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Cooperation of different exchange mechanisms in confined magnetic systems
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The diluted Kondo lattice model is investigated at strong antiferromagnetic local exchange couplings J , where
almost-local Kondo clouds drastically restrict the motion of conduction electrons, giving rise to the possibility
of quantum localization of conduction electrons for certain geometries of impurity spins. This localization may
lead to the formation of local magnetic moments in the conduction-electron system, and the inverse indirect
magnetic exchange (IIME) provided by virtual excitations of the Kondo singlets couples those local moments to
the remaining electrons. Exemplarily, we study the one-dimensional two-impurity Kondo model with impurity
spins near the chain ends, which supports the formation of conduction-electron magnetic moments at the edges
of the chain for sufficiently strong J . Employing degenerate perturbation theory as well as analyzing spin gaps
numerically by means of the density-matrix renormalization group, it is shown that the low-energy physics
of the model can be well captured within an effective antiferromagnetic Ruderman–Kittel–Kasuya–Yosida-like
two-spin model (“RKKY from IIME”) or within an effective central-spin model, depending on edge-spin distance
and system size.
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I. INTRODUCTION

It was recently suggested [1–3] that fermionic alkaline-
earth atoms [4] can be used to efficiently simulate condensed-
matter systems with spin and orbital degrees of freedom.
One of those many-body systems is the one-dimensional
Kondo-lattice model [5] with its intricate interplay between
Kondo screening and magnetic order [6]. In particular, the
regime of strong antiferromagnetic local exchange coupling
J is accessible to experiment [1–3]. The purpose of the
present paper is to demonstrate that quantum confinement
effects resulting from strong J in a spin-diluted system can
effectively result in a weak indirect magnetic Ruderman–
Kittel–Kasuya–Yosida (RKKY) [7–9] interaction. This is
achieved by exploiting the characteristics of a novel “inverse”
indirect magnetic exchange (IIME) mechanism that has been
proposed recently [10]. We study the distance dependence of
the effective IIME coupling in a one-dimensional prototypical
two-impurity model by means of strong-coupling perturbation
theory and density-matrix renormalization group (DMRG).
We argue that the spin-diluted Kondo lattice opens a new
field where the complex, cooperative as well as competitive
interplay between the Kondo effect [11] and different kinds
of indirect magnetic exchange mechanisms can be studied in
quantum-confined geometries.

The conventional RKKY exchange between two impurity
spins is mediated by itinerant conduction electrons and leads to
an effective, indirect magnetic coupling JRKKY. This coupling
is obtained from second-order perturbation theory in the
local exchange interaction J between the local spins and
the conduction electrons. It is oscillatory in the distance d

of the spins, JRKKY ∼ (−1)dJ 2/d, for a noninteracting one-
dimensional metallic host system given by a tight-binding
model with nearest-neighbor hopping t at half filling. On the
other hand, if J is much larger than t , a strong-coupling variant
of RKKY exchange [12,13] can be derived perturbatively in
powers of t/J . If J is antiferromagnetic, RKKY exchange
typically competes with the emergence of the Kondo effect [14]
which is responsible for the individual screening of impurity

spins by the conduction electrons. The Kondo temperature TK

is the corresponding energy scale of the crossover to the
screened regime and can be converted by the Fermi velocity vF

into a length scale ξK ∼ vF /TK which may be interpreted as
the extension of a Kondo screening cloud. The weak-coupling
regime is dominated by RKKY exchange, while the Kondo
regime is realized at strong couplings J .

Here, we consider the competition between the Kondo
effect and RKKY exchange in confined systems with open
boundaries. In other words, rather than discussing effects of the
particular form of a trapping potential, infinitely large potential
barriers are assumed for simplicity. The spectral gap � of the
confined, noninteracting host system near the Fermi edge acts
as a cutoff for the characteristic Kondo correlations [15–17] in
case of � > TK . This also considerably affects the competition
between the RKKY exchange and the Kondo effect [18] and
can lead to exotic ground states and even to a reappearance of
a Kondo regime for J → 0.

