gauss’ theorem it follows that the area integral is given
by the boundary integral 2π� U K1(�) sin ζ ∼ 2π U sin ζ , as
K1(�) ∼ �−1 [30]. On the other hand, the area integral of the
pressure given by Eq. (66) vanishes over an infinitesimally
small disk around r = 0. Consequently, the total pressure of
the fluid consists of two contributions,

p = pB + pL, (67)

the bulk pressure given by Eq. (66) driving the fluid flow
against the viscosity and a localized pressure pL in direct
response to the light. We obtain

pL = 2d ηU δ(2)(r) cos ζ, (68)

where δ(2)(r) denotes the two-dimensional δ function [31]. We
see that the pressure, given by Eq. (68), changes sign between
the bottom of the container and the surface of the fluid. At the
bottom, the fluid must form a viscous layer of zero velocity
[15,16], which implies that the optical potential of the light
and the localized pressure balance each other there:

ε0

2
χ〈E2〉 = pL(d) = −2d ηU δ(2)(r). (69)

Due to the sign change between bottom and surface pressure,
we obtain at the surface

pL(0) = −ε0

2
χ〈E2〉 = −2

n − 1

n + 1

I

c
, (70)

the exact opposite of the Minkowski pressure of Eq. (37)
for n1 = 1 and n2 = n: Abraham’s pressure! Depending on
whether or not the flow pattern, (61), is generated, the Abraham
or the Minkowski momentum appears to cause pressure on the
surface of the fluid; the ground state carries the Minkowski
pressure, Eq. (37), and the “first excited state” produces the
Abraham pressure, Eq. (70).

We can easily calculate the energy of the fluid flow given
by Eq. (61). The integral over the pressure of Eq. (67) from
0 to d vanishes, because of the cos ζ term in both pressure
contributions, Eqs. (66) and (68). Hence the energy is entirely
given by the kinetic energy,

Ekin =
∫ ∞

0

∫ d

0

(
u2

r + u2
z

) ρ

2
dz 2π r dr

=
∫ ∞

0

∫ d

0
((∂zψ)2 + (∂rψ)2)

πρ

r
dz dr

= −
∫ ∞

0

∫ d

0
ψ(D2ψ)

πρ

r
dz dr, (71)

where we used Eq. (49) in the second line and partial
integration and formula (51) for the Laplacian D2 in the
third line. We insert our solution, Eq. (59), and use one of
the relations, (58), to obtain

Ekin = ρ d3 U2

2π2

∫ ∞

0
K0(�) K1(�) �2d�

∫ π

0
(sin ζ )2 dζ

= ρ d3 U2

8π
. (72)

In the integral over the modified Bessel functions we uti-
lized relation (65) for K0(�), which reduces the integral to
[�K1(�)]2/2 evaluated at � = 0, which gives 1/2 [30].

Let us estimate the order of magnitude for the flow velocity.
Integrating our result, Eq. (70), for the localized pressure,
Eq. (68), over the surface area and using Eq. (31) for the light
intensity gives

U = −n − 1

n + 1

P

η dc
. (73)

For water, (n − 1)/(n + 1) ≈ 0.14 and η = 10−3 kg/ms.
Hence we get, for 1 W of power and a vessel of a few
centimeters’ depth, a flow velocity of |U | ≈ 10 μm/s. For such
a velocity and gradients ∇ of the order of an inverse centimeter
the nonlinear contribution to the Navier-Stokes equation, (42),
is u · ∇ ≈ 10−3 Hz. This is smaller than the viscosity term
(η/�)∇2 ≈ 10−2 Hz, which justifies the linear approximation
made. At the light beam, however, the velocity varies over
a scale of less than a millimeter. There we can no longer
ignore the nonlinear dynamics of the fluid. Nevertheless, we
were able to use the linear regime of the fluid mechanics to
derive a characteristic flow pattern (Fig. 2) that leads to a
surface deformation in agreement with our experiment.

