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Equilibration of a finite-temperature binary Bose gas formed by population transfer
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We consider an equilibrium single-species homogeneous Bose gas from which a proportion of the atoms
are instantaneously and coherently transferred to a second species, thereby forming a binary Bose gas in a
non-equilibrium initial state. We study the ensuing evolution towards a new equilibrium, mapping the dynamics
and final equilibrium state out as a function of the population transfer and the interspecies interactions by means
of classical field methods. While in certain regimes, the condensate fractions are largely unaffected by the
population transfer process, in others, particularly for immiscible interactions, one or both condensate fractions
are vastly reduced to a new equilibrium value.

DOI: 10.1103/PhysRevA.90.033625 PACS number(s): 03.75.Kk, 03.75.Mn, 05.65.+b, 67.85.Fg

I. INTRODUCTION

Binary mixtures of atomic Bose-Einstein condensates
(BECs) have been the subject of intense research since
the first experimental realization with two sympathetically
cooled hyperfine states of 87Rb [1]. The interplay between
the two species, driven by the nonlinear atomic interaction,
gives insight into atomic physics [2], supports rich nonlinear
phenomena such as phase separation [3–6] and solitons [7–9],
and provides an attractive setting for exploring nonequilibrium
dynamics [10,11].

Binary mixtures (which we treat as distinct from spinor
gases [12]) have been achieved experimentally with two
hyperfine states of the same isotope [1,3,5,11,14–18], different
atomic species [6,19–24], and different isotopes of the same
species [4]. Under the former scenario, it is common first to
form a Bose-condensed gas with atoms in a single hyperfine
state and then to coherently transfer a population of the
atoms into a second hyperfine state. Most commonly this is
performed with 87Rb and its |F = 1,mF = −1〉 and |F = 2,

mF = 1〉 hyperfine states. The population transfer is induced
by the application of one or more electromagnetic coupling
pulses, which drive Rabi oscillations between the states,
and controllable through the length and amplitude of the
pulses. This approach has been employed to study collective
modes of the system [3,10], phase dynamics [17,25], pattern
formation [11], and crossover from triangular to square vortex
lattices [26] and to measure s-wave scattering lengths [2].
The same principle is also exploited for outcoupling atoms
to an untrapped state for the production of atom laser
beams [27].

Importantly, the time scale of the atom transfer (set by the
Rabi frequency) is typically an order of magnitude shorter than
the time scale of the external dynamics [10]. In other words, the
atom transfer is effectively instantaneous with respect to the
external dynamics, such that the binary mixture is formed in a
nonequilibrium state. In the mean field context of the ordinary
Gross-Pitaevskii equation (GPE), the dynamics and collective
modes of the condensate following the population transfer
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have been successfully modeled by a system of coupled GPEs
(see, e.g., Refs. [10,11,28]). Within this GPE model, the
variable ψ refers directly to the condensate. However, a more
fundamental question exists over the thermodynamic evolution
from the nonequilibrium state. One would anticipate that the
instantaneous atom transfer could heat the system and reduce
the condensate fraction. This effect is the motivation for the
current work.

In order to theoretically model thermal excitations and
hence describe variations in the condensate fraction, one must
progress beyond the standard mean field approximation to a
model which describes both the condensate and the thermal
atoms in the gas. Various finite-temperature descriptions
of Bose-condensed gases exist (see [29–31] for reviews),
briefly classified into two categories: in symmetry-breaking
approaches, one maintains a single-mode condensate descrip-
tion, supplementing a slightly amended dissipative GPE for
the condensate with a (quantum) Boltzmann equation for
the thermal atoms [32,33]; an alternative approach, which is
more commonly implemented numerically, is based on the
explanation that the main dynamics of interest happen in the
low-lying modes. These modes are typically highly occupied
and can thus be treated classically. This leads to a multimode
description of the system in which the classical field also obeys
the GPE, but now encompassing both the condensate and the
low-lying excitations in a unified manner [34–46]. In order to
make use of such a classical field description, one needs to
have populations initially distributed in modes other than the
condensate mode (see also variants of this method [30,47–49]
based on slightly different initial mode seedings). This can
be facilitated by an initial (nonzero) condition across all
classical modes, which thus enables mode mixing during the
numerical evolution. Subsequently, the “classical field” GPE
will thermalize to the classical thermal distribution of the
system.