Unconventional finite-size effects are also found in the
strong-coupling limit. Although the Kondo effect quenches the
impurity spins for J � t , it has been realized that it may also
help to generate magnetism in the case of systems with diluted
impurity spins [10] or, more generally, diluted correlated impu-
rity sites [19]. Namely, almost-local Kondo singlets can result
in an efficient additional confinement of the itinerant electrons.
This implies the formation of local moments in the otherwise
noninteracting conduction-electron system. Moreover, these
local moments are coupled magnetically by virtual excitations
of the magnetically inert Kondo singlets. This constitutes an
“inverse” indirect magnetic exchange (IIME) [10] where the
roles of the conduction electrons and of the impurity spins are
essentially interchanged.

The strong-coupling Kondo physics is necessarily local
or almost local and induces, via the IIME mechanism,
a short-range coupling between local conduction-electron
magnetic moments. As is shown here, the IIME mechanism
also applies to situations where the additional confinement
extends over larger regions. An interesting question is if
this can be employed to generate a situation where effective
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RKKY-like interactions couple magnetic moments over larger
distances: Can one make use of the strong-coupling limit
and of a strong and almost-local Kondo effect to implement
an effective weak-coupling model free of any competing
Kondo screening? How does the effective magnetic coupling
depend on the distance between the moments and on the
bare coupling J ? These questions are actually part of a
more general approach to understand the complex interplay
between magnetic exchange interactions and the Kondo effect
in quantum-confined systems.

II. TWO-IMPURITY MODEL IN
STRONG-COUPLING LIMIT

To study these questions, we consider a one-dimensional
prototype model as depicted in Fig. 1(a). Two impurity spins S1

and S2 (with quantum number S = 1/2) are strongly coupled
locally via an antiferromagnetic exchange J � t to the local
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FIG. 1. (Color online) (a) Two-spin Kondo model: Impurity
spins S1 and S2 at a distance d = L − 3 couple via a strong
antiferromagnetic exchange J to the local spins si1 and si2 at sites
i1 = 2 and i2 = L − 1 of a one-dimensional chain of L sites. t is
the nearest-neighbor hopping in the half filled system of conduction
electrons. (b) Effective model for J � t : The impurity spins form
local Kondo singlets with si1 and si2 . This leads to local-moment
formation at the edge sites i = 1 and i = L. An “inverse” indirect
magnetic exchange with coupling constant α emerges and mediates
a ferromagnetic coupling of the edge spins s1 and sL to the rest
of the conduction-electron sea. (c) Effective RKKY and effective
central-spin model [20]: For even L, i.e., for odd distance d ′ = L − 5
between the edge spins in the effective model, the low-energy model
is a two-spin antiferromagnetic RKKY model with RKKY exchange
α2. For odd L (d ′ even), the low-energy model is a central-spin
model where s1 and sL couple ferromagnetically with strength α to
the (delocalized) spin sF of the singly occupied Fermi orbital kF.
(d) Low-energy spectrum: For even L (odd d ′), the ground state is
a spin singlet; �s is the singlet-triplet excitation energy. For odd
L (even d ′), the ground state is a spin quartet. For noninteracting
conduction electrons this quartet is degenerate with a doublet.

conduction-electron spins si1 = s2 and si2 = sL−1 of a system
of N itinerant and noninteracting conduction electrons. The
conduction-electron system is half filled, i.e., N = L where L

is the number of lattice sites. The two resulting local Kondo
singlets at strong J are located at a distance d = L − 3,
thereby defining an intermediate “central region” of sites
i = 3, . . . ,L − 2. The hopping of the conduction electrons is
tij = −t between nondegenerate orbitals on nearest-neighbor
sites i,j of the lattice. Throughout the paper, all energies are
given in units of the nearest-neighbor hopping, i.e., t = 1 fixes
the energy scale.

