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We analyze the equilibration process between two either fermionic or bosonic reservoirs containing ultracold
atoms with a fixed total number of particles that are weakly connected via a few-level quantum system. We allow
for both the temperatures and particle densities of the reservoirs to evolve in time. Subsequently, linearizing the
resulting equations enables us to characterize the equilibration process and its time scales in terms of equilibrium
reservoir properties and linear-response transport coefficients. Additionally, we investigate the use of such a
device as particle transistor or particle capacitor and analyze its efficiency.
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I. INTRODUCTION

Transport phenomena are of utmost importance in a whole
variety of scientific research fields such as biology, chemistry,
and physics. Here, systems which are initialized in nonequilib-
rium strive to equilibrate with their surrounding by exchanging
energy and particles until a stationary state is reached. This
equilibration is quite well understood for classical systems,
where it usually results in a thermal steady state. However,
despite its importance, relaxation and thermalization in closed
quantum systems are still not fully understood [1–5].

In recent years it has become possible to isolate and control
quantum systems to a very high degree. Namely, there has
been a lot of progress in the production and manipulation
of ultracold quantum gases in ultrahigh vacuum chambers,
using optomagnetical traps [6,7] and lasers [8–10]. Here, the
system of interest is isolated from its environment to such
a high degree that thermodynamic variables are not tunable
externally, but are solely determined implicitly by the system
itself. Therefore, in such systems it is necessary to calculate the
thermodynamic variables self-consistently in order to correctly
describe their equilibration properties.

Thereby, the quantum mechanical peculiarities become
relevant and potentially observable and measurable in an
experiment. This has been impressively confirmed by the
creation of the famous Bose-Einstein condensate [11,12].
After successfully studying setups with ultracold atoms in
equilibrium configurations for quite a while, nowadays, the
focus shifts to investigating their nonequilibrium properties
[13–22]. However, measuring the properties of such systems
is quite complicated and usually results in the destruction of
the system. A possible evasion of this problem could be the ob-
servation of transport processes, as has been also theoretically
researched for setups involving atomic reservoirs coupled to,
e.g., each other [23], a lattice system [24], a potential trap [25],
or even quantum dot systems [26–28]. Following this idea,
recent experiments [29–31], which investigate the transport
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properties between two ultracold atomic clouds, are especially
noteworthy.

Motivated by these experiments, we analyze within this
paper a transport setup consisting of a mesoscopic few-
level quantum system in contact with two ultracold particle
reservoirs, whose thermodynamic variables are calculated
self-consistently. We explicitly include a few-level system
in our model since it enhances the quantum character of the
transport setup, as is well known from electronic and photonic
mesoscopic transport, where one observes effects such as the
Kondo effect [32–35], Coulomb blockade [36–39], coherent
population trapping [40,41], and dark states [42–44], to name
but a few. Furthermore, this approach, in principle, allows
for an external control of the equilibration process via the
few-level quantum system.

In Sec. II, we start by presenting the general theoretical
framework which we use throughout this paper. Here, we first
review the properties of ideal quantum gases in Sec. II A, and in
Sec. II B, we derive the master-equation formalism which we
use to describe the transport through an open quantum system.
In Sec. II C, we deduce the resulting system of equations of
motion and additionally establish a linear-response theory in
Sec. II D. Subsequently, we apply this formalism to different
setups and present the respective results in Sec. III. In
particular, we investigate fermionic systems with one and two
transition energies in Secs. III A and III B, respectively. In
comparison, we additionally analyze a bosonic system with
two transition energies in Sec. III C. Finally, we summarize
our results in Sec. IV.

Note that throughout this paper we use the natural units
with � = kB = 1.

II. THEORETICAL FRAMEWORK

In real experiments with cold atoms the chemical potential
can not be tuned directly by applying an external voltage as
usually considered for electronic transport. Instead, one can
introduce a thermal or density gradient which causes a bias in
the chemical potentials of the reservoirs.

In order to describe this bias correctly, we need to determine
the chemical potential self-consistently from the reservoir
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temperature and particle number. Therefore, we review the
properties of ideal quantum gases within the next section.

A. Ideal quantum gases

We model the ultracold atomic baths as ideal, noninter-
acting quantum gases of spinless massive particles trapped in
a three-dimensional (3D) inhomogeneous harmonic potential
[45] with the effective trapping volume

ω̄3 ≡ ωxωyωz, (1)

resulting from the trapping frequencies along the x, y, and z

directions.
The reservoirs are described by the total Hamiltonian ĤB =∑
ν Ĥ

(ν)
B , where the Hamiltonian for each connected bath ν ∈

{L,R} is given by

Ĥ(ν)
B =

∑
n

εn b̂†ν,n b̂ν,n, (2)

with either bosonic or fermionic operators b̂
†
ν,n and b̂ν,n,

which create and annihilate a particle in the quantum state
n = (nx,ny,nz)T with energy εn = (n + 1/2)ω in reservoir ν

with trapping frequencies ω = (ωx,ωy,ωz)T. These baths are
weakly coupled to the system via the interaction Hamiltonian

ĤSB =
∑
ν,n

(tν,n b̂†ν,n â + H.c.), (3)

where the operators â and â† annihilate and create particles in
the few-level quantum system. Here, the tunneling amplitude
of an atom hopping from the reservoir ν into the system or
vice versa is proportional to t∗ν,n and tν,n, respectively.

In what follows, we parametrize the tunneling amplitudes
by energy-dependent tunneling rates formally defined by

�ν(ω) =
∑

n

2π |tν,n|2δ(ω − εn). (4)

Assuming that the reservoirs equilibrate sufficiently fast, at
each point in time, they can approximately be characterized
by their equilibrium distributions n̄(ξ )

ν (εn) = 1/[eβν (εn−μν ) −
ξ ], where ξ = +1 corresponds to a Bose gas and ξ = −1
corresponds to a Fermi gas. Here, we introduce the inverse
temperature βν = 1/Tν and the chemical potential μν of each
reservoir.