The power of the classical field methods is evidenced in
their success in modeling phenomena and extracting quantities
not accessible with the standard GPE, such as thermal
equilibration dynamics [43,45], condensate fractions [40],
critical temperatures [50], correlation functions [51], and
spontaneous production of vortex-antivortex pairs in quasi-
two-dimensional gases [52].
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The seminal numerical demonstration of this method for
a single-species Bose gas (in a three-dimensional periodic
box) is presented in Ref. [43]. The simulation begins from
a strongly nonequilibrium state where the mode occupation
numbers nk are uniformly distributed over wave number k

(up to the cutoff in momentum introduced by the numerical
grid or a more rigorous cutoff defined by a “projector” [30]),
and the phase of each component is randomized. At early
times the system is weakly turbulent. Self-ordering of the
system leads to the growth of occupation numbers at low
k. Over time the mode occupation nk evolves towards an
equilibrium corresponding to the “classical” (Rayleigh-Jeans)
limit of the Bose-Einstein distribution nk = kBT /(εk − μ),
where εk is the energy of mode k, T is the temperature,
and μ is the chemical potential [40,42]. Provided the system
is in the regime of (N,T ) space for Bose-Einstein con-
densation to occur, then the equilibrium state consists of a
quasicondensate at low k, characterized by macroscopic mode
populations (within which the k = 0 mode is associated with
the true condensate, n0), and a thermal noncondensate at
high k, with low mode occupations. The quasicondensate
has superfluid ordering and exists in a state of superfluid
turbulence, featuring a tangle of quantum vortices which
slowly relaxes over time. The thermodynamic equilibrium
state, and hence its characteristic condensate fraction and tem-
perature, is uniquely determined by the initial atom number and
energy [45].

The miscibility/immiscibility of binary Bose gases is a
determining factor in their static and dynamic properties.
The species are immiscible when the interspecies interactions,
characterized by the coefficient g12, are more repulsive than
the intraspecies interactions, characterized by g11 and g22. The
immiscibility criteria can be written as [53,54]

g2
12 > g11g22. (1)

In this regime, it is favorable for the two species to sep-
arate spatially, supporting phase-separated equilibrium den-
sity profiles in, for example, side-by-side and ball-in-shell
formations [3–6,53,55–62]. From nonequilibrium conditions,
complicated dynamical phenomena can also arise driven by
the interplay between the two species, such as superfluid
ring excitations [11], transient structures during growth [63],
and the formation of topological defects in the form of
dark-bright solitons [64]. The evolution of binary Bose gases
from highly nonequilibrium initial conditions has also been
studied previously in the miscible regime [65,66].

In this work we study the nonequilibrium dynamics
following the separation of an equilibrated, homogeneous
Bose-condensed gas into two species, performed via classical
field simulations. In particular, we map out how the final
equilibrated state of each species, characterized by their
condensate fractions, varies with the amount of population
transfer and the interspecies interactions. In Sec. II we
introduce the classical field method of the binary Bose gas and
discuss the generation of the equilibrated single-species gas
and the subsequent component separation. Section III presents
our findings, first considering equally populated components
and then generalizing to arbitrary populations. We give our
closing remarks in Sec. IV.

II. THEORETICAL FRAMEWORK

A. Classical field description

We consider two weakly interacting Bose-condensed gases,
denoted species 1 and 2. Assuming that each mode of
each species is highly populated, then each species can be
parametrized by a classical field ψi(r,t) (i = 1,2). Each field
provides the density distribution of particles as ρi(r,t) =
|ψi(r,t)|2.

The dynamics of the classical fields are described by the
coupled GPEs

i�
∂ψ1

∂t
=

[
− �

2

2m1
∇2 + g11|ψ1|2 + g12|ψ2|2

]
ψ1, (2)

i�
∂ψ2

∂t
=

[
− �

2

2m2
∇2 + g22|ψ2|2 + g12|ψ1|2

]
ψ2. (3)

Here gii = 4π�
2aii/mi parametrizes the strength of the intra

species interactions within species i, where ai is the corre-
sponding s-wave scattering length and mi is the atomic mass
of species i; the inter species interactions are parametrized by
g12 = 2π�

2a12/m12, where a12 is the s-wave scattering length
between the two species and m12 = m1m2/(m1 + m2) is the
reduced mass. Since we are considering the physical situation
where the two species are formed as two hyperfine states of
the same atom, we take m1 = m2 = m.