The Hamiltonian is

H =
∑
i,j,σ

tij c
†
iσ cjσ + J

2∑
m=1

sim Sm. (1)

Here, ciσ annihilates an electron at site i = 1, . . . ,L with
spin projection σ = ↑,↓, and si = 1

2

∑
σσ ′ c

†
iσσ σσ ′ciσ ′ is the

local conduction-electron spin at i, where σ = ∑
α σαeα is

the vector of Pauli matrices and α = x,y,z.
Let us first concentrate on even lattice sizes L = 4,6, . . . .

Systems with odd L are discussed in Sec. VI. We also focus
on the weak-coupling limit first. For J → 0, the ground state
is a total spin singlet (Stot = 0). Here, the Kondo correlations
are cut by the finite system size [15–18], i.e., � > TK , since
the Kondo temperature is exponentially small, TK ∼ e−1/J .
The chemical potential μ falls into the finite-size gap �

between fully occupied and unoccupied energy levels of the
noninteracting conduction-electron system. Consequently, the
impurity spins S1 and S2 are effectively decoupled from the
host system at low energies. Using perturbation theory in J ,
one then obtains an RKKY Hamiltonian

HRKKY = JRKKYS1S2, (2)

featuring an antiferromagnetic coupling JRKKY =
J 2χ

0,cond
i1i2

(ω = 0) > 0, where χ
0,cond
i1i2

(ω = 0) is the nonlocal
static susceptibility of the noninteracting conduction-electron
system. One finds that JRKKY ∼ J 2(−1)d+1/d for a
one-dimensional system, where d = L − 3 is the distance
between the impurities.

However, in the strong-coupling regime J → ∞, Eq. (2)
cannot be the effective low-energy Hamiltonian anymore,
since the impurity spins are compensated by individual
Kondo effects and JRKKY → 0. Perturbation theory, however,
allows us to study the remaining interimpurity ground-state
correlations for J � t , yielding the envelope function [12]

〈S1S2〉 ∼ 1/d2. (3)

This result can be regarded as a strong-coupling variant of
RKKY theory. Furthermore, it can be interpreted as a signature
of the fact that each impurity is located in the exterior of the
Kondo cloud of the other impurity, as the low-energy physics of
the single-impurity Kondo model is essentially that of a Fermi
liquid with [13,21,22] 〈Smsj 〉 ∼ 1/|im − j |2 for |im − j | �
ξK .

One may explicitly derive the effective low-energy Hamil-
tonian by using strong-coupling degenerate perturbation the-
ory, where hopping to and off a local Kondo singlet is treated as
a weak perturbation. The resulting effective IIME Hamiltonian
excludes the (high-energy) local Kondo singlets at i2 and iL−1
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and operates on the remaining conduction-electron degrees of freedom only [10,19]. Up to fourth order in t/J , for impurity
distances d � 2, and disregarding unimportant constant energy shifts, one obtains

Heff ∼Ht + α

2

∑
i=1,3,L−2,L

(
ni↑ − 1

2

)(
ni↓ − 1

2

)
+ α

∑
(i,j )=(1,3),(L−2,L)

[
titj − sisj − 1

2

∑
σ

(c†iσ cjσ + c
†
jσ ciσ )(1 − ni−σ − nj−σ )

]
,

(4)

where

α = 64

3

t4

J 3
(5)

is the IIME coupling constant and

Ht =
L−2∑
i,j=3

∑
σ

tij c
†
iσ cjσ (6)

is the tight-binding Hamiltonian of the remaining conduction-
electron sea of the central region. Furthermore, ni−σ =
c
†
i−σ ci−σ is the particle number of electrons with spin pro-

jection opposite to σ , and ti denotes the isospin [23] at site i,
defined as ti = 1

2 (c†i↑,(−1)ici↓) · σσσ · (ci↑,(−1)ic†i↓)T . Together
with the SU(2) spin symmetry, the isospin SU(2) symmetry
constitutes the SO(4) symmetry of the effective Hamiltonian
at half filling.

III. FORMATION OF EDGE SPINS

Analyzing Heff [Eq. (4)], one may imagine two different
scenarios for the low-energy physics. On the one hand, we
may expect the formation of nonmagnetic edge isospins or
charge fluctuations at the edge sites. On the other hand, it also
appears plausible that stable magnetic edge spins evolve for
increasing J � t .