Furthermore, we can derive the macroscopic equilibrium
variables Tν , μν , and Nν of the reservoirs in the grand canonical
ensemble, using the condition that the average number of
particles Nν = ∑

n n̄(ξ )
ν (εn) is constant. With this, we obtain

the well-known expressions for the average number of particles
Nν confined in a harmonic trapping potential [46,47]

Nν = ξ

(
Tν

ω̄

)3

Li3(ξzν) + N (0)
ν (ξ ), (5)

where the correction to the number of particles in the ground
state is given by

N (0)
ν (ξ ) =

{ zν

1−zν
: ξ = +1,

0 : ξ = −1,
(6)

FIG. 1. (Color online) General two-terminal transport scheme
with left and right reservoirs weakly coupled to a few-level quantum
system. The reservoirs ν ∈ {L,R} are in thermal equilibrium and
characterized by a chemical potential μν(Tν,Nν) that depends on
the respective temperature Tν and particle number Nν . The system
dynamics is governed by the Hamiltonian HS and the weak system-
bath coupling is facilitated by energy-dependent tunneling rates �ν(ω)
defined in Eq. (4).

and the average internal energy reads as

Uν = 3 ξ ω̄

(
Tν

ω̄

)4

Li4(ξzν). (7)

Here, we introduced the fugacity zν = exp(βνμν) and the
polylogarithm Lis(x) = ∑∞

k=1 xk/ks [48].
Note that the additional ground-state contribution N (0)

ν (ξ )
is only present for bosonic gases. Since Eq. (5) implicitly
defines the chemical potential μν = μν(Tν,Nν) as a function
of temperature and mean particle number, the ground-state
contribution from Eq. (6) can be associated to the phenomenon
of Bose-Einstein condensation, where the chemical potential
vanishes and the occupation of the ground state becomes
macroscopic [49]. This critical behavior is characterized
by a corresponding critical temperature TC = ω̄[N/ζ (3)]1/3,
with the Riemann zeta function ζ (s). In the fermionic case,
the Fermi temperature TF = ω̄[ 4

3N/ζ (3)]1/3 characterizes the
ideal Fermi gas.

Also, notice that the harmonic trapping potential is solely
chosen due to its experimental relevance. The general method
proposed within this paper is equivalently applicable to
other confinement potentials such as, e.g., a 3D cubic box.
Then, Eqs. (5) and (7) need to be changed accordingly (see
Appendix A).

B. Transport master equation

We investigate a general transport setup as sketched in
Fig. 1, with two reservoirs, denoted by the labels L and R,
which are independently in thermal equilibrium and coupled to
the transport system. We assume that the system-bath coupling
is sufficiently weak, i.e., �ν(ω) � kBTν , such that we can make
use of the Born-Markov secular approximation (BMS) [50].

Starting from the von Neumann equation �̇ = −i[Ĥ,�] of
the full system Ĥ = ĤS + ĤB + ĤSB with the full density
matrix �, this formalism allows one to extract a quantum
master equation, which assumes the form of a rate equation for
the reduced system density matrix ρ = TrB{�} in the system
energy eigenbasis for nondegenerate energy eigenvalues [51].
Here, TrB{} represents a trace over all bath degrees of freedom.

Consequently we obtain a rate equation for the populations
of the reduced system density matrix which reads as

ρ̇i(t) =
∑

ν

∑
j

L(ν)
ij (t)ρj (t), (8)
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where ρi represents the population of the ith system energy
eigenstate and the summation runs over all energy eigenstates
j of the system Hamiltonian ĤS and all attached reservoirs ν.
The rate matrix elements satisfy the condition

∑
i L

(ν)
ij (t) = 0.

Identifying the jump terms in the master equation (8), we can
deduce the energy and matter currents which for sequential
tunneling are given by

Ṅν(t) =
∑
j>i

[L(ν)
ij ρj − L(ν)

ji ρi], (9)

Ėν(t) =
∑
j>i

(ωj − ωi)
[
L(ν)

ij ρj − L(ν)
ji ρi

]
, (10)

where ωi is the eigenenergy of the few-level quantum system
corresponding to the population ρi . Here, we defined the
currents in such a way that they are negative if the particles
flow from the reservoir ν into the few-level quantum system.

These currents are parametrized by the energy-dependent
tunneling rates �ν(ω) defined in Eq. (4) and, in general, depend
on the equilibrium quantum statistics n̄(ξ )

ν (ω) of the attached
reservoirs. Moreover, it is convenient to further combine the
energy and particle currents and introduce the heat current
flowing from reservoir ν into the system as [52,53]

Q̇ν(t) ≡ Ėν(t) − μν(t)Ṅν(t). (11)

For long times, the quantum system usually assumes a
unique nonequilibrium steady state ρ̄ that is defined by the
equation 0 = ∑

ν,j L
(ν)
ij (t)ρ̄j (t) and the normalization condi-

tion
∑

j ρ̄j = 1. This behavior gives rise to corresponding

steady-state currents, which we denote by J
(ν)
N ≡ lim

t→∞Ṅν(t)

and J
(ν)
E ≡ lim

t→∞Ėν(t). Due to particle and energy conservation,

these steady-state currents obey the relations JE ≡ J
(L)
E =

−J
(R)
E and JN ≡ J

(L)
N = −J

(R)
N .

C. Equations of motion

In order to keep track of the time evolution of the reservoirs,
we need to identify the change of their thermodynamic
variables Tν , Nν , and μν with time. Neglecting the ground-state
contribution in Eq. (5), we can derive the temperature and
chemical potential changes in the reservoirs from the total
differentials of Eqs. (5) and (7), resulting in

Ṫν = 1

Cν

(
U̇ν − 3

Nνκν

Ṅν

)
, (12)

μ̇ν = −αν Ṫν + 1

κνN2
ν

Ṅν. (13)

Here, we introduce the isochoric heat capacities of the
reservoirs defined as

Cν = ∂Uν

∂Tν

= Nν

[
12

Li4(ξzν)

Li3(ξzν)
− 9

Li3(ξzν)

Li2(ξzν)

]
, (14)

the isothermal compressibility

κν = 1

N2
ν

∂Nν

∂μν

∣∣∣∣
Tν

= 1

TνNν

Li2(ξzν)

Li3(ξzν)
, (15)

and the dilatation coefficients

αν = − ∂μν

∂Tν

∣∣∣∣
nν

= −μν

Tν

+ 3
Li3(ξzν)

Li2(ξzν)
. (16)

Identifying the change of the internal energy of each
reservoir U̇ν with the energy flow between the respective
reservoir and the system, i.e., U̇ν = Ėν , allows us to relate the
evolution of the reservoir properties Tν and μν to the particle
and energy currents obtained from the BMS master equation.
Hence, we find the relations(

Ṫν

μ̇ν

)
= 1

Cν

(
1 − 3

κνNν

−αν
3αν

κνNν
+ Cν

κνN2
ν

)(
Ėν

Ṅν

)
. (17)

Since the variables Tν , Nν , and μν are implicitly related via
Eq. (5), it suffices to analyze the time evolution of two of them.
However, because they are more easily accessible parameters
in the experiment, it is preferable to consider the evolution of
the reservoir temperatures from Eq. (12) and the evolution of
the particle numbers from Eq. (9) instead. In the following, we
stick to this system.

