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Phase space tomography of cold-atom dynamics in a weakly corrugated potential
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We demonstrate tomographic reconstruction of the phase space distribution of atoms oscillating in a harmonic
trap with weak potential corrugation caused by nanoscale imperfections in an atom chip. We find that deformations
in these distributions are highly sensitive to anharmonic components of the potential. They are explained in terms
of angular velocity dispersion of isoenergetic phase space trajectories. We show that the method is applicable
for probing classical and quantum dynamics of cold atoms, and we note its importance for future technological
applications.
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I. INTRODUCTION

Weak disorder caused by corrugations in otherwise smooth
or perfectly periodic potentials can have significant physical
effects. It is well known, for example, that a disordered
potential induces Anderson localization of quantum particles
[1–3]. Small disorders can induce dramatic changes even in
classical mechanics, for example, by coupling the separate
dimensions so that the system becomes nonintegrable [4].
Under certain conditions, disorder can be used to control
chaos, from synchronization of coupled nonlinear oscillators
[5] to stabilization of soliton solutions [6] and, very recently,
theoretical predictions for the regularization of classical
chaotic motion of cold atoms in optical lattices [7].

Potential corrugations cause density fluctuations, and even
fragmentation, as ultracold atom clouds are brought close to
current-carrying wires in magnetic traps [8,9]. These corruga-
tions are due to the effect of edge, surface, and bulk nanoscale
defects in the wire. Solid-state structures and electronic
transport characteristics can be revealed by investigating these
potential corrugations [10,11]. Although such potential corru-
gations have been reduced significantly by static techniques,
such as improved wire fabrication [12,13], and by dynamic
techniques such as using time-averaged potentials [14,15], the
residual corrugation has obvious harmful effects when highly
smooth magnetic potentials are needed. Similar effects are
expected for permanent magnets [16]. In fact, any kind of
engineered interaction with a nearby surface is expected to
suffer from such solid-state imperfections. At a time when
atom chips [17,18] are about to be sent into space [19,20],
when trapped and guided matter-wave interferometers are
being designed [21–25], and when so-called hybrid devices are
being envisioned [26,27], investigation of such imperfections
on the phase space evolution is timely. Here we study phase
space evolution in a nearly harmonic trap, the most common
trapping potential for cold atomic clouds.

When an atomic cloud oscillates in a trap with a pure
harmonic potential, the oscillation persists indefinitely in
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the absence of interatomic collisions. Even in the presence
of collisions, displacement of an atomic cloud, initially at
equilibrium in a harmonic trap, does not cause any change
in the phase space distribution relative to the center of mass
[28]. However, even a small potential disorder can induce
damping of the oscillations [15] or changes in the oscillation
period [29].

A powerful approach for characterizing the dynamical
evolution of such perturbed oscillations may be realized by
measuring the phase space distribution of the atomic cloud
[30]. Tomography provides a method to reconstruct such phase
space distributions from experimental data [31], as has been
demonstrated for photonic states [32], for single ions in very
high-frequency Paul traps [33], for spin states of cold atoms
[34], and for motional states of an atomic beam [35,36]. To the
best of our knowledge, however, tomography has not been ap-
plied to determine the phase space evolution of ultracold atoms
in anharmonic potentials. Moreover, while groundbreaking
superfluid-insulator dynamical studies have been done that
also characterized the center-of-mass motion in anharmonic
traps [37], and focusing of ultracold atoms from a box-shaped
potential has been exhibited experimentally [38], no real-space
dynamical studies have been done at temperatures and/or
densities where small nano-Kelvin disorders are expected to
play a significant role [39,40].

In this paper we demonstrate a full tomographic recon-
struction of the phase space distribution of a cold atomic
cloud oscillating in a harmonic trap with small potential
corrugations originating in the nearby surface. We analyze
these dynamics experimentally and theoretically. In addition
to intrinsically interesting physical aspects of phase space
evolution such as squeezing, and insights allowing better
designs for technological applications, we demonstrate that
even very weak potential corrugations can significantly alter
the phase space distribution, thus providing a very sensitive
probe of such weak corrugations.