The interplay of the antiferromagnetic isospin coupling
and the ferromagnetic spin coupling [third and fourth term
in Eq. (4)] alone would result in the formation of isospins at
the edge sites i = 1 and i = L. This is prevented, however,
by the repulsive local Hubbard-like interaction term (second
term) which favors the formation of magnetic moments at the
edges and suppresses doubly occupied or empty sites, i.e., the
formation of isospins. Nonetheless, the formation of magnetic
edge spins could still be hampered by the charge fluctuations
triggered by the spin-isospin interaction term (fifth term).

We have performed exact-diagonalization calculations for
small lattices L � 10. It is found that the first scenario is
not realized, since 〈s2

1〉 → 3/4 for J → ∞, e.g., 〈s2
1〉 ≈ 0.74

for J = 10 and L = 8. This shows that the isospin exchange
term and the spin-isospin interaction term in Eq. (4) are not
relevant for the low-energy spectrum of our model. Hence,
we may think of it as an effective model with two S = 1/2
edge spins [see Fig. 1(b)] which are ferromagnetically coupled
with a weak effective interaction strength α to the remaining
electrons of the central region. An RKKY-like mechanism may
then be responsible for an indirect coupling of both spins s1

and sL, resulting in an effective antiferromagnetic two-spin
model due to their odd distance d ′ = L − 5. In fact, the exact-
diagonalization calculations for L < 10 predict a total spin-
singlet ground state.

IV. EFFECTIVE RKKY MODEL FOR EVEN L

To gain further analytical understanding of the edge spin
coupling, one would ideally have to perform an eighth-order
strong-coupling perturbation theory. This quite demanding
task can be circumvented by taking the effective Hamiltonian
Heff as starting point for a second renormalization step and
performing standard perturbation theory [24] in powers of α/t

since α � t .
One should note that the onsite interaction in Heff (second

term) makes the central region correlated at the interfaces
between the Kondo singlets and the central region, i.e., i = 3
and i = L − 2. Since the spins, developing at the chain
edges for strong J , are only weakly coupled to the central
region (α � t), finite-size effects play an important role at
sufficiently large J : The finite-size gap �′ ∝ t of the remaining
conduction-electron system near the Fermi energy is the largest
energy scale appearing in Heff [Eq. (4)]. Consequently, we may
safely neglect the additional interactions at the interface sites
for a moment, as they become relevant only on much smaller
energy scales ∼α and will give small corrections only.

With this idea, the unperturbed Hamiltonian is given
by H ′

0 = Ht = ∑L−2
〈i,j〉=3

∑
σ tij c

†
iσ cjσ and the perturbation by

H ′
1 = −α(s1s3 + sL−2sL). Single-particle excitations of the

nonmagnetic central region require at least an energy of �′,
i.e., this is a so-called off-resonance situation (see Ref. [18]).
Hence, there is no contribution linear in α and second-order
perturbation theory predicts an effective RKKY model [17,18]

H ′
eff = J ′s1sL, (7)

illustrated in the left panel of Fig. 1(c).
The RKKY exchange coupling is given by

J ′ = −α2

2

∑
εk〈μ,εp〉μ

1

εp − εk

U3,kU3,pUL−2,pUL−2,k, (8)

where Ui,k is the local weight of the state with momentum k

of the remaining conduction-electron sea at site i and εk is its
energy.

J ′ has the typical Fermi-liquid dependence [25] on α and
d ′ at large distances,

J ′ ∼ (−1)d
′+1α2/d ′ ∼ (−1)d

′+1

d ′
t8

J 6
, (9)

and is antiferromagnetic because the edge-spin distance
d ′ = L − 5 is assumed to be odd in our model (1). The
corresponding energy spectrum of H ′

eff is shown in the left
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panel of Fig. 1(d), containing a singlet ground state and excited
triplet states.