Due to the nonlinearity of the polylogarithm, we can not
solve this system of coupled ordinary differential equations
(ODE) analytically. Therefore, we resort to a linear-response
theory which we derive in the following section.

D. Linearized equations of motion

For setups where the dimension of the system is very small
compared to the dimensions of the reservoirs, the system
usually runs into a quasi-steady state ρ̄ on a much shorter time
scale tQS than the time scale of the equilibration between the
reservoirs. This quasi-steady-state time scale is characterized
by the rate �ν(ω), i.e., tQS = 1/�ν(ω). Therefore, we can
make a separation of time scales assuming the system is
almost stationary during the equilibration of the reservoirs. In
consequence, we are able to substitute the energy and particle
currents Ėν(t) and Ṅν(t) by their steady-state values J

(ν)
E and

J
(ν)
N . This fact allows us to effectively reduce the dimension of

the system of coupled ODEs by considering the evolution of
the temperature and particle-number differences. That leads to

∂

∂t

(
�T

�N

)
=

∑
ν

1

Cν

(
1 − 3

κνNν

0 Cν

)(
JE

JN

)
, (18)

where we introduced the differences �T = TL − TR and
�N = NL − NR . Alternatively, we can reformulate Eq. (18) in
terms of the linear-response steady-state heat flux JQ ≡ J

(L)
Q =

−J
(R)
Q = JE − (μ + T α)JN [54] corresponding to Eq. (11),

which results in the equations

∂

∂t

(
�T

�N

)
=

∑
ν

(
1
Cν

μ+T α

Cν
− 3

CνκνNν

0 1

)(
JQ

JN

)
. (19)

Due to a linearization, here the equilibrium values of the
chemical potential μ = [μL(0) + μR(0)]/2, the temperature
T = [TL(0) + TR(0)]/2, and the dilatation coefficient α appear
explicitly.

Now, assuming that the temperature and particle-number
bias between the reservoirs are symmetric about these equi-
librium values, we can rewrite the reservoir temperatures and
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particle numbers as

TL = T + �T

2
, TR = T − �T

2
,

NL = N + �N

2
, NR = N − �N

2
. (20)

This enables us to linearize the system in Eq. (19) with
respect to the small differences �T and �N , resulting in(

�̇T

�̇N

)
≈ 2

(
1
C

μ+T α

C
− 3

CκN

0 1

)
JQ

(
�T

�N

)
, (21)

where we defined the Jacobian matrix JQ by

JQ =
(

∂JQ

∂�T

∂JQ

∂�N

∂JN

∂�T

∂JN

∂�N

)∣∣∣∣∣
T ,N

. (22)

Note that now all reservoir properties such as heat capacity
and compressibility are evaluated at the equilibrium values T ,
N , and μ = μ(T ,N ).

The advantage of introducing the heat current JQ in favor
of the energy current JE in the above equations is that the
Jacobian JQ can now be related to linear-response transport
coefficients in correspondence with our previous work [28].

Introducing the definition of the positive particle conduc-
tivity as

σ ≡ − JN

�μ

� −κN2 JN

�N

for �T = 0, (23)

the definition of the positive heat conductivity as

q ≡ − JQ

�T

for JN = 0, (24)

and the definition of the Seebeck coefficient at vanishing
particle current as

� ≡ −�μ

�T

� − 1

κN2

�N

�T

for JN = 0, (25)

we find that the Jacobian from Eq. (22) can be reformulated in
terms of linear-response transport coefficients which yields

JQ =
(

−q − T σ�2 T σ�
κN2

σ� − σ
κN2

)
. (26)

Here, we additionally used the Onsager reciprocal relation
T ∂JN/∂�T = N2κ ∂JQ/∂�N [55,56].

Since all matrix elements are evaluated in the equilibrium,
and hence are time independent, we can solve the system in
Eq. (21) exactly resulting in

�T (t) =
[(

σ

N2κ
+ � − δ

2

)
�T (0) − σμeff

N2κC
�N (0)

]
et(�−δ)

�

[
1 −

(
σ

N2κ
− �+δ

2

)
�T (0) − σμeff

N2κC
�N (0)(

σ
N2κ

+ �−δ
2

)
�T (0) − σμeff

N2κC
�N (0)

e−2�t

]
, (27)

�N (t) =
[
σ��T (0) −

(
σ

N2κ
− � + δ

2

)
�N (0)

]
et(�−δ)

�

[
1 − σ��T (0) − (

σ
N2κ

+ �−δ
2

)
�N (0)

σ��T (0) − (
σ

N2κ
− �+δ

2

)
�N (0)

e−2�t

]
, (28)

with the effective chemical potential

μeff = μ + T α − 3

Nκ
, (29)

that reflects the modifications arising from the presence of
a temperature and particle-number bias. Furthermore, we
introduced the positive coefficient

δ = σ

N2κ
+ q + T σ�2

C
− σ�

C
μeff, (30)

and the positive real frequency

� =
√

δ2 − 4

C
det[JQ] =

√
δ2 − 4

C

σq

N2κ
. (31)

The properties of the few-level quantum system enter in these
expressions via the linear-response transport coefficients σ , �,
and q.

In general, the determinant of the JacobianJQ is nonvanish-
ing and positive, i.e., det[JQ] � 0, which leads to the fact that
one always finds � � δ. Here, the equality only occurs in the
limit where the energy and particle current are tightly coupled,
i.e., Ėν = ωṄν . This proportionality results in a vanishing heat

conductivity, i.e., q = 0, and hence in a vanishing determinant
det[JQ] = 0.