Section II of this paper outlines the cold-atom experimental
setup and the results of our tomographic analysis. In Sec. III
we present a theoretical framework that is particularly well
suited for analyzing phase space distributions as they evolve
in weakly corrugated potentials, leading to an interpretation
of the experimental results in Sec. IV. Although our measure-
ments are performed for a strictly classical system, Sec. V
discusses extensions to fully quantum systems. Finally, we
summarize our results and conclusions in Sec. VI.
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FIG. 1. (Color online) (top) The atom chip (gold surface) acts as a
mirror for the magneto-optical trap and for imaging the atomic cloud.
Three wires are used to generate the potentials used in this experiment.
(bottom) The trapping fields are harmonic potentials (smooth curves)
generated by the “trapping” wire (Cu) whose center is ≈1.2 mm from
the atomic cloud; the harmonic potentials may be displaced along
the x axis (solid vs dashed curves) by currents through a pair of
gold U-shaped “displacement” wires (U) located 320 μm from the
atoms. The weak corrugation potential (wavy line along the x axis),
which is highly exaggerated compared to the harmonic potentials, is
imposed by a small current through the atom chip “corrugation” wire
(Z) located 20 μm from the atoms. External coils creating bias fields
along the x and y axes are not shown.

II. EXPERIMENT

A. Setup and method

We implement the experiment in an atom chip setup, shown
schematically in Fig. 1. About 5×107 87Rb atoms are collected
by a magneto-optical trap in an ultrahigh-vacuum chamber.
After molasses cooling, we transfer the atomic cloud into a
magnetic trap which, after rf evaporative cooling to ≈400 nK,
has about 3000 atoms located 370 μm from the chip surface.
Next, we adiabatically bring the atoms to 20 μm from the chip.
The magnetic field at the trap minimum is 18 G, which ensures
that the trap is almost perfectly harmonic in the longitudinal
(x̂) direction. It is also very smooth since the atoms are
relatively far from the “trapping” wire (labeled Cu in Fig.
1). These transfers further reduce the cloud temperature to
160 nK; trap frequencies are ω0 = 2π×38 Hz (longitudinal)
and about 2π×110 Hz (transverse), and the elastic collision
rate is ≈2 s−1.

Currents passing in opposite directions through the two
“displacement” wires (labeled U) are used to shift the trap
center along the x axis. Suddenly turning off these displace-
ment wires at the beginning of our experiments then induces
oscillations of the atomic cloud along the x axis of the trap at
a well-defined initial time. Experiments with currents in the
“corrugation” wire (labeled Z) are conducted at a distance of
20 μm; when no current flows through the corrugation wire,
the distance of the atom cloud from the chip is slightly different
but without any observable change in the harmonic potential.

In order to observe the phase space distribution after
an oscillation time t1, we adiabatically turn off the current
in the corrugation wire and let the atoms evolve in the

perfect harmonic potential for a variable time t2. This is
equivalent to performing a phase space rotation x → x cos θ −
(p/mω0) sin θ and p → p cos θ + mω0x sin θ , where θ =
−ω0t2. We then take an in situ absorption image of the
atomic density and integrate it along the transverse direction to
obtain the longitudinal density n(x). The normalized density
is equivalent to a projection of the phase space distribution
P (q̄,p̄), where q̄ = x and p̄ = p/mω0 over the angle θ .
The tomography algorithm, described below, reconstructs the
original phase space distribution P (q̄,p̄) from a series of
projections at 0 < θ < π .

Given a phase space distribution P (q̄,p̄), a projection of
this distribution along an axis rotated by an angle θ relative to
the q̄ axis is defined as

pr(q̄,θ ) =
∫ ∞

−∞
dp̄ P (q̄ cos θ − p̄ sin θ,q̄ sin θ + p̄ cos θ ).