V. DENSITY-MATRIX RENORMALIZATION
GROUP CALCULATIONS

For a numerical check of the distance and J dependence
predicted by the proposed effective Hamiltonian H ′

eff [Eqs. (7)
and (9)], we apply a standard implementation of density-matrix
renormalization group [26,27] (DMRG) based on matrix
product states and exploiting the two U(1) symmetries of
the Hamiltonian (9), i.e., conservation of the total particle
number and the z component of the total spin. We compute the
effective edge-spin coupling J ′, given at strong J by the spin
gap between singlet and triplet states

�s = E0(N,Stot = 1) − E0(N,Stot = 0). (10)

E0(N,Stot) is the ground state in the Hamiltonian block with
total particle number N and total spin Stot, which can be
addressed by selecting either the Sz

tot = 0 or the Sz
tot = 1 block.

�s has been calculated for different J between 2.5 and 15 to
study the crossover to the strong-coupling regime, where H ′

eff
is suggested to be valid and where �s = J ′. The results are
shown in Fig. 2 as functions of the edge-spin distance d ′ (dots
connected by solid lines). Indeed, one finds that the asymptotic
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FIG. 2. (Color online) Spin gap �s as a function of the edge spin
distance d ′ on a double-logarithmic scale for different couplings J

as indicated. Dots show DMRG results for even L and odd edge
spin distance d ′ = L − 5, i.e., antiferromagnetic coupling. Colored
dashed lines show the spin gap as given by second-order perturbation
theory in α/t ; see Eq. (8). The black dashed line shows the expected
d ′ dependence of �s for large d ′ and large J . The inset shows the J

dependence of the spin gap. For different system sizes L, the DMRG
data follow the expected power law �s ∝ 1/J 6 ∝ α2 at strong J . The
nearest-neighbor hopping t = 1 fixes the energy scale.

behavior of the dependence of �s on the edge-spin distance d ′
is given by a power law

�s ∼ (d ′)−η. (11)

For J = 15 and J = 10 and d ′ > 7, η almost converges to
η = 1 (see black dashed line) from below. This is a strong
evidence for the validity of the suggested two-spin IIME model
[Eq. (7)] and indicates that the effective on-site interactions at
i = 3 and i = L − 2 have negligible influence. Decreasing
J for fixed d ′ drives the system out of the IIME limit, and
consequently η also departs from the predicted value of 1,
e.g., η → 1.9 for J = 5 and d ′ > 19.

Additional insights can be obtained by comparing the
numerical results to the spin gaps from perturbation theory
[Eq. (8)], which are shown as colored dashed lines in Fig. 2.
The distance dependence is well recovered by the DMRG
results for stronger couplings J � 10. While this is also the
case at weaker couplings such as J = 7.5 for small d ′, one ob-
serves increasing deviations from the perturbative results with
increasing system size. This can be attributed to Friedel oscil-
lations induced by the open boundaries of the system which
lead to a strongly site-dependent local density of states near
the system boundaries. In particular, the local density of states
near the Fermi energy at the impurity positions i1 = 2 and
i2 = L − 1 strongly decreases with increasing system size L.
Since the Kondo temperature TK is a very sensitive function
of the local density of states, TK likewise decreases. This
tends to increase the Kondo screening cloud and makes the
starting point of our analysis based on local Kondo clouds
progressively worse.

Our picture is also supported by the J dependence of �s ,
displayed in the inset of Fig. 2. In line with the expectations
from the effective two-spin model [Eq. (7)], we find that the
spin gap is described by �s ∼ α2 ∼ J−6 for large J with
increasing deviations from this relation for smaller J < 10.

At weak-coupling strengths J → 0 the model [Eq. (1)] is
in the RKKY regime, which also gives rise to an effective
two-spin model, yet composed of the two impurity spins
Sm. Their antiferromagnetic indirect coupling JRKKY ∼ J 2/d

leads to a singlet ground state and determines �s . On the other
hand, the IIME limit [Fig. 1(b) and the left panel of Fig. 1(c)],
characterized by the effective two-edge-spin model (7) with
�s = J ′ ∼ α2/d ′, is realized for strong couplings J � 10 as
discussed above. Only then are Kondo clouds sufficiently local
to induce stable local moments at the chain ends. The crossover
region between these regimes, however, lacks a formulation
as an effective two-spin model. It can be described rather as a
Fermi liquid with vanishing spin gap, with two separate Kondo
screening clouds, and a paramagnetic region in between.

