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Dynamical and steady-state properties of a Bose-Hubbard chain with bond dissipation:
A study based on matrix product operators
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We study a dissipative Bose-Hubbard chain subject to an engineered bath using a superoperator approach based
on matrix product operators. The dissipation is engineered to stabilize a Bose-Einstein condensate wave function
in its steady state. We then characterize the steady state emerging from the interplay between incompatible
Hamiltonian and dissipative dynamics. While it is expected that interactions lead to this competition, even the
kinetic energy in an open boundary condition setup competes with the dissipation, leading to a nontrivial steady
state. We also present results for the transient dynamics and probe the relaxation time revealing the closing of
the dissipative gap in the thermodynamic limit.
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I. INTRODUCTION

The preparation of quantum states in standard cold-atom
experiments relies on the ability to cool the system to extremely
low temperatures and then transfer the isolated system adia-
batically to the target state [1]. Dissipative state preparation,
on the other hand, pursues a different route towards the
realization of complex quantum states. By coupling the system
to a suitably designed bath, a nonunitary time evolution will
drive the system into a (unique) pure steady-state that has the
desired properties such as long-range phase coherence [2,3].
This method is particularly appealing since the steady-state is
often an attractor for the time evolution of the open systems
for almost arbitrary initial states. Recent proposals address
a wide range of applications to states with long-range phase
coherence [2,3], matrix product states [3], Kitaev wires [4], or
p-wave superfluids with Majorana edge modes [5] and other
topologically nontrivial phases [6]. Recent experiments with
trapped ions demonstrate the feasibility of this concept of state
engineering [7,8]. Moreover, engineered dissipation can be
used to implement digital quantum simulators using Rydberg
atoms [9,10] or trapped ions as demonstrated recently [11]. For
a review on open and dissipative systems see Refs. [12,13].

The study of open quantum many-body systems has
attracted a lot of interest recently such as dephasing dy-
namics in interacting quantum systems [14–17] and has also
revealed new phenomena such as dissipative phase transitions
[18–26]. Although they share certain features with conven-
tional (quantum) phase transitions [24,27], extended concepts
such as new dynamical universality classes [25] offer new
fields of research that go beyond the equilibrium understanding
of universality.

We consider an open system that couples to a Markovian
bath in the following. After tracing out the bath degrees of
freedom, the time evolution of the (system) density matrix ρ

is given by a master equation in Lindblad form [28–31]:

∂tρ = i[ρ,H] + L[ρ]. (1)
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The first term simply reproduces the von Neumann equation
and generates the unitary time evolution. The interaction with
the bath is encoded in the Liouville operator L. The idea of
dissipative state preparation is that L has a unique and pure
dark state |�〉 with L[|�〉〈�|] = 0. If this state is also an
eigenstate of H it will be a stationary solution of Eq. (1). If,
however, the unitary time evolution is not compatible with the
dark state of L, the steady-state solution will in general be
mixed and determined by the nontrivial interplay of H and L.
One can raise the question of what steady states are realized
when varying the microscopic system and bath parameters,
i.e., what the dissipative phase diagram is and how the system
equilibrates into the steady-state.

In this work, we address this question in the setting of a
Bose-Hubbard chain in contact with a superfluid bath. This
setup has been introduced and studied in a series of papers
[2,3,22,23]. By suitably chosen dissipators that act on the
bonds between two adjacent lattice sites, the unique dark state
of the dissipator is a uniform k = 0 Bose-Einstein condensate
(BEC). Using a matrix-product-state-inspired superoperator
renormalization technique [32–34], we can numerically re-
solve the real-time evolution of the full interacting quantum
system, while representing the system density matrix as a
matrix product operator (MPO).

We then start by studying the interplay of the noninteracting
kinetic energy with the bond dissipation. We find—somewhat
surprisingly at first sight—that in a system with open bound-
aries the combined dynamics has a mixed steady state. We
then explore the general interplay by including interactions
and analyzing the steady states. We also analyze the “unitary”
and “dissipative” parts of the particle currents in the steady
state, which mutually compensate each other. We then compare
the correlation functions in the steady state to a Gibbs
ensemble with an effective interaction and temperature, raising
the question of thermalization. The dynamical properties of
the equilibration process also allows us to access information
about the damping spectrum and we address the question of
a possible charge-density wave (CDW) instability raised in a
previous work [23].