(1)

The tomography algorithm allows the reconstruction of
the original phase space distribution P (q̄,p̄) from a series
of projections at 0 < θ < π . The accurate form of the
mathematical transformation [31]

P (q̄,p̄) = 1

2π2

∫ π

0
dθ

×
∫ ∞

−∞
dxK(q̄ cos θ + p̄ sin θ − x)pr(x,θ ), (2)

with the kernel function K(x) = ∫ ∞
0 dk k exp(ikx), is re-

placed by a sum over a finite number of projections and an
approximate nondivergent form of the kernel,

K(x) =
{ 1

x2 [cos kcx + kcx sin kcx − 1] kcx > 0.1,

k2
c

2

[
1 − k2

c x
2

4 + k4
c x

4

72

]
kcx � 0.1,

(3)

where kc corresponds to a wavelength on the order of the phase
space resolution allowed by this algorithm (kc = 0.43 μm−1

in our case).
In our experiment we measure the atomic density at t2 time

intervals of 1 ms spanning a half period of the oscillation,
giving rise to 13 images that correspond to a series of angles
separated by π/13. To improve the signal-to-noise ratio we
average ten measurements for each angle.

It is helpful to note that our tomography technique allows a
full reconstruction of the phase space distribution. A previous
tomographic reconstruction used a free space propagation
method for changing the projection angle [35,36], valid only
for the restricted range 0 to π/2, while the rest of the angles
were obtained by a symmetry assumption. In contrast, our
method spans the full range of θ from 0 to π , thereby
implementing one of the procedures suggested in Ref. [41].
We also note that our tomography technique can be extended
to obtain the Wigner function for a quantum system under
experimentally attainable conditions, as we discuss further
in Sec. V A.

B. Reconstructed phase space distributions

In the first series of measurements (Fig. 2), we force the
cloud to oscillate with an amplitude of 85 μm. When there is
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FIG. 2. (Color online) (a)–(c) Reconstructed phase space dis-
tributions with a 5-mA current in the corrugation wire, an
85-μm oscillation amplitude, and oscillation times t1 as shown. The
distribution in (d) is obtained with the corrugation wire turned off,
while that shown in (e) is obtained by translating the equilibrium
position of the cloud by 73 μm using the displacement wires. (f) A
typical in situ image and its corresponding one-dimensional density
distribution, selected from the data set used for reconstructing the
t1 = 500 ms phase space distribution shown in (c).

no current in the corrugation wire, the phase space distribution
maintains an approximately isotropic Gaussian shape, even
after oscillating for 500 ms [Fig. 2(d)]. This demonstrates that
the trap potential is almost purely harmonic. Applying a 5 mA
current to the corrugation wire causes dramatic changes. After
an oscillation time of 100 ms, the phase space distribution
develops a slight deformation, which appears more distinctly
after 300 ms [Figs. 2(a) and 2(b)]. After oscillating for 500 ms,
the phase space distribution develops a crescent-shaped pattern
totally unlike that for the purely harmonic potential [Fig. 2(c)].

We conducted a second series of measurements to examine
the effect produced by a different region along the corrugation
potential. We displaced the equilibrium position along the
longitudinal axis and forced oscillations with a slightly smaller
amplitude (80 μm). Differences between the resulting phase
space distribution [Fig. 2(e)] and that shown in Fig. 2(c)
may therefore be attributed to differences of the corrugation
potential in their respective oscillation ranges.

III. THEORY

As a basis for understanding the experimental results, we
begin with a general theoretical analysis for the phase-space
evolution of a collisionless system of classical particles in
a perturbed harmonic potential. Consider atoms moving in
a trapping potential separable into a longitudinal part V (x)
and a transverse part (along y and z), such that the dynamics
along x are independent of the transverse coordinates. For
temperatures sufficiently in excess of the critical temperature
for condensation, the evolution can be treated classically
according to Newton’s equations of motion ẋ = p/m, ṗ =
F (x), where m is the mass and F (x) = −∂xV (x) is a
position-dependent force. For a potential V (x) having a global
minimum at x = 0, it is useful to define radial phase space
coordinates r and θ such that x = r cos θ and p = mω0r sin θ ,

with ω0 being the harmonic frequency characterizing the
potential. These equations imply that the evolution follows
phase space trajectories with constant energy

E = p2

2m
+ V (x) = 1

2
mω2

0r
2 + �U (x) = const, (4)

where �U (x) ≡ V (x) − 1
2mω2

0x
2 is the deviation of the

potential from a pure harmonic and is considered to be
comparatively small.