We work with the “natural units” of species 1: density is
expressed in terms of the bulk density of species 1, ρ1; length,
in terms of the healing length of species 1, ξ1 = �/

√
2mg11ρ1;

and time, in terms of the quantity �/g11ρ1. Then the coupled
GPEs are recast in the dimensionless form

i
∂ψ1

∂t
=

[
−∇2 + |ψ1|2 + g12

g11
|ψ2|2

]
ψ1,

i
∂ψ2

∂t
=

[
−∇2 + g22

g11
|ψ2|2 + g12

g11
|ψ1|2

]
ψ2. (4)

Henceforth we work exclusively with dimensionless quanti-
ties.

The number of particles in each species and the total energy
of the system are conserved within the coupled GPEs. The
number of particles in each species, Ni , can be expressed in
momentum space as

Ni = V

∫
nki(t)dk, (5)

where V is the volume of the box and nki denotes the
mode occupation numbers of species i (with n0i being the
corresponding condensate population). The system energy is
given by the integral

E =
∫ (

|∇ψ1|2 + 1

2
|ψ1|4 + |∇ψ2|2

+ g22

2g11
|ψ2|4 + g12

g11
|ψ1|2|ψ2|2

)
dr. (6)

For simplicity, we consider the gases to exist within a
three-dimensional periodic box; then the true condensate of
each species is identified as the zero-momentum mode. The
dimensionless coupled GPEs are solved numerically on a cubic
grid of size 643 using a fourth-order Runge-Kutta method.
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The time step is �t = 0.01 and the (isotropic) grid spacing is
� = 1. This spatial discretization implies that the momentum
is discretized into discrete modes and that high momenta are
not described. To formalize the latter effect, an ultraviolet
cutoff is introduced such that nk(t) = 0 for k > 2

√
3π/�,

where k = |k|. This cutoff, which arises numerically in
practice, is also required formally to prevent an ultraviolet
catastrophe in the classical field model. As long as the grid
size exceeds 163, the equilibrium properties predicted by
classical field simulations, e.g., the final condensate fraction,
are effectively independent of the grid size [45] (although the
time scale to reach equilibrium does depend on the grid size).

B. Equilibrated single-species Bose gas

Our physical scenario begins with a single-species Bose-
condensed gas which is already at equilibrium. Taking this
to be species 1 (and dropping the subscript 1, for brevity),
we form this equilibrated state via classical field propagation
of the GPE for species 1, i.e., Eq. (2) with ψ2 = 0, from the
nonequilibrium initial conditions

ψ(r,t = 0) =
∑

k

ak exp(ik · r), (7)

where the magnitudes of ak are uniform and the phases are
distributed randomly [43]. We characterize the initial state
in terms of its particle density N/V and average energy
density 〈E〉/V . The importance of these quantities is that they
determine the equilibrium state, including the temperature and
condensate fraction, of the single-species gas [45].

A typical evolution of this single-species system is shown in
Fig. 1, for the arbitrary parameters N/V = 0.5 and 〈E〉/V =
1.2. Initially the condensate fraction n0/N is approximately
0 since the occupation numbers are distributed across k (see
inset). Rapidly, the occupation numbers condense towards low
k, resulting in a rapid growth of n0/N . Later n0/N approaches
a constant value (of n0/N = 0.77 for the arbitrary parameters
used here) associated with the equilibrium of the gas. The
final state has macroscopic occupation of the k = 0 mode,
confirming the formation of a condensate (see inset).

FIG. 1. (Color online) Evolution of the condensate fraction for a
homogeneous single-species Bose gas starting from highly nonequi-
librium initial conditions. Parameters: N/V = 0.5 and 〈E〉/V = 1.2.
Inset: Evolution of the mode occupation nk(t) [plotted as log10(nk)].

At equilibrium, the quantity
∑

k′�k nk′ shows a characteris-
tic bimodal shape as a function of k, as discussed in Ref. [43].
The lower-k regime is associated with the quasicondensate,
and the upper-k regime with the thermal noncondensate.
During evolution, we observe this bimodal distribution to
emerge rapidly, and for the parameters used here we identify
the crossover to occur at k ≈ 2.7. The norm (particle number)
and total energy are not conserved during these dynamics,
since energetic particles can “evaporate” from the system due
to the momentum cutoff. For example, during these dynamics,
the total energy decreases by approximately 30%, and the norm
by 0.1%. Consistent with [43], we observe the formation of
a turbulent tangle of vortices in the quasicondensate during
thermalization, which decays over time.