This paper is organized as follows. In Sec. II, we briefly
review the model of a coupled driven condensate as it is has
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been investigated previously [2,3,12,22,23] for a translation-
ally invariant setup. The results of our numerical simulations
for the steady state as well as the relaxation dynamics are
presented in Sec. III. Section IV contains a concluding
summary of our findings. We include results of the integration
of the single-particle problem in Appendix A that supplement
the results from the previous sections. A short review of the
superoperator algorithm can be found in Appendix B.

II. MODEL

We study a Bose-Hubbard chain coupled to a superfluid
bath such that the dissipative process will lock the phase of
adjacent sites leading to an exact condensate with off-diagonal
long-ranged order (ODLRO) in the dark state.

The unitary dynamics of the bosons in a one-dimensional
lattice with open boundary conditions of length L (we set the
lattice spacing to a = 1 and work in units where � = kB = 1)
is described by the Bose-Hubbard Hamiltonian

H = −J

L−1∑
j=1

(b†j bj+1 + H.c.) + U

2

L∑
j=1

nj (nj − 1). (2)

Here, J is the hopping amplitude between nearest neighbors,
U is the on-site interaction, bj (b†j ) are bosonic annihilation
(creation) operators, and nj is the number of particles per
site. For integer fillings, the system undergoes a Berezinskii-
Kosterlitz-Thouless quantum phase transition [35,36] from
a strong-coupling Mott insulator to a superfluid with quasi-
ODLRO for small U/J . In case of a generic filling, the
superfluid is stable for all values of J/U > 0 [37–39].

The dissipative part is described by the Liouville operator

L[ρ] = κ

L−1∑
j=1

(
cj,j+1ρc

†
j,j+1 − 1

2
{c†j,j+1cj,j+1,ρ}

)
, (3)

with the Lindblad operators given as cj,j+1 = (b†j +
b
†
j+1)(bj − bj+1) and κ denotes a uniform coupling to the

bath. This form of the dissipation has the property that
the (unique) dark state of L is pure and can be cast in
the form of a noninteracting BEC wave function, |�〉 ∝
(b̃†k=0)N |0〉 [2,3], where b̃

†
k creates a particle at momentum

k. This can be readily verified by considering the momentum
space representation of the Lindblad operators, c̃k ∼ ∑

q(1 +
ei(q−k))(1 − e−iq)b†q−kbq , whose zero mode is given by |�〉,
i.e., c̃k|�〉 = 0. Note that, in a uniform chain with periodic
boundary conditions, the dark state of L is also an eigenstate
of the kinetic energy.

A physical implementation of this model, as described in
Ref. [2], is a lattice system immersed into a superfluid bath
[40] in a superlattice between two neighboring sites j and j +
1. Reminiscent of dark-state laser cooling [40–42], a Raman
transition couples antisymmetric states, bj − bj+1, to the bath
that acts as a reservoir for Bogoliubov excitations. The excited
state will decay into the symmetric (dark) state, b

†
j + b

†
j+1,

giving rise to a phase locking between adjacent sites.
Despite the presence of a pure dark state, this model features

rich physics resulting from the interplay of interaction and
dissipation giving rise to a dynamical phase transition and

has been studied using linearized equations of motions and
mean-field-like methods [2,3,22,23]. In the absence of the U

term in the Hamiltonian, the steady state is given by the BEC
state |�〉, as discussed above. For d > 1, finite interaction
gives rise to an effective temperature that will, for large enough
U , drive the system into a mixed state for long times where
(quasi) ODLRO is lost. The two regimes are separated by a
continuous dynamical phase transition where the condensate
fraction exhibits universal scaling [22,23]. A second feature of
the dynamical phase diagram of this system is the appearance
of an instability for small momenta in the damping spectrum
of L for large values of κ [22,23]. This instability can manifest
itself in the appearance of charge density wave ordering that,
however, will be only visible on large length scales [22,23].
In one dimension, phase coherence is lost for any finite
temperature since it is expected that interactions will totally
prohibit the existence of a dark pure state in the proposed
setup [2].

III. NUMERICAL RESULTS

We simulate the real-time dynamics of the system by
evolving the system in time according to the full master
equation starting from some initial state. In our simulations,
this can either be the ground state of H at some fixed
value of U/J or a thermal Gibbs state ρ(0) = exp(−βH).
In the following section, we discuss the nature of the steady
state reached for sufficiently long times independent of the
initial conditions, as well as its short-time and transient
dynamics.