A. Angular phase space velocity dispersion

Now we calculate the equation of motion for the phase
space angle θ :

θ̇ = 1

1 + (p/mω0x)2

[
F

mω0x
− p2/m

mω0x2

]
. (5)

We write F = −mω2
0x + �F , where �F = −�U ′(x), and

obtain

θ̇ = −ω0

[
1 − x�F (x)/2

E − �U (x)

]
, (6)

where x can be written as x(θ,E) = r(θ,E) cos θ .
The phase space distribution P (r,θ,t) after an evolution

time t in the trap is determined by the initial distribution, where
each point in phase space is transformed into a new point r →
r(t) and θ → θ (0) + ∫ t

0 θ̇ (E,t ′)dt ′. If the anharmonicity of the
potential is weak, then the phase space radius r(E,t) is almost
constant for each energy. However, the dispersion of angular
phase space velocities may cause considerable distortion
of the phase space distribution. Parts of the phase space
trajectories where x�F (x) < 0 (perturbation force pointing
towards the center of oscillation) accelerate the angular phase
space motion, while parts with x�F (x) > 0 (perturbation
force pointing away from the center) slow it down. Phase
space distortion can therefore be caused by particles moving
along trajectories with different average angular velocities
even though their energies may be only slightly different.

B. Oscillation period

Now we wish to compute the period of the motion, which
is the integral over time between end points where θ returns to
its original value. This is given by

Tosc =
∫ 2π

0

dθ

ω(θ )
, (7)

where ω(θ ) ≡ −dθ/dt . The deviation of the motion period
from that of the harmonic oscillator of frequency ω0 is given
by

δTosc(E) = 1

ω0

∫ 2π

0
dθ

x�F/2

E − �U − x�F/2
. (8)

This is true whenever the denominator inside the integral
is positive. Otherwise, the trajectory of phase space motion
would not complete a full round trip around the origin
x = p = 0.

In the limit of a weak perturbation, such that �U/E � 1
and x�F/E � 1, we may neglect the position-dependent
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terms in the denominator and make a coordinate transforma-
tion

dθ = dx

dx/dθ
= dx

(dr/dθ ) cos θ − r sin θ
. (9)

By taking the derivative of Eq. (4) with respect to θ it can be
shown that

∂r

∂θ
= r tan θ

x�F/2

E − �U − x�F/2
, (10)

such that

dθ ≈ − dx

r sin θ

1

1 − x�F/2E
. (11)

The second term in the denominator of the second factor
can therefore be neglected in the limit x�F � E. By using
r sin θ = ±

√
r2 − x2 and taking the lowest-order approxima-

tion for r , namely, r ≈ xmax(E) =
√

2E/mω2
0 , where xmax is

the distance of the turning point in the unperturbed harmonic
potential from the center, we then obtain the lowest-order
expression for the period change due to the perturbation

δTosc(E) ≈ 1

ω0E

∫ xmax

−xmax

x �F (x) dx√
x2

max − x2
. (12)

Equation (12) implies that the main contribution to the change
in the period of motion for a given energy E comes from the
corrugated potential gradient near the classical turning points.
The sign of the contribution depends on the direction of the
force �F (x) as discussed above.

IV. INTERPRETATION AND ANALYSIS

We now use the preceding analysis to predict the phase
space evolution for a classical system that is weakly perturbed
by an anharmonic potential and to compare with the experi-
mental results of Fig. 2.