For a different initial energy and particle density the
equilibration dynamics show the same qualitative form but ap-
proach a different equilibrium state (with different condensate
fraction). For a fixed particle density N/V , the final condensate
fraction decreases as the energy density 〈E〉/V of the system
is increased [45].

At a time teq = 5000, when the system is deemed equili-
brated, we define the equilibrium state of the single-species
gas ψ1,eq = ψ1(t = teq). Note that at this time all vortices
have decayed from the system. Our subsequent results are
not sensitive to the choice of teq, providing the state is indeed
equilibrated. Note that, unless noted otherwise, we use the
single-species system employed in Fig. 1 (N/V = 0.5 and
〈E〉/V = 1.2).

C. Nonequilibrium binary Bose gas

Starting from the equilibrated single-species gas at time teq,
we instantaneously transfer a proportion α (0 � α � 1) of the
particles into species 2 according to the transformations

ψ1(r,t = teq) = √
1 − αψeq(r) + η1(r),

ψ2(r,t = teq) = √
αψeq(r) + η2(r). (8)

Low-level noise, η1(r) and η2(r), uniformly randomly dis-
tributed about 0 with maximum amplitude 5×10−4 (where
the mean amplitude of ψi is 1 in our dimensionless units) is
applied to each species to break symmetries. Our qualitative
findings are independent of the noise amplitude. The subse-
quent dynamics of the two coupled gases are obtained via
propagation of the coupled GPEs, (4). Note that, immediately
after splitting, the total kinetic energy density is essentially
unchanged (to within the effects of the noise terms ηi); that is,
each species is formed with the same average kinetic energy
per particle as in the original single-species condensate. The
interaction energies following the population transfer depend
on the interaction parameters.

Following the work of Berloff for miscible homogeneous
binary Bose gases [65,66], in our work we also identify
the condensate fraction in each species as the population
of the k = 0 mode, having chosen to extend this identi-
fication to the immiscible regime as well. This regime is
characterized by the formation of phase-separated domains
in which one species effectively confines the other. Thus,
while each species may be locally homogeneous within each
domain, it is inhomogeneous on the larger scale. Previous
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work [67,68] on single-component Bose gases which are
inhomogeneous due to external trapping has revealed the
importance of condensate deformation and the deviation of the
Penrose-Onsager condensate mode [30,51,69,70] (obtained by
numerical diagonalization) from the k = 0 mode. In a phase-
separated binary Bose gas, we can expect the inhomogeneous
density to have a qualitatively similar effect on the nature
of the condensate fraction. Nonetheless, we expect that the
k = 0 mode will provide an important and insightful metric to
characterize the thermodynamic state of the gas.

III. EQUILIBRATION PROPERTIES
OF BINARY BOSE GASES

We seek to establish how a binary Bose gas, formed
instantaneously via population transfer, evolves from its
nonequilibrium state and what the equilibrium properties are.
The key parameters that will dictate the thermodynamical
evolution are the population transfer α, the intraspecies in-
teractions, and the interspecies interactions. Below we explore
the dependencies on these parameters.

A. Equal intraspecies interactions and equal populations

We begin by considering the intraspecies interactions to be
equal, g11 = g22, and each species to have the same population
(α = 0.5). We can write the immiscibility criterion, (1), as
g12/g11 >

√
g22/g11 (assuming repulsive intraspecies interac-

tions), which simplifies to g12/g11 > 1 for the intraspecies
interactions considered here.

Our general findings are summarized in Fig. 2(a), which
plots the equilibrium condensate fractions n0i/Ni for each
species as a function of the interspecies interactions g12

(expressed in units of g11). The condensate fractions are scaled
by their initial values, that is, the condensate fraction of the
equilibrated single-species gas (n0/N = 0.77 for the arbitrary
parameters we employ here). The final equilibrium condensate
fractions, according to the ergodic theorem, are determined
by time-averaging the condensate fractions (here more than
1000 time units) following their saturation to a constant
average value. Note that the size of the thermal fluctuations,
characterized by the standard deviation of these data, is small.
Note also that the results for species 1 and species 2 are
indistinguishable to within the statistical noise [see Fig. 2(b)],
and so only the results for species 1 are presented in Fig. 2(a).