One important aspect in the system considered here is the
choice of open boundary conditions that are reminiscent of the
situation in a realistic implementation in cold atomic systems.
The existence of the unique ground state |�〉 relies on a
momentum space representation of the Lindblad operators
(see discussion in Sec. II and references therein). Although
this setup in not translationally invariant, the phase-locking
mechanism between nearest-neighbor sites ought to hold;
thus we expect L to have a homogenous dark state with
long-range phase coherence, and our numerical results support
this expectation. The kinetic energy term of H, however,
cannot be minimized on all bonds simultaneously in the
absence of the bond connecting sites 1 and L as in a setup
with, say, periodic boundary conditions. Thus, the density at
the border of the system is depleted and the ground state is
inhomogeneous. In particular, |�〉 is not an eigenstate of H at
U = 0, such that we have the situation of competing unitary
and dissipative dynamics even in the absence of interactions.

In order to study the interplay between the two terms in the
unitary dynamics and the dissipator separately, we consider
two scenarios in Secs. III A, III B, and III C. First, we study
the interplay between the kinetic and dissipative terms (U = 0)
where the boundary effects due to finite system sizes play
the most important role. In the second part the effects of
finite interactions U > 0 with and without the kinetic term
are studied. Section III D compares our steady state results
to a thermal ensemble. The dynamical properties and the
convergence towards the steady state in particular are discussed
in Sec. III E.
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FIG. 1. (Color online) Green’s Function G(L/2 − j,L/2 + j )
for the steady-state at filling n = 0.1 and L = 20 and 40. Upper
panel: Simulation results for J = 0, i.e., the OBC kinetic energy
does not contribute to the time evolution. Lower panel: Finite
nearest-neighbor hopping (here κ/J = 2) suppresses qODLRO
even for vanishing interaction. The orange symbols represent the
density-normalized Green’s function G̃(j,l) normalized such that
G̃(L/2,L/2) = G(L/2,L/2). The horizontal dashed line denotes
G(j,L/2) = 0.1.

A. Interplay between kinetic energy and dissipation
in systems with open boundaries

First, we study the steady-state properties by evolving the
initial state, chosen as the ground state of H, for long times
until the observables, namely, the equal time Green’s function,

G(j,l) = Re〈b†j bl〉, (4)

the local particle number nj , the energy, and the entropy are
converged to their steady-state values. Figures 1 and 2 show
G(j − L/2,j + L/2) and nj for the steady state at filling
n = 0.1 for various values of the interaction considering the
two protocols mentioned above. The low density allows us to

FIG. 2. (Color online) Real space density distribution nj for the
steady state of a chain with L = 40 sites at filling n = 0.1 for J = 0
(upper panel) and κ/J = 2 (lower panel) and different values of the
interaction U .

perform our simulations without the introduction of a particle
number cutoff and we find that a matrix product state (MPS)
rank of χ = 300 is sufficient for system sizes up to L = 50.
Here, we use a fourth-order Trotter decomposition with a
time step of δtJ = 0.03. Considering the first protocol where
the kinetic term is switched off at t = 0+, we find that in
the purely dissipative case (U = 0) the dark state is in fact
given by a homogenous state with G(j,l) = nj = n exhibiting
long-range phase correlations. In the presence of the kinetic
energy with open boundary conditions, however, ODLRO is
apparently lost in the steady state, since G(j,l) is suppressed
at the boundaries. The influence of the kinetic term is also
reflected in the density profile where the boson occupation is
diluted near the boundaries. Note that the density redistribution
is not the main source for the suppression of G. Also the
density-normalized Green’s function G̃(j,l) = G(j,l)/

√
njnl

is suppressed for large distances |j − l|, as shown in Fig. 1.
In the bulk of the chain one finds a growing interval where
G(j,l) ≈ n—boundary effects thus become less important as
L is increased—such that the bulk for a large enough system
looks similar to the pure dark state. It is noteworthy that
already for the single-particle problem that can be integrated
directly, as it is discussed in Appendix A, the system does
not approach a pure state as L → ∞: the purity F = tr[ρ2]
does not extrapolate to 1 in the thermodynamic limit but is
monotonically decreasing, as shown in Fig. 12, although some
observables converge towards those of |�〉.

B. Unitary and dissipative currents in the steady state

To understand the structure of the steady state even further,
we turn towards the imaginary part of the Green’s function,
I (j,l) = Im〈b†j bl〉, whose nearest-neighbor component can be
identified with the expectation values of the current operator
in the unitary case reading 〈Jj l〉 = −iJZ−1tr[I (j,l)ρ], where
Z = tr[ρ] is the partition function. Here, we have a dissipative
term that tries to homogenize the system and drive density
to the edges of the system. This is counteracted by a current
emanating from the kinetic term that leads to a flow of particles
towards the center of the lattice. This can be seen by looking
at I (j,l), which is shown for the steady state at L = 40 and
different values of the interaction in Fig. 3. Whereas in the
center of the lattice I is almost zero, it acquires a finite value