VI. FERROMAGNETIC DISTANCES

We complete our study by investigating the emerging
low-energy model for odd lattice sizes L, i.e., even d ′ [see right
panel of Fig. 1(c)]. Clearly, the low-energy spectrum of the
noninteracting central region, which builds up at strong J , now
contains a singly occupied Fermi level due to the odd number
of sites. Performing the same type of perturbation theory
as above for weak coupling α � t , shows that the effective
ferromagnetic RKKY interaction between the two edge spins
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is exceeded by a linear-in-α coupling between single edge
spins and the spin of the delocalized Fermi electron [18] of the
form

H ′
eff = −J ′(s1 + sL)sF . (12)

The coupling is ferromagnetic and given by

J ′ = α
∣∣U3,kF

∣∣2 = α
∣∣UL−2,kF

∣∣2 = 2α/(d ′ + 2). (13)

Thus, rather than to an RKKY model, the system renormalizes
to a central-spin model [20], as sketched in the right panel
of Fig. 1(c), with the delocalized spin of the Fermi electron
sF as the central spin. The ground state of the ferromagnetic
central-spin model is a total spin quartet (Stot = 3/2).

The J dependence as well as the distance dependence of
the effective coupling constant J ′ can be checked using the
DMRG by computing the gap

�s = E0(N,Stot = 1/2) − E0(N,Stot = 3/2); (14)

see right panel of Fig. 1(d). Note that the spin gap of the
central-spin model is related to J ′ as �s = J ′/2. To get �s

as a difference of two ground-state energies in sectors with
different Stot but possibly equal Sz

tot, the DMRG algorithm
must be extended slightly. Making use of the matrix-operator
representation of the Hamiltonian, we have implemented an
additional interaction term

H �→ H + λ
[
S2

tot − S
target
tot

(
S

target
tot + 1

)]2
. (15)

For λ > 0, this allows us to target blocks with a given total-spin
quantum number S

target
tot .

Our calculations show that there is an incidental degeneracy
of the spin-quartet ground state of the central-spin model with
a spin-doublet state which is different from the excited Stot =
1/2 state of the central-spin model. This doublet, however,
can be shifted to higher energies by adding a weak repulsive
Hubbard term U (n↑ − 1

2 )(n↓ − 1
2 ) to the conduction-electron

system. Namely, the Lieb–Mattis theorem [28,29] dictates that
the total ground-state spin of the correlated (U > 0) model
must have Stot = 3/2. We have used weak Hubbard interaction
strengths of U = 0.05 up to 0.25 and have checked that this
does not significantly affect the results obtained for �s .

The results in Fig. 3 indicate that the linear α dependence of
�s , suggested by perturbation theory [Eq. (13)], is indeed real-
ized at strong couplings J � 10 (see also inset of Fig. 3). This
behavior along with the considerably larger gaps distinguishes
the ferromagnetic case clearly from the antiferromagnetic case
discussed in the preceding sections.

There is also a remarkable agreement between the nu-
merical and the perturbative data with regard to the distance
dependence of �s (Fig. 3). Unlike the antiferromagnetic case,
even at relatively small couplings such as J = 5 and for
all considered system sizes L, �s scales as 1/(d ′ + 2); see
Eq. (13). Larger energy gaps make the effective central-spin
model in the ferromagnetic case more robust as compared to
the effective low-energy model in the antiferromagnetic case.