A. Potential corrugations

In our case, the potential corrugation �U (x) was extracted
from a series of measurements of the equilibrium density n(x)
of the atomic cloud in the presence of a harmonic potential [15]
centered 20 μm from multiple positions along the corrugation
wire (Fig. 3). In order to observe atom density modulations
due to current fluctuations more clearly, we increased the
corrugation-wire current to 40 mA, an eightfold increase over
that used in our experiments. The trapping-wire current was
correspondingly reduced to maintain the atom cloud at a
distance of 20 μm from the corrugation wire. As demonstrated
in previous work [11], variations in the magnetic field at this
distance are affected only by imperfections in the wire edge
over a scale longer than ≈20 μm.

In particular, the main features of the corrugation potential
are two wells with amplitudes of ±22 nK centered at x ≈
±80 μm caused by mismatches at the edges of the field of
view of the lithography process, as detailed in the Appendix.
In between lie two shallower wells of amplitude ±7 nK. These
potential corrugation amplitudes are shown on the right-hand
scale of Fig. 3, corresponding to the 5-mA current used in the
oscillation experiments.

FIG. 3. (Color online) The potential corrugation at a distance of
20 μm from the corrugation wire (Z in Fig. 1). The potential is shown
for a corrugation-wire current of 40 mA as reconstructed from a series
of measurements, like those in the inset, that overlap along the x axis.
The right-hand scale shows the potential as it would correspond to the
corrugation-wire current of 5 mA used in the oscillation experiments.
The inset shows a typical image of the atomic cloud optical density
(OD) distribution for one particular current in the displacement wires.

B. Analysis

In our first experiment [Figs. 2(a)–2(c)] the two classical
turning points of the oscillation lie near the two deepest
wells of the corrugation potential (shown in Fig. 3). This
implies a force in the outward direction for lower energies,
giving rise to a longer oscillation period [δTosc > 0 in
Eq. (12)] and hence a smaller oscillation frequency, while
higher energies correspond to a force directed inward and
hence a higher oscillation frequency. Conversely, in our second
experiment the two turning points are located at x ≈ 0 and
x ≈ 160 μm, where the potential wells are much shallower.
Qualitatively, this should give rise to a smaller phase space
angular dispersion, as shown by Fig. 2(e).

For a more quantitative comparison, we first calculate the
oscillation frequency for any given particle energy, as shown in
Fig. 4. Preparing a random Boltzmann distribution of atoms in
a trap shifted by xshift = 85 μm and then releasing it suddenly
to the original position, as performed in the experiments,
produces an energy distribution centered at Eshift = 1

2mω2
0x

2
shift

and having a standard deviation �E ≈ √
kBT (kBT + 2Eshift).

This energy distribution (shown in Fig. 4) involves phase space
trajectories with frequency shifts between δω/ω0 ≈ −0.015
and δω/ω0 ≈ +0.009 (red dots in Fig. 4). It follows that the
angular dispersion after time t1 is �θ ∼ 0.024ω0t1 ≈ 2.85 rad,
as indeed observed in the experimental phase space distribution
[Fig. 2(c)].

C. Simulations of the classical system

In Fig. 5(a) we show the results of a simulation based
on adding a proper phase space angle to each atom in
the random distribution according to δω(E) in Fig. 4. For
comparison, Fig. 5(b) shows the phase space distribution
resulting from a full calculation based on a direct numerical
solution of Newton’s equations of motion in the presence of the
corrugation potential. In addition, we account for collisions by
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FIG. 4. (Color online) Frequency shift δω (solid curve) as a
function of the longitudinal energy of an atom in a harmonic trap
centered at x = 0 in the presence of the corrugation potential shown
in Fig. 3 for a current of 5 mA. The energy is in units of Eshift

(see text). Energy distribution (dashed curve) for an atomic ensemble
prepared in the initial trap centered at xshift. The ensemble contains
atoms whose energies span oscillation frequencies δω/ω0 ≈ −0.015
to δω/ω0 ≈ +0.009 (red dots). The evolution that follows leads to
the simulated phase space distributions shown in Fig. 5(a).

