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Nonexponential fidelity decay in isolated interacting quantum systems
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We study isolated finite interacting quantum systems after an instantaneous perturbation and show three
scenarios in which the probability for finding the initial state later in time (fidelity) decays nonexponentially,
often all the way to saturation. The decays analyzed involve Gaussian, Bessel of the first kind, and cosine
squared functions. The Gaussian behavior emerges in systems with two-body interactions in the limit of strong
perturbation. The Bessel function, associated with the evolution under full random matrices, is obtained with
surprisingly sparse random matrices. The cosine squared behavior, established by the energy-time uncertainty
relation, is approached after a local perturbation in space.
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I. INTRODUCTION

The time evolution of isolated quantum systems out of
equilibrium has been explored for many decades. The subject
is strongly connected with the derivation of the energy-time
uncertainty relation [1–10], since the lifetime of a decaying
state is bounded by the reciprocal of the energy uncertainty.
It has been central to studies of unstable systems, sometimes
in relationship with quantum chaos and notions of quantum
ergodicity [11–33]. It is at the heart of progress in quantum
information and the development of methods to control the
dynamics of quantum systems [34–42]. Recently, it has
become an important topic for experiments in optical lattices,
where many-body quantum systems can evolve coherently for
long times [43–46], and related theoretical studies [47–56].

Here, we analyze the probability to find an isolated
interacting quantum system in its initial state later in time.
This probability, often called nondecay probability, return
probability, or survival probability, is denominated here as
fidelity. The picture considered is that of an instantaneous
quench, where the system is initially in an eigenstate of
an initial Hamiltonian ĤI and the dynamics is launched by
changing ĤI abruptly into a new final Hamiltonian ĤF . The
fidelity is obtained by Fourier transforming the weighted
energy distribution of the initial state. This distribution is
known as the local density of states (LDOS) or strength
function.

The fidelity decay is exponential when the LDOS has a
Lorentzian (also known as Cauchy or Breit-Wigner) form.
This is the common behavior in open systems [13], although
algebraic contributions at long times have been predicted as
early as 1958 [12]. They are caused by the lower cutoff in
the energy distribution. The purpose of the present paper
is to show that in isolated interacting quantum systems,
various deviations from the Lorentzian shape may occur. We
present three realistic cases that lead to nonexponential decays.
The paradigmatic interacting quantum systems used for the
illustrations are one-dimensional spin-1/2 models.

Case (1). In previous works [57–60], we emphasized
that in the limit of strong global perturbation, the LDOS
becomes Gaussian, which causes a Gaussian fidelity decay.
Such behavior, even at long times, had been discussed before
[17–20,25]. We showed that it can in fact persist all the way to
saturation independently of the regime (integrable or chaotic)
of the system. We now extend those analyses, concentrating

on the transition region from Lorentzian to Gaussian and on
the deformations that the Gaussian distribution undergoes as
the energy of the initial state moves away from the center of
the spectrum of ĤF .

The two other cases explored give rise to fidelity decays
that are even faster than Gaussian.

Case (2). The matrix elements of the final Hamiltonian
associated with the spin flip-flop terms (excitation hopping)
between second and further neighbors are randomized. This,
at first sight, very sparse random matrix leads to a semicircular
LDOS and to a fidelity behavior involving a Bessel function
of the first kind. This decay is very similar to that found when
ĤF is a full random matrix.

Case (3). Contrary to the cases above, where the LDOS
is unimodal, the third scenario corresponds to a bimodal
distribution where the two peaks are far in energy. The initial
fidelity decay reaches the quantum limit as established by the
energy-time uncertainty relation, following a cosine squared
function. The two peaks are created by adding to the initial
spin-1/2 Hamiltonian a local and very strong static magnetic
field that splits the spectrum of the final Hamiltonian in two.

The article is organized as follows. The model and quenches
considered are described in Sec. II. Section III explains the
relationship between the fidelity decay and the LDOS. The
three nonexponential decays are studied in Secs. IV–VI. Final
remarks are presented in Sec. VII.

II. MODEL AND QUENCH

We consider one-dimensional spin-1/2 lattices with two-
body interactions. They are used to model quantum computers,
real magnetic compounds, and nuclear magnetic resonance
systems and are currently being investigated with cold atoms in
optical lattices. The Hamiltonian for L sites and open boundary
conditions is given by

Ĥ = dJ Ŝz
L/2 + ĤNN + λĤNNN, (1)

where

ĤNN = J
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k Ŝ

z
k+2

)
.