It is evident in Fig. 2(a) that the equilibrium state of the
system depends critically on whether the two-species system
is miscible (g12/g11 � 1) or immiscible (g12/g11 > 1). We
now discuss each case in turn.

1. Miscible regime

For g12/g11 � 1 the final condensate fraction in each of
the two condensates remains close to that of the original
condensate (represented by the horizontal gray line). To
illustrate the dynamics in more detail, we show how the
condensate fraction evolves in Fig. 2(b) for the example value
g12/g11 = 0.5 [thick (red) upper lines]. Immediately following
the population transfer at t = teq, there is a sharp spike in
the condensate fraction; this feature, which we observe for
all simulations, is associated with the small but noticeable

FIG. 2. (Color online) Equilibration of a single-species homo-
geneous Bose gas which is instantaneously transferred (at t = teq)
into a binary Bose gas with equally populated components (α = 0.5)
and equal intraspecies interactions (g11 = g22). (a) Final equilibrium
condensate fraction of species 1 as a function of the interspecies
interactions g12/g11. The condensate fraction is expressed in units
of n0/N , the equilibrated condensate fraction of the single-species
gas. Error bars give the standard deviation over 1000 time units,
with most being obscured by the markers. Data for species 2 are
identical (within statistical uncertainty) to data for species 1. The
initial single-species condensate fraction is shown by the horizontal
gray line; the miscible-immiscible threshold, by the dashed vertical
line. (b) Evolution of the condensate fraction for a miscible case
[g12 = 0.5; thick (red) upper curves] and an immiscible case [(g12 =
1.5; thin (blue) lower curves]. Solid (dashed) curves represent species
1 (species 2). The initial single-species condensate fraction is shown
for t < teq (black curve). Insets: Corresponding evolution of the mode
occupation for species 1 [plotted as log10(nk1)] in the miscible (left)
and immiscible (right) cases.

energy driven into the system by the noise terms ηi in the
transformations, (8). We have confirmed that reducing the
noise amplitude reduces the amplitude of this feature but does
not affect the equilibrium properties. There is a subsequent
small modulation of the condensate fractions, but these settle
to values which are very close to the original. During the
evolution the mode occupations (left inset) undergo no visible
changes, being dominated throughout by the macroscopic
population of the k = 0 mode.
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We observe similar dynamics for all miscible cases
(g12/g11 � 1), with the final equilibrium condensate fraction
differing by at most a few percent from the original condensate.
In general, the population transfer process modifies the total
energy per particle: while the kinetic energy per particle is
unchanged, the self-interaction energy becomes reduced (due
to the quadratic scaling of the self-interaction energy with
the particle density) and interspecies interaction energy is
introduced. Over time there is then a weak equilibration within
each species.

Within the miscible regime two special cases exist. For
g12/g11 = 0 the two species evolve independently over time.
For g12/g11 = 1, and assuming g11 = g22, the energy per
particle in each species is the same as in the original Bose
gas (and with the same proportion of kinetic and interaction
energy), barring the weak effect of noise introduced during
splitting. For both of these special cases the final condensate
fraction is identical (within noise) to that of the original
single-species Bose gas.

2. Immiscible regime

For g12/g11 > 1 the equilibrium condensate fractions are
dramatically reduced [Fig. 2(a)]. Consider the example case for
g12/g11 = 1.5 [thin (blue) upper lines in Fig. 2(b)]. Following
the population transfer, the condensate fractions drop rapidly
(over tens of time units), leveling out at around 58% of
their initial value. The origin of this reduction is as follows.
The population transfer forms two immiscible species with
overlapping density profiles (identical apart from the imposed
noise) and drives interaction energy into the system. From
this energetically unfavourable state, the strong and repulsive
interspecies interactions induce the species to phase-separate.
This process imparts opposing momentum to the species,
which is evident in the sudden population of finite-k modes
following population transfer [Fig. 2(b), right inset]. In doing
so, the interspecies interaction energy becomes converted into
kinetic energy, raising the average kinetic energy per particle
and leading to a lower final condensate fraction. For the
miscible case, the population transfer can also drive interaction
energy into the system, but crucially, there is no subsequent
phase separation and hence no significant increase in the
kinetic energy. As discussed earlier, in the immiscible regime,
the deformation of one species due to effective confinement
by the other may lead to the population of the k = 0 mode not
coinciding with the Penrose-Onsager condensate.