Taking a look at the linear evolutions in Eq. (28), we note
that they consist of the product of two exponential processes.
First, we have a saturation process that is characterized by the
time scale

t< = 1

2�
. (32)

This process dominates for short times. Using the initial
condition �N (0) = 0 and �T (0) 	= 0, we find that this process
leads to an initial increase of the particle-number bias up to a
maximum value. This maximum is reached at time tmax, which
explicitly reads as tmax = 1/(2�) ln[(δ + �)/(δ − �)]. For
longer times, the evolutions are dominated by an exponential
decay process, which is characterized by the time scale

t> = 1

δ − �
. (33)

Note that the latter time scale is not defined in the tight-
coupling limit. In fact, in this limit there is no exponential
decay and, hence, the thermodynamic reservoir variables
remain maximally biased, as exemplarily shown in Fig. 2.
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FIG. 2. (Color online) Plot of the time evolution of the differ-
ences �n = (NL − NR)/N , �T = TL − TR , and �μ = μL − μR of
the thermodynamic variables of the left and right reservoirs, for a
quantum system with a single transition energy ω = 0.9ω̄. The solid
lines correspond to the numeric simulation, and the dashed lines to the
linear-response solution from Eqs. (27) and (28). The initial particle
numbers are set to NL(0) = NR(0) = 0.5N and the temperatures
to TL(0) = 0.45ω̄ and TR(0) = 0.25ω̄. In panel (d), we show the
evolution of the Fermi functions of the right (dotted-dashed line) and
left (solid line) reservoirs.

E. Efficiency of a heat engine

Finally, we note that in a thermodynamic device as shown
in Fig. 1, the initial nonequilibrium configuration can be used
to perform work. In order to analyze the efficiency with which
power can be extracted from the device, we use the Shannon
entropy of the system given by S = −Tr{ρ ln ρ}. Performing
a differentiation with respect to time, one obtains the change
of the Shannon entropy as

Ṡ = −
∑

i

ρ̇i ln ρi, (34)

where the sum runs over all energy eigenstates of the system
Hamiltonian ĤS.

Using the master equation from Eq. (8), we can cal-
culate this entropy production. We observe that it can be
decomposed into the sum Ṡ = Ṡi + Ṡe of the internal entropy
production Ṡi � 0 and the entropy flow from the reservoirs
Ṡe = ∑

ν βνQ̇ν . In the quasi-steady-state regime, the change
of the Shannon is approximately zero, such that the entropy
production can be written as [57]

Ṡi � −
∑

ν

βνQ̇ν � 0. (35)

From this entropy production, we can derive a bounded
efficiency measure [58]. We are especially interested in the
conversion of the heat current

Q̇in ≡ Ėhot − μhotṄhot, (36)

flowing from the hot reservoir with temperature Thot to the
cold reservoir with temperature Tcold into power P that
can be extracted from the device. Therefore, we define the

instantaneous efficiency as

η(t) = P (t)

Q̇in(t)
� ηC(t), (37)

where we introduced the instantaneous Carnot efficiency
as ηC(t) = 1 − Tcold(t)/Thot(t) [59]. However, this should
not be confused with cyclic efficiencies since here we are
just considering the efficiency of a single overall relaxation
process.

Noticing that the device performs chemical work by shifting
particles against a chemical bias, we find that the power output
of the device in the form of chemical work is defined by

P (t) ≡ −Ẇ (t) = −
∑

ν

μν(t)Ṅν(t). (38)

The chemical work is defined such that it is negative, if the
system performs work, and positive, if work is performed
on the system. Hence, we are solely interested in the work
mode where one obtains a positive power output P (t) � 0.
Additionally to the instantaneous efficiency in Eq. (37), we can
also integrate this quantity to yield the cumulative efficiency

ηcum(t) ≡
∫ t

0 P (t ′)dt ′∫ t

0 Q̇in(t ′)dt ′
= −W (t)

Qin(t)
, (39)

which is given by the ratio of the total work −W performed
on the reservoirs and the consumed heat Qin.

In a recent experimental setup, the cumulative efficiency
from Eq. (39) has also been measured for two ultracold atomic
reservoirs connected via a narrow 2D channel [31].

III. RESULTS

From our numerical simulations of the full set of coupled
ODE’s from Eqs. (8)–(10), we find that, depending on the
number of allowed transition energies in the quantum system,
one can distinguish two qualitatively different cases for the
evolution of the full system. Namely, the single-transition-
energy, i.e., tight coupling, and the multi-transition-energy
case. Since each transition energy of the system opens up
a corresponding channel which allows for particle transport,
we also refer to these cases as the single-transport-channel and
multiple-transport-channel situations. We elaborate these dif-
ferent cases in more detail within the subsequent paragraphs.

A. Single fermionic transport channel

The Hamiltonian for a fermionic system with a single
transition energy ω reads as

HS = ωâ†â. (40)

This system has only two different states, the vacuum state with
the population ρ0 and energy 0, and the single-particle state
corresponding to the population ρ1 with energy ω, that equals
the transition energy from 0 to 1 particle in the system. For
such a system, we find that the respective particle and energy
currents defined in Eqs. (9) and (10) become (see Appendix B)

Ṅν(t) = �ν(ω)[ρ1 − n̄(−)
ν (ω)], Ėν(t) = ωṄν(t). (41)

Thus, in the case of a single transition energy in the quantum
system, we obtain the tight-coupling limit. In this limit, the
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FIG. 3. (Color online) (a) Time evolution of the particle-number
difference �n = (NL − NR)/N for different values of the quantum
system transition energy ω for the same initial parameters as in
Fig. 2. (b) Plot of the difference n̄

(−)
L (ω) − n̄

(−)
R (ω) of the initial

Fermi functions versus the transition energy of the system. The dots
correspond to the energies ω in panel (a). (c) Plot of the ratio between
the steady-state particle-number bias and the initial temperature bias
�T (0) = 0.2ω̄ in dependence of the average temperature T of the
system, for a fixed transition energy ω = 0.9ω̄. The y axis is measured
in units 1/ω̄. For high temperatures, the particle bias vanishes like
1/T for both fermions (solid line) and bosons (dashed line).

transport of heat through the quantum system at vanishing
particle current is not possible and, therefore, a full equilibra-
tion of the reservoirs can not be achieved.

This behavior is confirmed by our numerical simulation
shown in Fig. 2. Here, we assume that initially the quantum
system is empty and the two reservoirs are in a nonequilibrium
configuration with the same particle densities but different
temperatures. Subsequently, we let the full system evolve
in time until it reaches its steady state. This steady state
is achieved when the net currents through the quantum
system vanish, i.e., when the Fermi functions of the reservoirs
evaluated at the system transition energy ω are the same. We
find that the transport process through this quantum system
reaches a steady state, however, this state is not a thermal
equilibrium state since the thermodynamic variables Tν , Nν ,
μν of the left and right reservoirs differ.