assuming that the probability of collision between each pair
of atoms in a small volume V during a time interval τ is
σelvrelτ/V , where σel = 8×10−12 cm2 is the s-wave collision
cross section and vrel is the relative velocity between the
two atoms. This implies that higher collision probabilities
are expected between pairs of atoms which occupy the same
volume but have opposite velocity. Such events become more
probable when the phase space angular distribution becomes
more dispersed. When a collision occurs, the two atoms scatter
into new velocities along the x direction, and the center of mass
velocity is conserved, while the energy is redistributed between
the longitudinal and transverse degrees of freedom. Comparing

FIG. 5. (Color online) Phase space distributions obtained by sim-
ulation and experiment for oscillation times t1 = 500 ms. (a) The
simulation was based on preparing an ensemble of atoms with a
thermal distribution in the initial trap and then adding a proper phase
space angle according to δω(E) in Fig. 4. (b) Newton’s equations of
motion were solved numerically for each atom, and collisions were
included. We also repeated the tomography algorithm and took into
account the finite resolution of the optical system. The similarity
between (a) and (b) shows that for a collision rate of about 2 s−1

there is no significant smearing of the phase space distribution, even
after 500 ms. (c) The experimental results [repeated from Fig. 2(c)]
are explained to a high degree by the theory [(a) and (b)]. (d) An
alternative maximum-likelihood tomography algorithm [42] gives
similar results.

these two simulations suggests that the collisionless phase
space features are not significantly smeared in the presence of
a small number of collisions (up to one collision per atom).

Under conditions where collisions are rare and dimensions
are separable, the phase space area is conserved during the
cloud evolution, and lower densities and temperatures of the
atomic ensemble can be reached, as in δ-kick cooling [43].

V. EXTENSION TO A QUANTUM STATE

Our experiment was performed at a temperature for which
the ensemble of cold atoms behaves purely classically. Here we
demonstrate explicitly, for realistic conditions, that our tomo-
graphic reconstruction procedure is also applicable to a fully
quantum situation. In addition, we show that the stretching of
an initially localized classical phase-space distribution, caused
in our experiment by the presence of anharmonic perturbations,
is analogous to a quantum squeezing effect whose occurrence
we demonstrate for an anharmonic trap when the initial
distribution is a minimum uncertainty distribution.

A. Phase space tomography for the quantum case

In order to demonstrate the applicability of the tomographic
method for reconstructing a quantum phase space distribution
(the Wigner function), we consider the simple situation of a
Bose-Einstein condensate (BEC) of noninteracting atoms in
a harmonic trap. Such a BEC is achievable by magnetically
tuning the scattering length to a small positive value, e.g., by
using a magnetic field of about 165.6 G for 85Rb [44–46].

In our example, the atoms are initially in the ground state
of a harmonic potential whose frequency is ω = 2π×38 Hz,
as in our experiments. We envision a light pulse or a
magnetic gradient pulse combined with microwave pulses
[47] that transfers the atoms into a superposition of two
momenta ±k = ±2π/2 μm, such that the wave function has
the form

ψ(x,t = 0) = e−x2/2σ 2

√
2πσ

(eikx + e−ikx), (13)

where σ = √
�/mω = 1.76 μm is the initial width of the

Gaussian wave packet.
The Wigner function of such a BEC may be obtained

tomographically by letting it evolve in the harmonic trap for
multiple times tj , which correspond to phase space rotation
angles θj = −ωtj . However, the density distribution for our
BEC varies in space with a period of 1 μm, which is not
resolvable with the optical imaging of our experiment. In order
to image the atoms with a practical resolution we turn off the
harmonic trap after each time tj and let the atoms expand freely
for an additional time tf . After this time of flight, each point
in phase space transforms as

x → x + p

m
t = 1

cos θf

[
x cos θf − p

mω
sin θf

]
(14)

and p → p, where θf = − tan−1(ωtf ). Since the spatial
density distribution is obtained by integrating over the co-
ordinate p, it follows that the resulting spatial density after
expansion is the same as if phase space is rotated by an
angle θf and the x coordinate is then stretched by a factor
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FIG. 6. (Color online) Phase space distribution for a trapped
noninteracting BEC split into a superposition of two momenta. (a)
Wigner function reconstructed by keeping the BEC in the harmonic
potential for times tj = (j − 1)π/ω,j = 1, . . . ,60 and then allowing
free expansion for a flight time of tf = 30 ms. (b) Wigner function
calculated directly from the wave function [Eq. (15)]. The green
background color represents values close to zero, while red is positive
and blue is negative.