The results presented in Fig. 2(a) are independent of
the original single-species condensate fraction (hence the
motivation for scaling the y axis in terms of this quantity). We
have verified this by starting from single-species condensates
with different condensate fractions (obtained from starting the
single-species simulation at different energy densities) and
found the results to be consistent with the data in Fig. 2(a). In
other words, the final condensate fraction is a fixed ratio of the
initial fraction, depending only on the interactions g12/g11.

B. Equal intraspecies interactions but unequal populations

We now move on to consider unequal populations and
consider the example case of α = 0.8. The final condensate

FIG. 3. (Color online) Equilibration of a single-species homoge-
neous Bose gas which is instantaneously transferred (at t = teq) into
a binary Bose gas with unequal populations (α = 0.8) and equal
intraspecies interactions (g11 = g22). (a) Final equilibrium condensate
fractions for species 1 (circles) and species 2 (squares). Most error
bars are obscured by the markers. (b) Evolution of the condensate
fraction for a miscible case [g12 = 0.5; thick (red) curves] and an
immiscible case [g12 = 1.5; thin (blue) curves]. Solid (dashed) curves
represent species 1 (species 2). The initial single-species condensate
fraction is shown for t < teq (black curve).

fraction, shown in Fig. 3(a), shows a more complicated
dependence on g12/g11 than for equal populations [Fig. 2(a)].
In particular, we now see that species 1 (circles), which has
the smaller number of particles, often has a lower condensate
fraction than species 2 (triangles). What is more, species 2 can
develop a condensate fraction which is slightly higher than
the original condensate (gray line). The special nature of the
values g12/g11 = 0 and 1 is even more evident for unequal
populations; only here do the condensate fractions become
equal to each other and equal to the original condensate.

In Fig. 3(b) we show the evolution for a miscible case,
g12/g11 = 0.5 [thick (red) curves]. After the population
transfer and following the noise-induced cusp, the condensate
fraction ni,0(t)/Ni of species 1 decays slowly to around 50%
of its initial value, while that of species 2 increases by
approximately 10%. For the immiscible case, g12/g11 = 1.5
[thin (blue) curve], we see the much faster and larger decay
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FIG. 4. (Color online) Equilibrated condensate fractions (units
of n0/N ) for species 1 (left) and species 2 (right) as a func-
tion of the population transfer α and the interspecies interactions
g12/g11. Species are assumed to have equal intraspecies interactions
(g11 = g22).

of the species 1 condensate fraction, decreasing by around
90%, while that of species 2 increases slightly (a few percent).
These curves are typical of the behavior in the miscible and
immiscible regimes, respectively, provided that one is away
from the special values of g12.

In the immisicible regime, the condensate in species 1
mostly “boils off,” leaving behind only a weakly populated
condensate. This is, again, associated with the phase separation
dynamics which proceed the population transfer. Here, for
unequal splitting, species 1 gains more kinetic energy per
particle than species 2, due to the low total mass/inertia of
species 1.

C. Equal intraspecies interactions and general splitting

Figure 4 shows the equilibrium condensate fractions (scaled
by their initial value) in each species as a function of both the
population transfer α and the interspecies interactions g12.
Light/dark areas represent low/high condensate fractions. The
two special values of interspecies interactions, g12/g11 = 0
and 1, are even more apparent since the condensate fractions
here remain unchanged for all values of α. The values α = 0
and α = 1 represent special cases of the population transfer for
which only one species is relevant, while α = 0.5 (discussed
earlier) is special in that both species have identical dynamics
and properties. In the rest of the parameter space the general
trend as α increases is for a reduction in the condensate
fraction of species 1 and an increase in that of species 2. For
sufficiently extreme population transfer (α � 0.8 or α � 0.2)
the condensate fraction of the smaller component diminishes to
around 0 (white regions in Fig. 4) and the condensate fraction
in the larger component can slightly exceed the original value.
In the immiscible regime (g12/g11 > 1) this extends to more
moderate values of α.