In particular, we find that for an initial temperature bias
and equal particle numbers, a finite particle-number difference
builds up, as the system evolves. This effect is accompanied
by a decrease of the initial thermal bias and chemical potential
bias. The amount of these differences in the thermodynamic
reservoir properties, and therefore also the sign of the resulting
bias, can be tuned by changing the system transition energy.
We demonstrate this effect in Fig. 3(b), where we plot the
difference of the Fermi functions n̄(−)

ν (ω) of the left and right
reservoirs for several values of the system transition energy ω.

Here, we observe either an increase or a decrease of the
particle number in the reservoir, depending on the system
transition energy in relation to the threshold energy ω0. This
threshold energy is defined be the equality of the Fermi

functions of the left and right reservoirs at constant chemical
potentials and constant temperatures, i.e., n̄(−)

L (ω0) = n̄
(−)
R (ω0),

which corresponds to

ω0 ≡ TLμR − TRμL

TL − TR

. (42)

If the system transition energy lies above the threshold, i.e.,
ω > ω0, the particle current flows from right to left, i.e., with
the chemical potential bias. Otherwise, one observes a flow
against the chemical potential bias. Note that also the velocity
of the change in particle number is altered.

In order to quantify this effect, we analyze the single-
transport-channel setup using the linear approach introduced
in Sec. II D. From Eq. (28) we see that the steady-state
particle-number bias �N (∞) ≡ limt→∞ �N (t) is given by

�N (∞) = σ�

�
�T (0) = C(μ + αT − ω)�T (0)

CT
N2κ

− (μ + αT − ω)
(
ω − 3

Nκ

) ,

(43)

where we used the tight-coupling limit result

� = δ = σ

N2κ
+ T σ�2

C
− σ�

C
μeff . (44)

The respective linear-response transport coefficients have been
calculated from the steady-state particle and energy currents
through the system (see Appendix C).

From Eq. (43) we see that the steady-state particle-number
bias �N (∞) approaches a finite maximum value as the system
transition energy approaches zero. Contrary, if the transition
energy is increased, the steady-state particle number vanishes
eventually, i.e., limω→∞ �N (∞) = 0, in correspondence with
Figs. 3(a) and 3(b). In between, there is a finite transition
energy ω = μ + αT , where the steady-state particle number
also vanishes. Here, the energy of the transport channel is
exactly equal to the chemical potential μ in the reservoirs plus
the contribution to the chemical potential αT arising from the
presence of a small temperature bias. Note that this energy
value is the linear-response equivalent to the threshold energy
form Eq. (42).

Moreover, we note that this nonequilibrium steady state
results from the discrete energy structure of the few-level
quantum system and thus is a pure quantum mechanical
effect. Consequently, we observe in Fig. 3(c) that for high
temperatures the finite steady-state particle-number bias van-
ishes leading to the classically expected result of equilibrated
reservoirs.

With these results, we can also analyze the characteristic
time scale t< which is shown in Fig. 4 (solid line). Here,
we find that this time scale increases exponentially with the
system transition energy ω. This effect is caused by the particle
conductance which exponentially decreases with increasing
energy because for increasing energy, the corresponding
occupations in the reservoirs become exponentially small.

Additionally, we investigate the efficiency of the process
that converts a thermal bias into a particle-number bias in
Fig. 5. To this end, we numerically calculate the heat flow into
the system Q̇in(t) and the power P (t) extracted from the device
according to Eq. (38) and insert them into the definitions in
Eqs. (37) and (39). In Fig. 5, we show some of the results.
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FIG. 4. (Color online) (a) Plot of the time evolution of the
particle-number difference �n = (NL − NR)/N for a system with
two different transition energies. (b) Plot of the linear-response results
for the characteristic time scales t< from Eq. (32) and t> from Eq. (33)
for a system with one (solid line) and two (dashed, dotted-dashed
lines) transition energies in dependence of one of the energies. In
the case of one channel, we compare it with the full numerics (dots).
For the case of two transport channels, the lower transition energy
is fixed to ω1 = 0.9ω̄ in both plots. The arrow indicates the fastest
thermalization process corresponding to the minimum of t>.
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FIG. 5. (Color online) Plots of the numerically obtained effi-
ciency for a single transport channel with ω/ω̄ = 2. The initial
parameters are set to NL(0) = NR(0) = 0.5N , TL(0) = 0.45ω̄, and
TR(0) = 0.25ω̄. (a) Plot of the time evolution of the instantaneous
efficiency from Eq. (37) (solid line), the cumulative efficiency from
Eq. (39) (dotted-dashed line), and the instantaneous Carnot efficiency
(dashed line). The insets show the steady-state total efficiency
(dots) for different energies of the system and for different average
temperatures T = (TL + TR)/2 of the reservoirs. Here, a cutoff
appears (dashed line) beyond which no power can be extracted
from the device. In panel (b) we show the corresponding total heat
(dotted-dashed line) and work (dashed line) and in panel (c) the
corresponding instantaneous heat flow from Eq. (36) (dotted-dashed
line) and power from Eq. (38) (dashed line).

First, we notice that the power output of the device is not
always positive. For example, this can be observed in Fig. 5(a).
In the transient regime of small times when the system gets
filled, work has to be done on the system and the corresponding
efficiency is set to zero in this regime. This is due to the fact that
the efficiency is only defined for a positive power output. For
larger times, the system enters the quasi-steady-state regime
where we observe a finite efficiency of about η ≈ 0.6ηC . When
the whole system enters its steady state, the instantaneous
efficiency (solid line) trivially becomes maximal, i.e., η =
ηC , since all currents vanish. We also show the cumulative
efficiency (dotted-dashed line) which assumes a finite steady-
state value ηcum(∞) ≈ 0.9ηC .

This finite steady-state efficiency is further investigated
in the insets of Fig. 5(a). Here, we find that quite high
efficiencies can be achieved in this setup, depending on the
transition energy ω and the average temperature T . The
efficiency is increased for small transition energies and large
temperatures. However, for these parameters the steady-state
particle-number bias is also diminished. Hence, a careful
tuning of these parameters with respect to an optimal efficiency
to bias ratio is necessary.