1050-2947/2014/90(3)/033623(9) 033623-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.90.033623


E. J. TORRES-HERRERA AND LEA F. SANTOS PHYSICAL REVIEW A 90, 033623 (2014)

Above, � = 1 and Ŝ
x,y,z

k are spin operators acting on site
k. Ŝx

k Ŝx
k+1 + Ŝ
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k+1 [Ŝx
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k+2 + Ŝ
y
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k+2] is the flip-flop term
and Ŝz

k Ŝ
z
k+1[Ŝz

k Ŝ
z
k+2] is the Ising interaction between nearest-

neighbor (NN) [next-nearest neighbor (NNN)] spins. J is
the exchange coupling constant. In what follows, J = 1
sets the energy scale. � is the anisotropy parameter and λ

refers to the ratio between NNN and NN couplings. These
two parameters are assumed positive and L is chosen to be
even.

The total spin in the z direction, Ŝz = ∑
i Ŝ

z
i , is conserved.

We deal with subspaces of dimension D = L!/[(L − u)!u!],
where u is the number of spins pointing up in z. Other
symmetries include spin reversal, when Sz = 0; conservation
of total spin, when � = 1; and parity, when the impurity term
dJ Ŝz

L/2 in the middle of the chain is not present. This term
leads to a Zeeman splitting that is different from that on the
other sites.

The system with only NN couplings is integrable [61]. The
impurity [59,62,63] or the inclusion of NNN couplings [63–65]
can take the system into the chaotic regime.

We refer to Hamiltonian (1) as
(i) XX when d,�,λ = 0;
(ii) XXZ when d,λ = 0 and � �= 0;
(iii) impurity model when d,� �= 0 and λ = 0;
(iv) NNN model when d = 0 and �,λ �= 0.

Quench dynamics

The system starts in an excited eigenstate, |�(0)〉 = |ini〉,
of an initial Hamiltonian, ĤI . In most cases studied be-
low, ĤI is the XXZ model. This is the integrable part
of Ĥ (1) and corresponds to the mean-field unperturbed
Hamiltonian.

After an instantaneous perturbation, the state evolves as

|�(t)〉 = e−iĤFt |ini〉 =
∑

α

C ini
α e−iEαt |ψα〉, (2)

where Eα and |ψα〉 are the eigenvalues and eigenstates of the
final Hamiltonian ĤF and C ini

α = 〈ψα|ini〉. The eigenvalues
and eigenstates of the initial Hamiltonian are denoted by En and
|n〉. The subscripts “I” and “F ” are used for the Hamiltonians
and also for their parameters before and after the quench,
respectively.

III. FIDELITY

The quantum fidelity measures how close two quantum
states are. In the case of two pure states, it is defined as the
absolute squared value of the overlap between them. Here,
we study the fidelity between the initial state and its evolved
counterpart,

F (t) = |〈ini|e−iĤFt |ini〉|2 =
∣∣∣∣∣∑

α

∣∣C ini
α

∣∣2
e−iEαt

∣∣∣∣∣
2

. (3)

In this case, F (t) coincides with the survival probability. It
measures the probability for finding the initial state later in
time; that is, it quantifies the level of stability of the quantum
system. From the equation above, one sees that the fidelity

is simply the Fourier transform in energy of the components
|C ini

α |2.
The distribution of |C ini

α |2 in the eigenvalues Eα ,

P ini(E) =
∑

α

∣∣C ini
α

∣∣2
δ(E − Eα), (4)

is the LDOS and it is also related to the work distribution
function [47]. When D is large and the LDOS is dense, the
sum in Eq. (3) can be substituted by an integral,

F (t) ≈
∣∣∣∣∫ ∞

−∞
P ini(E)e−iEtdE

∣∣∣∣2

, (5)

where P ini(E) is now the envelope of the LDOS. In spec-
troscopy, P ini(E) is the spectral line shape and its characteristic
function is the time-domain signal.

Very often in spectroscopy and also in nuclear and particle
physics, the fidelity decays exponentially. This is a distinctive
feature of unstable systems and implies a Lorentzian line
shape,

P ini
L (E) = 1

2π

	ini

(Eini − E)2 + 	2
ini/4

,

⇒ FL(t) = exp(−	init), (6)

where 	ini is the full width at half maximum of the distribution.
However, deviations from the exponential behavior at short and
at long times have been discussed very early in the studies of
unstable quantum systems [12,13,15].