D. Unequal intraspecies interactions

All of the results discussed so far have been for equal
intraspecies interactions, g11 = g22. For g11 �= g22 the results
are qualitatively similar, except with the miscible and immis-
cible regimes becoming shifted according to the immiscibility
criterion g12/g11 >

√
g22/g11. For the |F = 1,mF = −1〉 and

|F = 2,mF = 1〉 hyperfine states of 87Rb, g11 and g22 differ
by less than 5% [2] such that this shift is small.

IV. CONCLUSIONS

Starting from an equilibrated Bose-condensed gas, we have
considered the experimentally motivated scenario in which
a proportion of the atoms is coherently transferred into a
different species, thereby forming a nonequilibrium binary
Bose gas mixture. Using classical field simulations in a
homogeneous box we have analyzed the ensuing dynamics and
final state of each species, highlighting the strong dependence
on whether the components are miscible or immiscible. For
equally populated components, the final condensate fractions
vary little from those of the original Bose gas when the
components are miscible but decrease significantly when the
components are immiscible. This can be related to the phase
separation dynamics which follow the population transfer and
which cause an increase in the kinetic energy at the expense
of the interspecies interactions. For unequal populations the
general trend is for the smaller component to undergo a
reduction in the condensate fraction, which, for even moderate
parameters, can lead to the condensate’s fraction becoming
effectively 0; meanwhile, the condensate fraction of the
larger components typically increases, albeit by a smaller
amount.

In considering a homogeneous system we have revealed
the rudimentary role of interactions on the equilibration
dynamics. In experiments, however, Bose gases are confined
in trapping potentials, usually harmonic in shape, which
further influence the system through the imposition of an
inhomogeneous density profile and a boundary. While this
significantly changes the stationary density distributions of bi-
nary condensates, e.g., leading to ball-in-shell phase-separated
states [3,53,55,57,59,61], and their dynamical properties, e.g.,
quench dynamics [64] and shape oscillations [3,10], the atomic
interactions remain a dominant influence on the system.
Importantly, the miscible and immiscible regimes, which drive
our main observations in the condensate fractions, persist in
the presence of a trap (albeit with the crossover shifted by the
effects of quantum pressure arising from the inhomogeneous
density [71]). Indeed, for the scenario of a single-species Bose
gas the equilibration dynamics have been shown to be qualita-
tively similar between homogeneous [40,44] and trapped [72]
systems. As such, we can expect our results also to provide
qualitative insight into the equilibration of trapped Bose gases.
Our chosen identification of the condensate as the k = 0
mode (which does not account for condensate deformation
induced by phase-separated density inhomogeneities) could be
improved by defining the condensate as the macroscopically
occupied eigenmode (which, in practice, requires numerically
intensive diagonalization of the one-body density matrix).
This would also be crucial for considering the experimentally
relevant scenario of harmonic external confinement of the gas.
In this context we remark that recent studies of quenched
immiscible trapped binary condensates indicate that the
condensate fractions are practically independent of the actual
spatial distribution of the condensates [64].

The specific scenario we consider, a binary Bose gas
with equal masses, has been performed experimentally with
trapped Bose gases of 87Rb, most commonly utilizing the
hyperfine states |F = 1,mF = −1〉 and |F = 2,mF = 1〉
[3,11,16,17,25]. This system has g2

12 = 1.002g11g22 [2] and
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lies just in the immiscible regime. Our results suggest a sizable
reduction in the condensate fraction of at least one of the
two components, intrinsic to the rapid population transfer
procedure performed in experiments. In future work, we hope
to extend our analysis to trapped Bose gases to determine
more precisely the effect of interactions and trapping on the
equilibration of the system.
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(2001).
[42] A. Sinatra, C. Lobo, and Y. Castin, Phys. Rev. Lett. 87, 210404

(2001).
[43] N. G. Berloff and B. V. Svistunov, Phys. Rev. A 66, 013603

(2002).
[44] M. J. Davis, S. A. Morgan, and K. Burnett, Phys. Rev. A 66,

053618 (2002).
[45] C. Connaughton, C. Josserand, A. Picozzi, Y. Pomeau, and

S. Rica, Phys. Rev. Lett. 95, 263901 (2005).
[46] M. Brewczyk, M. Gajda, and K. Rzażewski, J. Phys B: At. Mol.
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