Furthermore, we find that there are threshold values beyond
which the system does not perform work (dashed lines). For
low temperatures T < T0 and a fixed transition energy ω in
the system, we observe a flow of particles against the chemical
potential bias. Therefore, the device performs chemical work.
Contrary, for high temperatures T > T0, we observe a flow
of particles with the chemical potential bias and, hence, work
is done on the device and the efficiency to extract power is
not defined. In correspondence with the energy threshold from
Eq. (42), the temperature threshold is defined by the equality of
the left and right reservoir Fermi functions for a given energy ω

and constant chemical potentials, i.e., n̄
(−)
L (ω) = n̄

(−)
R (ω). The

resulting expression reads as

T0 = TL (μL + μR − 2ω)

2(μL − ω)
, (45)

where the temperature threshold T0 is the average temperature,
i.e., T0 ≡ TL + TR/2.

An analogous argument holds when we consider constant
reservoir temperatures and vary the system transition energy.
For decreasing energy, the efficiency increases. However,
below the transition-energy threshold from Eq. (42) no power
can be extracted from the device.

Additionally, we show the overall performed work in
comparison to the total heat in Fig. 5(b). Moreover, in order
to identify the time domain of maximum power output, we
show the instantaneous power and heat current in Fig. 5(c).
We observe that the power output is maximal in the quasi-
steady-state regime, whereas it is almost zero for very small
and very large times.

B. Multiple fermionic transport channels

As an example for a transport setup with multiple transport
channels, we now consider the situation of a fermionic
quantum system with two internal transition energies. To this

033614-7



FERNANDO GALLEGO-MARCOS et al. PHYSICAL REVIEW A 90, 033614 (2014)
Δ

n

Δ
μ
/
ω̄

Δ
T
/
ω̄

n̄
(−

)
L

,n̄
(−

)
R

tΓ tΓ

0.
1

0.
1

0.
05

0.
2

−
0.

2
0.

1
1

0

0

101101 102102 103103 104104 105105

(a) (b)

(c) (d)

FIG. 6. (Color online) Plot of the time evolution of the differ-
ences �n = (NL − NR)/N , �T = TL − TR , and �μ = μL − μR ,
of the thermodynamic variables of the left and right reservoirs,
for a quantum system with two transition energies ω1 = 0.9ω̄ and
ω2 = 2.1ω̄. The solid lines correspond to the numeric simulation, and
the dashed lines to the linear-response solution. The initial particle
numbers are set to NL(0) = NR(0) = 0.5N and the temperatures to
TL(0) = 0.45ω̄ and TR(0) = 0.25ω̄. In panel (d), we plot the Fermi
functions of the right (dotted-dashed line) an left (solid line) reservoir
for both transport channels. The upper branch corresponds to the
transition energy ω1 and the lower branch to ω2.

end, we model the quantum system by the Hamiltonian

HS =
2∑

i=1

ωiâ
†
i âi . (46)

Here, we assume that only two transitions are possible in
the system, namely, the transition from the vacuum state ρ0

to the one-particle state ρ1 with energy ω1, and the transition
from the vacuum to the one-particle state ρ2 with energy ω2.
These two transition energies give rise to two possible transport
channels which contribute to the overall energy and particle
currents through the system. These currents read explicitly as
(see Appendix B)

Ėν(t) =
2∑

i=1

ωi�ν(ωi)[ρi − n̄(−)
ν (ωi)(ρi + ρ0)], (47)

Ṅν(t) =
2∑

i=1

�ν(ωi)[ρi − n̄(−)
ν (ωi)(ρi + ρ0)]. (48)

Together with the corresponding equations for the evolution
of the system density matrix from Eq. (8), these currents
determine the equilibration process between the attached
reservoirs. In Fig. 6, we present some numerical results for
the thermodynamical variables of the reservoirs.

Initializing the reservoirs with equal particle numbers and a
finite-temperature bias �T (0) 	= 0 between them, we observe
the buildup of a particle-number bias. This bias reaches a max-
imum where the overall particle current vanishes. However,
contrary to the case with a single transport channel, the energy
and particle currents vanish independently. Consequently, the
finite-energy current at vanishing particle current allows the

system to further relax and the steady state is reached only
when all thermodynamic variables are in equilibrium.

In order to gain some analytic insight, we also calculate the
steady-state currents (see Appendix D) corresponding to the
expressions in Eq. (48). Subsequently, we extract the respective
linear-response transport coefficients, which are inserted into
Eqs. (28). In comparison, we find a good accordance of the
linear theory to the numerical solution.

From our simulations, we further observe that, for the
two-transport-channel system, we can control the dynamics
by tuning the difference �ω = ω2 − ω1 between the two
transition energies of the quantum system. In Fig. 4(a), we
show the evolution of the particle-number bias for different
values of �ω. We find that, for very large as well as for
very small differences, the evolution of the reservoir particle
number resembles the single-transport-channel result, leading
to a very slow equilibration of the reservoirs. In between, we
observe a regime where the reservoirs equilibrate considerably
faster.

This effect is further illustrated in Fig. 4(b), where we
plot the time scales t< from Eq. (32) (dashed line) and t>
from Eq. (33) (dotted-dashed line) for different values of
�ω, assuming a fixed frequency ω1. Here, we see that the
first time scale t< is hardly affected by the difference of
the transition energies. Apart from a small decrease around
�ω = 0, this time scale stays almost constant around the
value t<� ≈ 103. The reason for that behavior can be traced
back to the fact that this time scale is mostly affected by the
particle conductance σ , which itself is largely influenced by the
lowest transition energy, whereas the higher transition energies
have an exponentially suppressed contribution to the particle
current.

Contrary, the time scale t>, which characterizes the ex-
ponential decay into the thermodynamic equilibrium, strongly
depends on the difference of the transition energies. It diverges
when approaching the single-transport-channel configuration
where �ω = 0, and grows exponentially for large energy
differences. This diverging behavior can be traced back to
the fact that this time scale is mostly affected by the heat
conductance q, which explicitly depends on the difference of
the transition energies.

Here, we point out that this effect can be used to define
a particle transistor or particle capacitor for ultracold gases.
By shifting the upper transition energies to high values with
respect to the lowest transition energy, one can use, e.g., an
initial temperature bias to establish a particle-number bias
between the reservoirs. This difference can be maintained
within the setup for very long times. However, by lowering
the energy of the upper transition energies of the system, the
equilibration between the reservoirs can be triggered, leading
to a controlled decrease of the reservoir bias, and eventually
to a full equilibration.