Power-law decays at long times were examined in con-
tinuous spectra bounded from below [12,13,15,26,30]. It has
been observed also in systems at the Anderson metal-insulator
transition [66,67]. At very short times, the expected behavior
is quadratic in t . The Taylor expansion of e−iEαt in Eq. (3)
leads to

F (t) ≈ 1 − σ 2
init

2, (7)

where

σini =
√∑

α

∣∣C ini
α

∣∣2
(Eα − Eini)2 =

√∑
n�=ini

|〈n|ĤF |ini〉|2 (8)

is the energy dispersion of |ini〉 and

Eini = 〈ini|ĤF |ini〉 =
∑

α

∣∣C ini
α

∣∣2
Eα (9)

is the energy of the initial state projected on the final
Hamiltonian. Clearly, the short-time behavior shown in Eq. (7)
cannot be achieved by expanding the exponential expression
in Eq. (6). As matter of fact, σini is infinite for the Lorentzian
function, which forces the energy-time uncertainty relation in
systems with exponential fidelity decays to be written in terms
of 	ini instead of σini [7].

The Lorentzian shape for P ini(E) is not universal. It
emerges under the assumption that the initial state is coupled
to infinitely many states with coupling strengths of the same
order [68,69]. It is a very good approximation, in agreement
with observed exponential decays, when the couplings with the
initial state are nonperturbative, although not very strong [70].
But deviations do exist.
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In the limit of strong perturbation, the LDOS for iso-
lated systems with two-body interactions becomes Gaussian
[17–19,69–78], causing the Gaussian fidelity decay,

P ini
G (E) = 1√

2πσ 2
ini

exp

[
− (E − Eini)2

2σ 2
ini

]
,

⇒ FG(t) = exp
(−σ 2

init
2), (10)

which agrees with Eq. (7) at short times. The Gaussian
behavior was expected to hold for some time and then switch
to exponential at longer times. We have shown several cases,
some accessible to experiments in optical lattices, where F (t)
can in fact be Gaussian all the way to saturation [57–60]. In
Sec. IV we expand this analysis.

The fact that P ini(E) can become Gaussian is a reflection
of the density of states of systems with two-body interac-
tions, which is also Gaussian [79–81]. In such systems, the
maximum possible spreading of the LDOS is given by the
Gaussian envelope in Eq. (10), which is known as the energy
shell.

If the density of states of ĤF is other than Gaussian,
we may find P ini(E) leading to faster than Gaussian fidelity
decays. When P ini(E) is unimodal, the lower bound for F (t)
is achieved when ĤF is a full random matrix. In this case, the
density of states is semicircular, as derived by Wigner [82–85],
and so is the LDOS [57,58],

P ini
SC(E) = 1

πσini

√
1 −

(
E

2σini

)2

,

⇒ FSC(t) = [J1(2σinit)]2

σ 2
init

2
, (11)

where 4σini is the length of the spectrum and J1 is the Bessel
function of the first kind. Notice that FSC(t) also agrees with
Eq. (7) at short times. In Sec. V we look for models more
plausible than full random matrices where the fidelity decay
approaches FSC(t).

The ultimate bound for the fidelity decay, as derived from
the energy-time uncertainty relation [1,3,4], is given by F (t) �
cos2(σinit). It is valid for 0 � t � π/(2σini) and agrees with
Eq. (7) at short times. This bound can be reached when P ini(E)
is bimodal,

P ini
C (E) = δ(E1) + δ(E2)

2
,

⇒ FC(t) = cos2

[
(E2 − E1)t

2

]
. (12)

In Sec. VI, we explore a more realistic situation, where P ini(E)
has two non-δ-function peaks and the initial decay is indeed
described by FC(t).

Fidelity decay saturation

The systems studied here are finite, so after a dephasing
time, the fidelity saturates and simply fluctuates around its
infinite time average, F = ∑

α |C ini
α |4. The fluctuations around

the saturation point do not die out completely, but they decrease
with system size [58,60,86].

We denote by tR the time that it takes for the fidelity to
first reach F . When the LDOS is dense and unimodal, as in

Secs. IV and V, the difference between the dephasing time and
tR is small, but when P ini(E) is bimodal, as in Sec. VI, large
oscillations can survive for a fairly long time after tR .

IV. GAUSSIAN DECAY

We emphasize that fast fidelity decays, such as exponential
or Gaussian, are not exclusive to chaotic postquench Hamil-
tonians. They are found also in integrable systems. The decay
rate is determined by the shape of the LDOS not the regime
(integrable or chaotic) of ĤF .