[cos θf ]−1 =
√

1 + ω2t2
f . For tf = 30 ms, this “stretching

factor” is 7.2, which is large enough to provide sufficient
imaging resolution for reconstructing the initial phase space
distribution.

In Fig. 6 we present the reconstructed Wigner function
obtained with this method. We compare it to the exact Wigner
function, which is obtained directly from the wave function
ψ(x),

W (x,p) = 1

2π�

∫ ∞

−∞
dη ψ∗

(
x− η

2

)
ψ

(
x+ η

2

)
e−ipη/�, (15)

and we conclude that the tomographic reconstruction method
applied in this paper can accurately be extended to the quantum
case.

B. Quantum squeezing in an anharmonic trap

Here we wish to demonstrate that the evolution of a
quantum wave packet in a harmonic trap with an anharmonic
perturbation leads to squeezing in a manner similar to the
stretching of the classical phase space distribution observed in
our experiment. We consider an anharmonic potential of the
form

V (x) = 1
2mω2x2(1 + x2/w2), (16)

where the harmonic frequency ω is chosen to be 2π×38 Hz as
above and the quartic term is characterized by the distance w =
100 μm at which the quartic addition is equal to the harmonic
contribution. We start from a noninteracting BEC (equivalent
to a single particle) in the ground state of the harmonic potential
and shift the potential by 15 μm from its initial center. In
Figs. 7(a)–7(d) we show the phase space distribution as the
BEC evolves in the anharmonic trap. In Fig. 7(e) we present
the position and momentum uncertainties �x and �p/mω as a
function of evolution time, a few milliseconds after the wave-
packet center passes the initial turning point. Note that the
anharmonicity also increases the oscillation period by about
1.8%.

For the parameters chosen in this demonstration the
maximum squeezing (minimum �x) is achieved after about

FIG. 7. (Color online) Effect of a small quartic anharmonicity on
the phase space evolution of a trapped single-particle quantum system.
(a)–(d) Evolution of the phase space density for different times in the
trap. (e) Uncertainties in position (blue line) and momentum (black
line, expressed as p/mω) as a function of time; note that the minimum
position uncertainty occurring near t = 130 ms is ≈30% below the
minimum-uncertainty initial state.

130 ms (five oscillations in the trap). After this time the phase
space distribution becomes progressively narrower in the radial
direction [Fig. 7(d)], but the position uncertainty begins to
grow. The stretching seen along the arc of this quantum
phase-space evolution is similar to that seen for our experiment
with classical particles (Fig. 5) and is caused by the small
potential anharmonicity in both cases.

VI. SUMMARY AND CONCLUSIONS

We have studied the classical phase space evolution of
trapped atoms oscillating in a harmonic potential with static
corrugations along one dimension. For oscillation times on
the order of the mean time between collisions, phase space
variables propagate along nearly circular isoenergetic trajec-
tories whose angular velocity dispersion is determined mainly
by potential corrugations near the classical turning points. We
observe deformations of the phase space distribution that are
sensitive to fine details of the corrugations, and we show that
these classical deformations are analogous to squeezing in
quantum systems.

We have demonstrated a phase space tomography method
that can serve as a tool for probing the dynamics of trapped
atoms. The method is sensitive to potential corrugations having
an rms amplitude of ∼10 nK. In view of Eq. (12), this sensitiv-
ity may be improved by reducing the oscillation frequency and
amplitude. Further improvements may be achieved by probing
a longer time evolution of cold fermions or a one-dimensional
ultracold Bose gas [48,49], where the effects of collisions are
suppressed. If the phase space distribution were generalized to
a Wigner function [31,50], the method could also be applied to
coherent matter waves [51] or to quantum dynamics [41,52].