C. Multiple bosonic transport channels

For completeness, we now briefly consider a bosonic
transport system with two transport channels. This system
underlines the fact that the method proposed within this paper
is also applicable on interacting system. In the following, we
consider two reservoirs of massive bosonic particles confined
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in an inhomogeneous harmonic trap, which are governed by the
Hamiltonian from Eq. (2). These reservoirs are weakly coupled
to a quantum system which is described by the Hamiltonian

ĤS = εâ†â + φ

2
â†â(â†â − 1), (49)

where φ is two-particle interaction energy. The bosonic
operators â and â† annihilate and create a particle with energy
ε, respectively. Consequently, the energy spectrum is given by
ωn = nε + φn(n − 1)/2, where n corresponds to the number
of particles in the system. In order to restrict this system to two
transition energies only, we truncate the system Hilbert space
at n = 2.

Subsequently, the energy and particle currents through the
quantum system are obtained from the respective Liouvillian
(see Appendix E), following the method outlined in Sec. II.
In the wide-band limit with �ν(ωn) = �ν , we find that these
currents explicitly read as

Ṅν = −
2∑

m=1

m�ν[n̄(+)
ν (ωm)(ρm − ρm−1) + ρm], (50)

Ėν = −
2∑

m=1

m�ν[n̄(+)
ν (ωm)(ρm − ρm−1) + ρm]ωm. (51)

In order to compare the bosonic evolution to the fermionic
one, we consider reservoir temperatures above TC such that
we can neglect the ground-state contribution in Eq. (5).
Consequently, the equation of motion for the thermodynamic
variables of the reservoirs is given by Eq. (17), and we
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FIG. 7. (Color online) (a) Time evolution of the temperature
difference �T in a bosonic transport setup, for different values of
the system transition energy ω with the initial particle numbers
NL(0) = 0.6N and NR(0) = 0.4N and the fixed average temperature
T = 1.5ω̄. (b) Plot of the initial temperature current ṪL(0) versus the
transition energy of the system. The dots correspond to the energies
ω in panel (a). (c) Plot of the ratio between the initial particle-
number bias and the steady-state temperature bias �T (0) = 0.2ω̄

in dependence of the average temperature T of the system, for a
fixed transition energy. The y axis is measured in units 1/ω̄. For high
temperatures, this ratio vanishes like 1/T for both fermions (solid
line) and bosons (dashed line).

can numerically calculate their evolution. The results for the
bosonic transport system with two and also with one transport
channel are in qualitative agreement with our fermionic results.

As an example, we present in Fig. 7(a) the dynamics of the
temperature difference between the bosonic reservoirs for a
quantum system with a single transition energy. Analogous to
the fermionic results shown in Fig. 3, we find that the steady
state in this setup is nonthermal. Here, the initial particle-
number bias is converted into a steady-state temperature bias,
whose amount and sign can be tuned by shifting the transition
energy ω of the quantum system, as can be seen in Fig. 7(b).
For this initial nonequilibrium configuration, we find from
Eq. (28) that the steady-state temperature bias is given by

�T (∞) ≡ lim
t→∞ �T (t) = −σ (μeff − T �)

�N2κC
�N (0). (52)

The above linear transport coefficients have to be derived
from the linearized steady-state currents running through the
quantum system [28].

IV. SUMMARY

In this paper, we analyzed the equilibration process between
two reservoirs, which are initialized in a nonequilibrium
configuration and that are weakly thermally connected via
a few-level quantum system. To this end, we established
the full equations of motion describing the evolution of the
density matrix elements of the quantum system, as well as
the evolution of the thermodynamic variables of the attached
reservoirs. Subsequently, these equations were solved, both
numerically and analytically, by a linearized theory. We
observe a qualitative dependence of the equilibration on the
number of available transport channels. Only setups with more
than one accessible transport channel show a thermodynamic
equilibration for long times, whereas a nonthermal steady state
is reached in systems with only a single transport channel. This
fundamentally different behavior might be used to construct
a transistor or capacitor for ultracold atoms. Such a machine
would also work quite efficiently, as we confirmed from the
calculation of the heat current and power output. Finally, we
compare the equilibration process in thermal fermionic and
bosonic transport setups, where we qualitatively observe the
same behavior.
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APPENDIX A: ATOMS CONFINED IN A 3D CUBIC BOX

In the case of an ideal noninteracting quantum gas confined
in a 3D cubic box of volume V with periodic boundary
conditions, the dispersion relation reads as εk = k2/(2m). In
the thermodynamic limit, one can obtain the total particle
number Nν = ∑

k n̄(ξ )
ν (εk) and energy Uν = ∑

k εkn̄
(ξ )
ν (εk) by
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substituting the summation by an integral

1

(2π )3

∑
k

→
∫ ∞

0
g(ε)dε, g(ε) = 2πVgs

(2π )3
(2m)

3
2 ε

1
2 , (A1)

where gs = (2S + 1) is the spin degeneracy coefficient. Integrating these expressions, one finds

Nν = gsV
ξ

λ
Li 3

2
(ξzν) + gsN

(0)
ν (ξ ), Uν = 3

2
gsV

ξ

λν

TνLi 5
2
(ξzν) (A2)

with λ = √
2π/(mTν) being the thermal wavelength of particles with mass m. Subsequently, one can derive the characteristic

temperature scales for bosons and fermions which read as

TC = 2π

m

(
Nν

gsV ζ (3/2)

)
, TF = 1

2m

(
6π2Nν

gsV

)
, (A3)

where ζ (x) is the Riemann zeta. From this consideration, we see that assuming different boundary conditions for the reservoirs
leads to modified energy scales and different polylogarithms. However, from numerical calculations we find that the qualitative
dynamical properties are the same as those discussed in Sec. III.

APPENDIX B: FERMIONIC LIOUVILLIAN

The Liouvillian of a noninteracting fermionic system with l channels and energy-independent tunneling rates �ν(ω) = �ν

reads as

L(ν) = �ν

2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−n̄(−)
ν (ω1) − . . . − n̄(−)

ν (ωl) 1 − n̄(−)
ν (ω1) 1 − n̄(−)

ν (ω2) . . . 1 − n̄(−)
ν (ωl)

n̄(−)
ν (ω1) −1 + n̄(−)

ν (ω1) 0 . . . 0

n̄(−)
ν (ω2) 0 −1 + n̄(−)

ν (ω2)
...

...
...