In Fig. 1, we consider quenches in the limit of strong
perturbation. In Fig. 1(a), the quench is between integrable
Hamiltonians, from the XX model to the XXZ model with
�F = 1.5 (we avoid �F = 1, because this is a critical point),
and in Fig. 1(b), the quench is from the integrable XXZ model

-6 -4 -2 0 2 4
E

0

0.1

0.2

0.3

0.4

Pini

-6 -4 -2 0 2 4
E

0 1 2 3
t

10-4

10-2

100

F

0 1 2 3
t

0 1 2 3
t

10-4

10-2

100

F

0 1 2 3
t

(a) (b)

(c) (d)

(e) (f)

FIG. 1. (Color online) Local density of states (a, b) and fidelity
decay (c–f). Quench from the XX to the XXZ Hamiltonian with �F =
1.5, Eini = −0.87, σini = 1.47, and F = 1.19 × 10−3 (a, c). Quench
from the XXZ to the NNN model with λF = 1, �I = �F = 0.5,
Eini = −0.82, σini = 1.17, and F = 1.326 × 10−3 (b, d). In panels
(e) and (f), the initial state is an eigenstate of a full random matrix
from a GOE projected onto the XXZ Hamiltonian, Eini = −0.39,
σini = 2.01, and F = 2.32 × 10−4 (e), and onto the NNN model,
Eini = −0.24, σini = 2.07, and F = 2.35 × 10−4 (f). The solid lines
give the analytical Gaussian expressions [Eq. (10)], and the shaded
area (top panels) and circles (middle and bottom panels) are numerical
results. The saturation value of the fidelity is indicated with the dashed
horizontal line; L = 16, Ŝz = 0, and D = 12 870; and J = 1 sets the
energy scale.
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to the chaotic NNN model with λF = 1. They make it evident
that the filling of the energy shell does not depend on the
regime of the postquench Hamiltonian, but on the interplay
between the initial state and the final Hamiltonian. The shell
can be substantially filled when the final Hamiltonian is chaotic
and also when it is integrable, provided Eini is close to the
middle of the spectrum of ĤF , which is the case in the
figures.

The corresponding fidelity decays for both quenches
[Figs. 1(c) and 1(d)] are Gaussian, following Eq. (10). For the
chosen parameters, σini is actually larger for the integrable-
integrable quench than for the integrable-chaotic quench,
which explains why the decay in Fig. 1(c) is faster than that in
Fig. 1(d). This serves as a good example against the common
expectation that fidelity decays should be necessarily faster in
chaotic systems.

The Gaussian behavior in Figs. 1(c) and 1(d) holds all the
way to saturation. The saturation point, indicated with the
horizontal dashed line, is also determined by the interplay
between the initial state and the final Hamiltonian. The values
of F in Figs. 1(c) and 1(d) are very close. In a previous
work [58], we found cases where the saturation point for
chaotic systems was smaller than that for integrable models
and cases where it was even larger. The latter happened when
Eini was further from the middle of the spectrum for the chaotic
model than for the integrable one.

Figures 1(e) and 1(f) show the fidelity decay for the extreme
case where the initial state corresponds to a random vector
extracted from a full random matrix of an ensemble where
the matrices are real and symmetric [Gaussian orthogonal
ensemble (GOE)]. The state is then evolved with the same XXZ
model [Fig. 1(e)] and the NNN model [Fig. 1(f)] considered in
the top panels. This is an initial state with infinite temperature
placed in the middle of the spectrum. The filling of the energy
shell is ergodic for both final Hamiltonians. The decay is
Gaussian all the way to saturation and evidently faster than
that in Figs. 1(c) and 1(d). The saturation point is equivalent
for the two systems and given by F ≈ 3/D, as expected for
normalized random vectors from GOEs.

Below, we expand the Gaussian decay analysis for two
other scenarios. First, we study the transition of P ini(E) from
Lorentzian to Gaussian as the perturbation strength increases.
We focus on initial states close to the middle of the spectrum.
Next, we concentrate on the strong perturbation scenario, but
move Eini away from the middle of the spectrum.

A. Middle of the spectrum

When the perturbation is very weak and ĤI ∼ ĤF , the
LDOS is close to a δ function. As the perturbation increases,
the distribution broadens and first becomes Lorentzian. As
it increases even further, P ini(E) eventually reaches the
Gaussian shape. Different functions have been used to describe
the transition region between Lorentzian and Gaussian. In
Refs. [74,75], the Student’s t- distribution was employed.
It has a Bell shape like the Gaussian distribution, but the
tails decrease more slowly. In Ref. [18], an approximate
expression combining PL(E) and PG(E) to interpolate between
the short-time quadratic behavior and the later exponential
decay of F (t) was investigated.