FIG. 3. (Color online) Imaginary part of the Green’s function
〈b†

j bl − bjb
†
l 〉 at filling n = 0.1. Upper: Left (right) panel shows

steady state results for U = 0 (U/J = 4) and κ/J = 2. Lower: Left
(right) panel shows the lattice divergence of the unitary current 〈Ju〉.
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at the boundary giving rise to a current emanating from the
kinetic term that is directed towards the center (see lower
panel of Fig. 3). The full expression for the total current can
be derived from the equations of motion for the local density
〈nj 〉 reading

∂t 〈nj 〉= tr(i[H,nj ]ρ)

+ tr

{
κ

L∑
l=l

[
c
†
l,l+1njcl,l+1 − 1

2
(nj ,c

†
l,l+1cl,l+1)

]
ρ

}
.

(5)

Equation (5) resembles a continuity equation ∂t 〈nj 〉 = 〈divJ 〉
and it is straightforward to show using bosonic commutation
relations that the two contributions to the total divergence,
originating from the unitary and dissipative term, respectively,
read

〈divJu〉 = −iJ tr[(b†j−1bj − bj−1b
†
j − bj+1b

†
j + b

†
j+1bj )ρ]

(6)

and

〈divJd〉 = − κtr{[(nj − nj+1)(Tj,j+1 + 1)

+ (nj−1 − nj )(Tj−1,j + 1)]ρ}. (7)

Here, Tjl = b
†
j bl + b

†
l bj is the local kinetic energy. In particu-

lar, one can see clearly that the dissipative part is sensitive
towards density gradients that will give rise to a finite
dissipative current that has to be canceled by the unitary part
in the steady state since ∂t 〈nj 〉 = 0. For larger values of the
interaction (see right panel of Fig. 3), the system realizes the
scenario where the current is zero (and the density is flat)
except in a small region at the boundaries. Concentrating
on the center of the system, in particular, one can observe
a homogenous system with a slightly increased density.

C. Finite interactions

As interactions are introduced, the Green’s function in the
steady state decays exponentially with distance and the system
thus has a finite correlation length ξ , as seen in Fig. 1. This
is compatible with the picture drawn in Ref. [2] that U will
act as an effective temperature for the steady state. This will
immediately destroy ODLRO in one dimension. In particular,
the correlation length in the large-density limit is predicted
to scale as ξ ∝ 1/U in the long-wavelength limit [2]. This
scaling is found to hold for n = 1 (see discussion below). In
the low-density limit, n = 0.1, however, the correlation length
seems to decrease very slowly with increasing U due to the
diluteness and thus less effective particle interactions.

Thus far, the discussion has mainly focused on the low-
density limit that can be accessed very effectively because
of its small operator space entanglement entropy without the
introduction of a local particle number cutoff. We also consider
the case of unit filling (n = 1) restricting the local Hilbert space
to D = 25 corresponding to a local occupancy, nj < 5. Note
that the computational effort of the numerical method scales
like D3. Even for comparably small system sizes up to L = 20,
a bond dimension of a few thousands is required to get accurate
results for the time evolution at intermediate times.

FIG. 4. (Color online) Comparison of the real steady-state
Green’s function G(j,l) for filling n = 1, different particle number
cutoffs N = √

D − 1, L = 16, and U = 0. The circles denote data
obtained with finite J , whereas the data for J = 0 are represented by
squares. The finite particle cutoff acts as an effective interaction and
suppresses the Green’s function similarly to a finite U .

Figure 4 shows the Green’s function for unit filling for
D = 16 and 25 for the two aforementioned scenarios. As
D is decreased, the Green’s function becomes suppressed
even further. This can be understood by the fact that the
particle number cutoff corresponds to an effective hard-
core interaction for highly occupied sites translating into an
effective temperature that will suppress G. The particle number
cutoff is not only a numerical limitation but can also be present
in the limit of strong three-body losses, for instance, where
triple (and higher) occupation of sites is suppressed [43,44].

Although ODLRO is lost for finite interaction for n = 1
similar to the aforementioned results for n = 0.1, there is
a qualitative difference in the density profile of the steady
state as the density is increased. For U = 0, the density has
a domelike structure. As U is increased, however, the density
in the center of the system does not remain flat but shows
a sinusoidial modulation, as can be seen in Fig. 5, that even
becomes more pronounced as κ/J increases. The wavelength
of this oscillation, however, is proportional to L; thus this
cannot be interpreted as a CDW instability discussed in Sec. II
that is expected to have a wavelength on the order of 100 lattice
constants [22,23]. For small lattices, however, only the lowest
momentum mode in the dampening spectrum can become
unstable and will lead to a CDW with wavelength λ ∝ L

[23], which is a vanishing effect in the thermodynamic limit.
Although that scenario is in principle compatible with our
numerical findings, the data are still inconclusive whether a re-
gion of possible CDW exists in the steady-state phase diagram
due to the small system sizes accessible in our simulations.