V. CONCLUSIONS

We have studied theoretically the momentum transport of
light in fluids, where, according to Brillouin [10], “it is not
ultimately the density of momentum which matters, but rather
the flux of momentum.” For light propagating through a planar
interface between two homogeneous media, we have identified
two distinct regimes: (i) If the incident light is not able to
bring the fluid into motion, the resulting lateral optical force
creates pressure in the fluid, which bulges the surface out.
This pressure is exactly the same as one would obtain from a
simple momentum balance using the Minkowski momentum
of light in the fluid. (ii) If the light beam brings the fluid
into motion, the resulting pressure on the fluid changes sign,
causing the exact opposite: an indentation of the fluid surface,
as one would obtain from the Abraham momentum. Therefore,
in experiments [11–14] probing the momentum transfer of
light in fluids, the momentum of light is not a fundamental
quantity; it emerges as the result of the interplay between
optics and fluid mechanics, and may appear as Minkowski’s
[3] or Abraham’s [4].
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APPENDIX

In this Appendix we deduce the conservation law of the total
momentum for light and matter, Eq. (16). This conservation
law has been derived in the fully relativistic regime using
a geometric method [8] based on the idea [32] that light
establishes a space-time geometry for matter. Here we show
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that the conservation law, Eq. (16), also follows in a more
elementary way, at the lowest order of u/c, from the fluid
mechanics of polarizable dipoles and Maxwell’s equations in
moving media.

We begin by calculating the time derivative of the canonical
momentum density of matter ρ∇ϕ. We obtain from the
continuity equation, (5), the velocity of Eq. (6) and the
susceptibility of Eq. (15),

∂t (ρ∇ϕ) = ρ∇∂tϕ − (∇ · ρu) u + (∇ · χu) P, (A1)

where

P = ε0 E × B. (A2)

For ∂tϕ we apply the Bernoulli equation, (7), which contains
u2/2, for which we note

ρ∇u2

2
+ ρ (u · ∇) u = ρ[u × (∇ × u)]

= ∇(u · χ P) − χ (u · ∇) P, (A3)

where we have used Eq. (6) for the velocity and the fact that
∇ × ∇ϕ = 0. Here and in the following we indicate with
underlining that only the underlined expression should be
differentiated after applying a differential operator from the
left. We use the identity

∇ · (ρu ⊗ u) = (∇ · ρu) u + ρ (u · ∇) u (A4)

and obtain from relation (A1), the Bernoulli equation, (7), with
the isentropic relation, (8), and our previous expressions, (A3)
and (A4):

∂t (ρ∇ϕ) + ∇ · (ρu ⊗ u) − ∇ · (χu ⊗ P)

= −∇(u · χ P) + χ∇ε0
E2

2
− ∇p. (A5)

Let us turn to the time derivative of the Minkowski momen-
tum density D × B. We obtain from Maxwell’s equations,
(13),

∂t (D × B)=−D × (∇ × E) − B × (∇ × H)

= (D · ∇)E − ∇(D · E) + (B · ∇)H − ∇(B · H)

=∇ · (D ⊗ E + B ⊗ H) − ∇�, (A6)

where ∇� stands for ∇(D · E) + ∇(B · H). We obtain for �,
from the constitutive equations, (14),

� = ε0(1 + χ )E · E + ε0χ (u × B) · E + 1

ε0c2
H · H

− χ

c2
(u × E) · H

≈ ε0(1 + χ )E · E + 1

ε0c2
H · H − χu · P, (A7)

in lowest relativistic order. Putting Eqs. (A5)–(A7) together
we get, for the total momentum density of Eq. (19),

∂t g + ∇ · (ρu ⊗ u) − ∇ · (χu ⊗ P)

= ∇ · (D ⊗ E + B ⊗ H) − ∇
(

ε0
E2

2
+ H 2

2ε0c2
+ p

)
.

(A8)
From the constitutive equations, (14) we obtain

D · E + B · H = ε0(1 + χ )E2 + ε0c
2B2

= ε0(1 + χ )E2 + H 2

ε0c2
− 2χu · P

≈ ε0E
2 + H 2

ε0c2
+ ε0χE′2, (A9)

in lowest relativistic order and with E′2 being defined in
Eq. (2). From Eqs. (A8) and (A9) follows the conservation
law of Eq. (16) with Abraham’s stress tensor of Eq. (17).

[1] M. E. McIntyre, J. Fluid Mech. 106, 331 (1981).
[2] R. Peierls, More Surprises in Theoretical Physics (Princeton

University Press, Princeton, NJ, 1991).
[3] H. Minkowski, Nachr. Ges. Wiss. Göttn. Math.-Phys. Kl. 53,
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