In spectroscopy, emission and absorption lines often have
a shape that lies between Lorentzian (when homogeneous
broadening dominates) and Gaussian (when inhomogenous
broadening is important). They are fitted with the Voigt
function, which is a convolution of a Lorentzian and a Gaus-
sian. However, numerical convolutions are computationally
expensive. This motivated the introduction of the pseudo-Voigt
distribution [87], which is simply a linear combination of the
two functions with the same full width at half maximum,
2
√

2 ln 2 σpV = 	pV,

P ini
pV(E) = ηPL(E) + (1 − η)PG(E),

⇒ FpV(t) = η2 exp(−	pVt) + (1 − η)2 exp
(−σ 2

pVt2
)

+ 2η(1 − η) exp

(
− 	pVt + σ 2

pVt2

2

)
, (13)

where 0 � η � 1. There are other approximations to the
Voigt function [88–90], but this is a simple and fairly good
one.

Here, we employ the pseudo-Voigt distribution and its
Fourier transform to describe the transition of P ini(E) from
Lorentzian to Gaussian and the changes in the fidelity decay
as we increase the strength λF in the quench from the XXZ to
the NNN model. We quantify the transition with the parameter
η from Eq. (13) and estimate the critical time tc for the switch
from the Gaussian to the exponential fidelity decay. In the limit
of strong perturbation, η → 0 and tc → tR .

To illustrate the transition region, we use in Figs. 2(a)
and 2(b) an intermediate value of the perturbation parameter,
λF = 0.45. Figure 2(a) shows the LDOS of an initial state close
to the middle of the spectrum. All curves consider the same
Eini [Eq. (9)] calculated from the numerical data. The Gaussian
function is the analytical expression from Eq. (10), using
the numerical data to compute σini [Eq. (8)]. The Lorentzian
distribution is obtained by fitting 	ini. The pseudo-Voigt
function is obtained by fitting σpV and η. Figure 2(b) gives
the corresponding fidelity curves. The numerical data shows
a Gaussian decay for t < tc and then exponential for t > tc.
The approximate value of the critical time is indicated in the
figure with the vertical dashed line. FpV(t) is quite successful
in capturing both behaviors, demonstrating that the pseudo-
Voigt is a better match to P ini(E) than the Gaussian or the
Lorentzian.

The approach of the LDOS to the Gaussian shape with the
perturbation strength is made evident with Fig. 2(c), where
η decreases to zero as λF increases. The numerical data are
reasonably well fitted with an exponential function (dashed
line).

The dependence of tc on λF is shown in Fig. 2(d). The value
of the critical time is obtained by finding a local minimum in
the vicinity of t = 2 for the distance between the Gaussian
analytical expression and an exponential fitting for F (t). The
estimate is rough and very dependent on the time interval
used for the exponential fitting. We were able to find the local
minimum for λF up to 0.8, the subsequent points in the figure
being an extrapolation. Still, the plot gives a good idea of the
increase of tc with λF and its approach to tR , indicating that at
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FIG. 2. (Color online) Quench from the XXZ to the NNN model,
�I = �F = 0.5. Local density of states (a) and fidelity decay (b) for
λF = 0.45. Parameter η of the pseudo-Voigt distribution vs λF (c);
critical time and tR vs λF (d). The initial state for all panels has
E5445 = −0.37. In panels (a) and (b), Eini = −0.57, σini = 0.53, and
F = 2.32 × 10−3. The fittings lead to 	ini = 0.64, σpV = 0.37, and
η = 0.41. Numerical results, shaded area and symbols; Gaussian,
black solid lines; Lorentzian, blue dashed lines; pseudo-Voigt, green
dot-dashed lines; saturation point, horizontal line; and value of tc,
vertical line. (c) Fitting for the numerical data (dashed line). (d)
tc (triangles), tR (squares), and tR for λF = 1 (horizontal dashed
line). L = 16, Ŝz = 0, and D = 12 870; J = 1 sets the energy
scale.

strong perturbation the decay can indeed be Gaussian all the
way to saturation.

B. Away from the middle of the spectrum

Less attention has been given to the analysis of the shape of
the LDOS as Eini moves away from the center of the spectrum
of the final Hamiltonian [78]. We study this scenario here for
the quench from the XXZ to the NNN model in the limit of
strong perturbation, λF = 1.

Since the density of states of systems with two-body
interactions is Gaussian, at low energies, the states are fewer
and more localized. As the initial state approaches this region,
P ini(E) becomes less dense, slowing down the fidelity decay,
and it also becomes more skewed.