For extremely large system sizes L (not accessible here)
and for still strong enough J , we expect that the finite-size
physics, emerging here as an effective central-spin model, is
replaced by a conventional RKKY interaction obtained within
the thermodynamic limit [18]. The reason is that the linear-

2 4 8 16

edge spin distance  d +2

10
-3

10
-2

10
-1

10
0

sp
in

 g
ap

  
s

0 5 10
-3

1 10
-2

1/J
3

0

1 10
-2

2 10
-2

J=5.0
J=7.5

J=15

17

13
L=11

15

s

J=2.5

J=10

odd  L

FIG. 3. (Color online) Spin gap �s as a function of the edge spin
distance d ′ on a double-logarithmic scale for different couplings J as
indicated. Dots show DMRG results for odd L and even edge-spin
distance d ′ = L − 5, i.e., ferromagnetic coupling. Colored dashed
lines show the spin gap as given by first-order perturbation theory
in α/t ; see Eq. (13). The black dashed line shows the expected d ′

dependence of �s for large d ′ and large J . The inset shows the
J dependence of the spin gap. The DMRG data are approximately
described by the expected power law �s ∝ 1/J 3 ∝ α at strong J .
The nearest-neighbor hopping t = 1 fixes the energy scale.

in-α contribution to the effective low-energy Hamiltonian will
be less and less important with increasing L as compared to
higher-order terms, which indicates the breakdown of finite-
size perturbation theory.

VII. CONCLUSIONS

Quantum-confined multi-impurity Kondo systems exhibit a
complex interplay of different magnetic exchange mechanisms
competing or cooperating with the Kondo effect. Our present
study has addressed a prototypical model where the emergence
of local bound states in the strong-Kondo-coupling regime
(J � t), i.e., the formation of local Kondo singlets, strongly
confines the conduction-electron mobility. We demonstrated
that this leads to the formation of local spin moments
in the conduction-electron system. For the one-dimensional
system studied here, moments are created at the edges of the
chain. Virtual excitations of the local Kondo singlets mediate
an indirect coupling α ∝ 1/J 3 of these edge spins to the
local magnetic moments at the edges of the remaining one-
dimensional conduction-electron system. This inverse indirect
magnetic exchange (IIME) is the strong-coupling analog of
the well-known indirect RKKY exchange which operates at
weak J � t . An interesting observation made here is that the
central part of the conduction-electron system can mediate
an effective mutual coupling of the edge spins which can be
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understood by weak-coupling RKKY-like perturbation theory
as for J → ∞ the effective IIME coupling α → 0 is weak.

As evidenced by numerical DMRG results and by analytical
insights from strong-coupling (in J ) and weak-coupling (in
α) perturbation theory, we have seen that odd-even effects
are crucial to understand the total ground-state spin, the
elementary excitation gap, and the distance dependence as
well as the J dependence of the effective magnetic coupling
between the edge spins. Namely, depending on the number
of lattice sites L, two very different effective low-energy
models are obtained: For odd distances d ′ = L − 5 between
the edge spins, an effective antiferromagnetic two-spin model
emerges which is composed of the two edge spins and
coupled by an effective RKKY interaction ∝α2. In this case,
where RKKY emerges from IIME, the spin gap is given by
�s ∼ α2/d ′. For even distances, on the other hand, we find
an effective central-spin model where the two edge spins
couple ferromagnetically to the delocalized spin of the electron
in the highest occupied spin-degenerate one-particle state of
the conduction-electron system. This induces ferromagnetic
correlations between the two edge spins, and the ground
state is essentially given by a spin quartet, but there is no
indirect ferromagnetic coupling, i.e., this case is fundamentally
different from a ferromagnetic RKKY model. This is also

reflected in a spin gap �s = α/[2(d ′ + 2)] which is linear
rather than quadratic in α.

Quantum-confined Kondo systems with a wide range of
accessible model parameters can be simulated by ultracold
Fermi atoms trapped in optical lattices. We believe that the
systematic study of magnetic exchange interactions and Kondo
correlations in those systems is only in its infancy. The largely
different physics of effective low-energy models that are
obtained by slightly different geometries or slightly different
impurity-spin configurations offers an exciting perspective for
tailoring physical properties in experiment. Further theoretical
work may, e.g., address the low-energy physics of stacked
Kondo singlets where the number of intermediate Kondo
singlets between two edge spins is varied. Quite generally,
not much is known of the crossover from a single or few
Kondo impurities to the dense Kondo lattice in one- and
higher-dimensional quantum-confined systems.
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