Probing, understanding, and controlling the phase space
evolution of cold atoms in the presence of a corrugated
potential is important, for example, for future schemes of
guided matter-wave interferometry [23,24] and free-oscillation
atom interferometry [21,22]. Quantum phase dispersion and
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the visibility of interference in such interferometry would
be determined by the propagation dynamics along separated
paths, whose general features are expected to be similar to
those of the classical evolution described above. Applying
tomography as described in this paper may be done either
by trapping the wave packet at the output port of the
interferometer or by mapping the interferometer loop onto
a phase space loop. Such studies may shed new light on
the connection between classical and quantum treatments of
dephasing [53], with the present study focusing on static
fluctuations.
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APPENDIX: QUANTIFYING THE POTENTIAL
CORRUGATIONS

For the purpose of a different experiment which is not
reported in this paper, the edges of the corrugation wire are
fabricated with a modulation period of 5 μm, as shown in
Fig. 8, giving rise to a short-range sinusoidal potential. As
demonstrated in previous work [11], however, the magnetic
field for distances �20 μm used in the oscillation experiments
of this study is not influenced by the 5-μm periodic edge
modulation, and variations of the magnetic field are dominated
by imperfections in the wire edge over a longer scale. Explicit
numerical calculations of the magnetic potential confirm
that residual sinusoidal corrugation [due to the 5-μm-period
modulation of the corrugation-wire edges; solid curve in

FIG. 8. (Color online) (a) Scanning-electron-microscope images
showing one edge of the corrugation wire (Z in Fig. 1). The lower
scan is a copy of the upper scan, displaced one period to the right.
The vertical white lines are drawn through the peaks of the upper
scan and show that the second period is ≈10% longer than the other
periods due to a fabrication error occurring every 160 μm along the
wire. An additional imperfection, almost imperceptible in the image,
is also indicated as a transverse shift of ≈60 nm. (b) Close-up view
showing that random edge imperfections are �20 nm. The wire is
8 μm wide and 0.5 μm thick. (c) Corrugation potential amplitudes as
a function of distance from the corrugation wire, as calculated for the
5-μm edge modulation (solid black curve) and for the 160-μm-period
fabrication errors exhibited in (a): 0.5-μm longitudinal stretch (blue
dotted curve) and 60-nm transverse shift (red dashed curve). The
deepest corrugations observed in the experimental potential (Fig. 3)
are quantitatively reproduced by the latter curve at a distance
of 20 μm.

Fig. 8(c)] is � 1 nK and is therefore negligible under the
conditions of the oscillation experiments. Conversely, the cor-
rugation wire fabrication process introduced slight mismatches
at the edges of the lithographic field of view with a period
of 160 μm. Specifically, a transverse shift of the corrugation
wire by about 60 nm produces a corrugation amplitude of
about 20 nK [dashed curve in Fig. 8(c)], observed experi-
mentally as the two deepest potential wells at x = ±80 μm
in Fig. 3.
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[17] R. Folman, P. Krüger, J. Schmiedmayer, J. Denschlag, and C.
Henkel, Adv. At. Mol. Opt. Phys. 48, 263 (2002).

[18] J. Reichel, Appl. Phys. B 74, 469 (2002).
[19] G. M. Tino et al., Nucl. Phys. B, Proc. Suppl. 243–244, 203

(2013).
[20] ISS-Cold Atom Laboratory, http://coldatomlab.jpl.nasa.gov/
[21] R. P. Kafle, D. Z. Anderson, and A. A. Zozulya, Phys. Rev. A

84, 033639 (2011).
[22] R. H. Leonard and C. A. Sackett, Phys. Rev. A 86, 043613

(2012).
[23] Y. Japha, O. Arzouan, Y. Avishai, and R. Folman, Phys. Rev.

Lett. 99, 060402 (2007).
[24] S. Wu, E. Su, and M. Prentiss, Phys. Rev. Lett. 99, 173201

(2007).
[25] T. Berrada, S. van Frank, R. Bücker, T. Schumm, J.-F. Schaff,
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