In Fig. 3(a), we approximate the LDOS of an initial state
with Eini far from the middle of the spectrum with a skewed
Gaussian [91],

P ini
sG (E) = 2√

2πσ 2
s

exp

[
− (E − Es)2

2σ 2
s

]
�

[
β(E − Es)

σs

]
,

⇒ FsG(t) = 4 exp
(−σ 2

s t2)∣∣∣∣�(
iβσst√
1 + β2

)∣∣∣∣2

, (14)

where

�(x) = 1

2

[
1 + erf

(
x√
2σ 2

s

)]
.
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FIG. 3. (Color online) Quench from the XXZ to the NNN model,
�I = �F = 0.5 and λF = 1. Local density of states (a) and fidelity
decay (b). Skewness γ1 (c) and excess kurtosis γ2 (d) vs Eini. In
panels (a) and (b), Eini = −2.96, σini = 1.05, and F = 2.40 × 10−3.
Numerical results, shaded area and circles; Gaussian, black solid
lines; skewed Gaussian, blue dashed lines; and saturation point,
horizontal line. In panels (c) and (d), the symbols are numerical
results and the solid lines are guides for the eye. L = 18, Ŝz = −3,
and D = 18 564; J = 1 sets the energy scale.

Above, erf is the error function, Es and σs are related to Eini

and σini as

Es = Eini − σs
β√

1 + β2

√
2

π
,

σs = σini

(
1 − 2

π

β2

1 + β2

)−1/2

,

and β is related to the skewness γ1 of the distribution,

γ1 = μ3

σ 3
ini

, μ3 =
∑

α

∣∣C ini
α

∣∣2
(Eα − Eini)

3, (15)

as

γ1 = 4 − π

2

[
2β2

β2(π − 2) + π

]3/2

.

P ini
sG (E) is visibly a better match to the LDOS in Fig. 3(a) than

the symmetric Gaussian. The corresponding fidelity curve for
the skewed Gaussian is shown in Fig. 3(b). It is slower than
what is obtained with a symmetric and well-filled Gaussian
and closer to the actual numerical data.

To better quantify how much P ini(E) deviates from a
Gaussian distribution as Eini moves away from the center of the
spectrum, we show in Fig. 3(c) the skewness and in Fig. 3(d)
the excess kurtosis,

γ2 = μ4

σ 4
ini

− 3, μ4 =
∑

α

∣∣C ini
α

∣∣2
(Eα − Eini)

4, (16)

of the LDOS for different values of Eini. Notice that, just like
σ 2

ini in Eq. (8), γ1 and γ2 can in principle be obtained before
the diagonalization of the final Hamiltonian by computing the
terms 〈n|ĤF |n′〉.
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For a skewed Gaussian function, the maximum values of
the skewness and excess kurtosis are γ1 = 0.995 and γ2 =
0.869 [91]. In Figs. 3(c) and 3(d), very far from the center of
the spectrum, these values are larger than 1, indicating that the
function that best represents P ini(E) in that region, at least for
our system sizes, is probably not a skewed Gaussian, but some
other skewed function. As Eini approaches the middle of the
spectrum, the skewness and the excess kurtosis approach zero,
as expected for a normal distribution.

V. AS FAST AS FULL RANDOM MATRICES

Full random matrices are matrices completely filled with
random numbers, where the only constraint is to satisfy
the symmetries of the system to be studied. GOEs, for in-
stance, address time-reversal invariant systems with rotational
symmetry [85]. These matrices describe well the statistical
fluctuations of the spectrum, but they are unrealistic, because
they imply the simultaneous interactions of many particles,
while physical systems have few-body interactions. Full
random matrices do not take into account the physical nature
of the potential.

Starting with the more realistic XXZ model, we studied the
conditions under which the density of states would approach
the semicircular shape of full random matrices by gradually
adding random couplings between more and more distant pairs
of spins and also between more than only two sites. Our
Hamiltonian matrix was written in the site basis, that is product
vectors where each site has a spin pointing either up or down
in the z direction. By including only flip-flop terms between
distant pairs of spins, Jij (Ŝx

i Ŝx
j + Ŝ

y

i Ŝ
y

j ), with j − i � 2 and
Jij being random numbers from a Gaussian distribution with
variance 1, the shape of the density of states remained Gaussian
[Fig. 4(a)]. This was expected, since the system still had only
two-body interactions; the matrix was sparse and its elements
were correlated. However, the inclusion of hoppings involving
four sites and of interactions of the kind Jijk...Ŝ

z
i Ŝ

z
j Ŝ

z
k . . . did

not bring us any closer to a noticeable semicircle. Correlations
seemed to be playing a major role.