... . . .
. . . 0

n̄(−)
ν (ωl) 0 . . . 0 −1 + n̄(−)

ν (ωl)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (B1)

with the corresponding reduced system density matrix given by ρ = (ρ0,ρ1, . . . ,ρl)T, where ρ0 is the ground-state population,
and ρj is the population of the j th excited state. From this Liouvillian, we can calculate the evolution of the reduced system
density matrix from Eq. (8). Moreover, using Eq. (B1) together with the Eqs. (9) and (10) allows us to calculate the energy and
particle currents running through the quantum system.

Considering a system with a single transition energy ω1, the above Liouvillian is truncated at ω1 resulting in a 2 × 2 matrix,
and we find for the rate matrix

L(ν) = �ν

2

[
0 [1 − n̄(−)

ν (ω1)]

−n̄(−)
ν (ω1) 0

]
, (B2)

which results with ρ = (1 − ρ1,ρ1)T in the particle and energy currents given in Eqs. (41). Analogously, we find for fermionic
systems with two transition energies that the rate matrix reads as

L(ν) = �ν

2

⎡
⎢⎣

0 [1 − n̄(−)
ν (ω1)] [1 − n̄(−)

ν (ω2)]

−n̄(−)
ν (ω1) 0 0

−n̄(−)
ν (ω2) 0 0

⎤
⎥⎦ , (B3)

which results with ρ = (ρ0,ρ1,ρ2)T/Tr{ρ} in the particle and energy currents given in Eqs. (48) and (47).

APPENDIX C: SINGLE FERMIONIC TRANSPORT CHANNELS

For an irreducible rate matrix, the equation 0 = ∑
i,ν L

(ν)
i,j ρ̄j together with the normalization Tr{ρ̄} = 1 uniquely determines the

steady-state reduced system density matrix ρ̄. For a system with a single transition energy ω, the Liouvillian in Eq. (B1) is truncated
at ω = ω1. The corresponding steady-state density matrix is given by ρ̄ = (1 − ρ̄1,ρ̄1)T with ρ̄1 = (�Ln̄

(−)
L + �Rn̄

(−)
R )/(�L + �R).

Inserting Eq. (B2) and the steady-state density matrix into the respective current equations (9) and (10) yields the steady-state
currents JN = J

(L)
N = −J

(R)
N and JE = J

(L)
E = −J

(R)
E , which read as

JN = �L�R

�L + �R

[n̄(−)
L (ω) − n̄

(−)
R (ω)] and JE = ωJN. (C1)
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Subsequently, constructing the linear-response heat current JQ = JE − (μ + T α)JN [28], and linearizing the heat and particle
current with respect to the affinities �T and �N/(N2κ), results in the linear-response transport coefficients

σ = �L�R

T (�L + �R)
[1 − n̄(−)(ω)]n̄(−)(ω), q = 0, � = 1

T
(μ + αT − ω) . (C2)

In the single-transport-channel situation, energy and particle currents are proportional and consequently the heat conductance q

vanishes. The result for the particle conductance σ is consistent with the well-known Coulomb blockade conductance peak for a
single resonant level [60].

APPENDIX D: TWO FERMIONIC TRANSPORT CHANNELS

In case of a system with two transport channels, the Liouvillian from Eq. (B1) is truncated at ω2 resulting in a 3 × 3 matrix.
Solving the respective current equations from Eqs. (9) and (10) and inserting the corresponding steady-state density matrix
yields the steady-state currents JN = J

(L)
N = −J

(R)
N and JE = J

(L)
E = −J

(R)
E . For simplicity, we suppose that the rates are energy

independent and homogeneous, i.e., �ν(ω) = �ν = �, which results in the expressions

JN = �
n̄

(−)
L (ω1)[1 − n̄

(−)
L (ω2)] − n̄

(−)
R (ω1)[1 − n̄

(−)
R (ω2)] + n̄

(−)
L (ω2) − n̄

(−)
R (ω2)

[n̄(−)
L (ω1) + n̄

(−)
R (ω1)][n̄(−)

L (ω2) + n̄
(−)
R (ω2)] − 4

, (D1)

JE = �

2

∑2
j=1 ωj [2 − n̄

(−)
L (ωj ) − n̄

(−)
R (ωj )][n̄(−)

L (ωj ) − n̄
(−)
R (ωj )]

[n̄(−)
L (ω1) + n̄

(−)
R (ω1)][n̄(−)

L (ω2) + n̄
(−)
R (ω2)] − 4

. (D2)

Subsequently, we construct the linear-response heat current JQ = JE − (μ + T α)JN [28], and linearize the heat and particle
currents, with respect to their affinities �T and �N/(N2κ). Applying the definitions from Eqs. (23)–(25) results in the respective
linear-response transport coefficients

σ = �

4T

[1 − n̄(−)(ω1)][1 − n̄(−)(ω2)][n̄(−)(ω1) + n̄(−)(ω2)]

1 − n̄(−)(ω1)n̄(−)(ω2)
, q = σ

n̄(−)(ω1)n̄(−)(ω2)(ω1 − ω2)2

T [n̄(−)(ω1) + n̄(−)(ω2)]2
, (D3)

� =
∑2

j=1 n̄(−)(ωj )
(
μ + αT − ωj

)
T [n̄(−)(ω1) + n̄(−)(ω2)]

. (D4)

Here, we find a finite heat conductance q 	= 0, which is proportional to the difference ω1 − ω2 of the transition energies. It allows
for a full equilibration of the reservoirs.

APPENDIX E: TWO BOSONIC TRANSPORT CHANNELS

Starting from the system Hamiltonian in Eq. (49) and following the procedure outlined in Sec. II B, we obtain the following
Liouvillian with energy-independent rates �ν(ω) = �ν for the bosonic system with at most two particles:

L(ν) = �ν

2

⎡
⎢⎣

−n̄(+)
ν (ω1) 1 + n̄(+)

ν (ω1) 0

n̄(+)
ν (ω1) −1 − n̄(+)

ν (ω1) − 2n̄(+)
ν (ω2) 2 + 2n̄(+)

ν (ω2)]

0 2n̄(+)
ν (ω2) −2 − 2n̄(+)

ν (ω2)]

⎤
⎥⎦ . (E1)

Subsequently, from the definitions in Eqs. (9) and (10), we derive the particle and energy currents presented in Eqs. (50) and (51).
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[9] R. Jördens, N. Strohmaier, K. Günter, H. Moritz, and
T. Esslinger, Nature (London) 455, 204 (2008).
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