We then turned our attention back to the XXZ model where
only flip-flop terms between any two sites were included,
but now substituted the matrix elements corresponding to
these couplings with uncorrelated random elements. Quite
unexpectedly, because the matrix looked extremely sparse, a
density of states very close to semicircular emerged [Fig. 4(b)].
This can be understood by analyzing the basis. The matrix
is sparse in the site basis, but nearly full in the mean-field
basis, that is, the basis corresponding to the eigenstates of
the integrable part (XXZ) of the Hamiltonian. As seen in the
plot for the averages of the absolute values of the off-diagonal
elements,

Hn,n+m =
∑D−m

n=1 |Hn,n+m|
D − m

, (17)

versus the distance m from the diagonal [Fig. 4(c)], the
matrix with uncorrelated randomized elements written in the
mean-field basis is indeed filled with nonzero elements of
similar amplitudes. In contrast, the off-diagonal elements of
the Hamiltonian with random flip-flop terms decrease with m.
This explains the different shapes of the density of states.
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FIG. 4. (Color online) Density of states ρ for the XXZ model
with �F = 0.5 and added random flip-flop terms between sites i

and j , where j − 1 � 2 (a), and with those elements replaced with
uncorrelated random numbers (b). Average of the absolute value
of the off-diagonal elements vs the distance m from the diagonal
(c) for the Hamiltonian from system (a) (decaying curve) and from
system (b) (flat curve). Fidelity decay (d) for system (a) (Gaussian
analytical expression is the black solid line; numerical data are the
circles; saturation point is the highest horizontal line) and for system
(b) (analytical expression is the green dashed line; numerical data
are the squares; saturation point is the lowest horizontal line). �I =
0.5, Eini ∼ 0, σini = 4.42 (a), σini = 4.03 (b), L = 16, Ŝz = 0, and
D = 12 870; J = 1 sets the energy scale.

The form of the LDOS of initial states close to the middle
of the spectrum of ĤF is similar to that of the density of
states (not shown). The corresponding fidelity behaviors are
shown in Fig. 4(d). It is Gaussian up to times close to tR
for the Hamiltonian with random flip-flop terms and it is
similar to FSC(t) [Eq. (11)] for the Hamiltonian with uncor-
related elements. The agreement with FSC(t) becomes even
better if uncorrelated random elements replace also matrix
elements associated with flip-flop terms involving four sites
(not shown).

In Sec. IV A, we saw that, in a system with a Gaussian
density of states, the increase of the perturbation strength
broadens the local density of states from Lorentzian to
Gaussian. In the present section, we provided a simple recipe to
achieve the transition from a Gaussian to a semicircle density
of states, which causes the same change in the local density of
states. The transition of the shape of the local density of states
from Lorentzian to Gaussian and then finally to semicircle
was investigated before [92] in the context of band random
matrices. The latter were introduced by Wigner [82,83] in an
attempt to improve over the unrealistic scenario of full random
matrices. An important advantage of our analysis over (band or
full) random matrices is to address realistic models associated
with a very broad range of physical systems.

VI. ABSOLUTE LOWER BOUND

In Ref. [59], we studied the case of a local quench in space,
where we added to ĤI = ĤNN a static magnetic field localized
on site L/2 and leading to an excess energy of amplitude
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FIG. 5. (Color online) Local density of states (a, c) and corre-
sponding fidelity decay (b, d) for a quench from the XXZ model
to the impurity model with dF = 1.2 (a, b) and dF = 8.0 (c, d).
The initial state is in the middle of the spectrum of ĤI , ED/2. (a, c)
Numerical data, shaded red area; two Lorentzians with E1 = −0.44,
E2 = 0.19, and 	1 = 	2 = 0.39, blue dashed line (a); two Gaussians
with E1 = −3.98, E2 = 3.90, σ1 = 0.48, and σ2 = 0.54, black solid
line (c). (b, d) Numerical results, circles; Eq. (18), blue dashed line;
and Fourier transform of the two Gaussians from panel (c), black solid
lines. The saturation points are the horizontal lines. �I = �F = 0.48,
L = 16, Ŝz = 0, and D = 12 870; J = 1 sets the energy scale.

dF . For dF � 1, we verified that P ini(E) could not reach
the Gaussian shape observed for global quenches (that is,
perturbations affecting all the sites of the chain, as the quench
to the NNN model) and was instead restricted to the Lorentzian
form. In the current article, we analyze local quenches where
dF > 1 and the chain effectively splits in two.

As dF increases, the density of states of ĤF eventually
divides in two peaks. The crossover from a unimodal to a
bimodal distribution is carried on also to P ini(E), where |ini〉
is an eigenstate of the XXZ model. When dF � 1, the single
Lorentzian for P ini(E) starts splitting in two Lorentzians. For
the Sz = 0 sector and Eini close to the middle of the spectrum,
both equally weighted PL(E), one centered at E1 and the
other at E2, have approximately the same width, as shown in
Fig. 5(a). They lead to

FTL(t) = cos2

(
E2 − E1

2
t

)
exp(−	t), (18)

where E2 − E1 ≈ dF . The expression above matches well the
numerical data of the fidelity decay for a fairly long time in
Fig. 5(b). The oscillations after tR are exponentially suppressed
with a rate determined by the width of the Lorentzians.

As dF further increases, the peaks broaden and approach
Gaussians separated in energy by E2 − E1 ≈ dF . When both
peaks have the same width σ ,

FTG(t) = cos2

(
E2 − E1

2
t

)
exp(−σ 2t2). (19)

The envelope of the decaying oscillations of the fidelity is now
also Gaussian. This scenario is illustrated in Fig. 5(c), although
the widths of the Gaussians there are slightly different. As
shown in Fig. 5(d), the corresponding Fourier transform of the

two Gaussians agrees very well with the numerical results for
the fidelity decay until very close to its saturation.

As the energy of the initial state moves away from the
center of the spectrum, P ini(E) becomes, as expected, more
asymmetric. Larger contributions to the distribution appear
for the peak closer to the border of the spectrum. The fidelity
decay becomes slower if compared to states where Eini is
closer to the middle of the spectrum. However, for very
large dF , the asymmetry decreases and both peaks approach
Gaussians.

From Eqs. (18) and (19), one sees that for t < π/(2σini),
where the total dispersion in energy σini ≈ (E2 − E1)/2 ≈
dF /2, the fidelity decay derived from bimodal distributions
can indeed approach the ultimate bound associated with
the energy-time uncertainty relation, F � cos2(σinit). This
is particularly evident when dF is large, since in this case
σ 2t2 < σ 2π2/(E2 − E1)2 � 1 and we obtain

FTG(t) ∼ cos2

(
dF t

2

)
. (20)

The lower bound for the fidelity decay can be obtained from
the Mandelstam-Tamm uncertainty relation [1]

σiniσA � 1

2

∣∣∣∣d〈Â〉
dt

∣∣∣∣.
A pedagogical derivation is provided in Ref. [7]. If Â is the
projection operator on the initial state, Â = |ini〉〈ini|, then
〈Â〉 = F (t) and σ 2

A = F (t) − F (t)2. Thus

σini

√
F (1 − F ) � 1

2

∣∣∣∣dF

dt

∣∣∣∣,
which leads to

arccos (
√

F (t)) � σinit ⇒ F (t) � cos2(σinit).

VII. CONCLUSION

We studied isolated finite quantum systems described by
one-dimensional spin-1/2 models with two-body interactions
and taken far from equilibrium instantaneously. We denomi-
nated as fidelity the probability for finding the initial state later
in time. This probability corresponds to the Fourier transform
of the weighted energy distribution of the initial state (LDOS),
P ini(E). We analyzed three realistic scenarios in which the
fidelity decay was nonexponential. The first two cases involved
global quenches in space, where P ini(E) was unimodal. The
third one occurred after a local quench, which resulted in a
bimodal P ini(E).

Case (1). When Eini is close to the middle of the spectrum
of the postquench Hamiltonian and the global perturbation
is strong, P ini(E) is Gaussian, leading to a Gaussian fidelity
decay. This behavior is independent of the regime (integrable
or chaotic) of the system. It can hold for long times and even
persist up to saturation.

Before reaching the Gaussian regime, as the perturbation
increases, P ini(E) goes first from a Lorentzian shape to a
convolution between Lorentzian and Gaussian (Voigt distri-
bution). Equivalently, the fidelity decay mixes Gaussian and
exponential functions.
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In the limit of strong perturbation, but far from the middle of
the spectrum, where there are fewer states and finite effects are
important, P ini(E) can be approximated by a skewed Gaussian.
In this case, the fidelity decay is slower than Gaussian.

Case (2). The fidelity decay is faster than Gaussian and
approaches the results from full random matrices if the matrix
elements of the spin-1/2 Hamiltonian corresponding to long-
range flip-flop terms are replaced with uncorrelated random
numbers. This matrix is very sparse in the site basis, but it is
nearly filled if written in the mean-field basis.

Case (3). After a local quench, where a strong static
magnetic field is added to a single site of the chain, P ini(E)
becomes bimodal. The initial fidelity decay is approximately
the one established by the energy-time uncertainty relation.
After crossing the saturation point for the first time, the enve-
lope of the subsequent oscillations decays as an exponential or
Gaussian, depending on the shape of the two peaks in P ini(E).

In Refs. [57,58], we discussed initial states accessible to
experiments with optical lattices, where Case (1) could be
tested. The local quench described in Case (3) is also viable
to those experiments. Another important aspect of the present
work is the connection between fidelity decay and studies in
spectroscopy. The tools used for determining lifetime and line
shape in that field can be very useful in the analysis of quench
dynamics.
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