D. Comparison to thermal ensemble

As it has been discussed in Ref. [2], the low-momentum
density matrix looks thermal with an effective temperature
Teff ∼ Un/2 that we, however, cannot access directly. Here,
we ask the question whether the steady-state expectation
values of some operators, namely, the Green’s function
and the occupation number projector Pn = |n〉〈n|, can be
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FIG. 5. (Color online) Real space density distribution nj for the
steady state of a chain with L = 16 sites at filling n = 1 for κ/J = 2
and 10. The inset shows the local density for U/J = 4 and κ/J = 2
for different system sizes.

described by a thermal state at some effective interaction Ueff .
To compare the steady-state and thermal expectation values,
we use the algebraic distance � of the G(j,l)’s and Pn’s
respectively, defined as

�2
P =

∑
n

[Pn − Pn(Ueff/J,βJ )]2 (8)

and

�2
G =

∑
j

[G′(L/2 − j,L/2 + j )

− G′(L/2 − j,L/2 + j ; Ueff/J,βJ )]2. (9)

Here, Pn(Ueff/J,βJ )=Z−1tr{Pn exp[−βH(J,Ueff)]} denotes
the thermal expectation value [G′(L/2 − j,L/2 +
j ; Ueff/J,βJ ) is defined analogously] and we define
G′(j,l) = G(j,l)/G(L/2,L/2) in order to reduce the effect
of density differences in the bulk of the chain. Note that
we are not expecting a thermal state with respect to the
generator of the unitary part of the dynamics, but leave the
ratio of interaction to kinetic energy a free parameter. This is
plausible, as in the present situation the dissipation broadly
acts the same way as the kinetic energy in the bulk.

�P and �G show a qualitatively different behavior, as
illustrated in Fig. 6 for U/J = 6 at unit filling. The distances
of the occupation number projectors show a broad minimum
for Ueff/J ∼ 1 to 2 at inverse temperature between βJ = 1
and 0.5 that extends also to large effective interactions at
comparably high temperatures. The distance of the steady-state
projectors from the thermal ones can be traced back to an
increase of P1 in the steady state, as shown in the left panel of
Fig. 7 that dominates �P .

The agreement of the Green’s functions, illustrated by �G

in the right panel of Fig. 6, is good only in a small tem-
perature window around βJ ∼ 0.6 and Ueff/J � 2. A direct
comparison for some effective interaction and temperatures
is presented in the right panel of Fig. 7. This reveals that
the nearest- and next-to-nearest neighbor Green’s function
can be matched quite well to a thermal ensemble. For large

FIG. 6. (Color online) Distances of correlation functions
�P (left) and �G (right) for n = 1, L = 14, and U/J = 6 as a
function of the effective interaction Ueff/J and inverse temperature
βJ .

distances—they only have a small influence on �G due to
the strong decay of G′—deviations become significant and
might also be a result of the strong suppression of G′ at the
boundaries.

E. Dynamical properties and convergence
towards the steady state

Finally, we analyze the operator space entanglement en-
tropy, defined in Eq. (B3), for a bipartition at L/2 in the
steady state. A finite-size extrapolation of Sss

L/2, shown in
Fig. 8, reveals a logarithmic scaling. Unlike the case of
a critical system in one dimension where the logarithmic
scaling originates from corrections to the area law [45],
particle number conservation can impose a constraint on the
density matrix that translates into a finite MPS rank. Consider
for instance the density matrix representing an infinitely
hot state. For a sector of fixed particle number N it can
formally be described by applying the projector PN to the
N -particle subspace, ρN = PNρ∞PN = PN , whose operator
space entanglement scales like ln L [46]. In addition, we
calculate the bipartite fluctuations F(l) = 〈N2

l 〉 − 〈Nl〉2, [47],
where Nl = ∑

j<l nj . They exhibit linear scaling as it is
predicted for a thermal state [47,48].

FIG. 7. (Color online) Left: Particle number projector Pn for the
steady state at L = 14, n = 1, and U/J = 6 with thermal results at
an effective Ueff/J . Right: Comparison of the steady-state Green’s
function for the same parameters compared to the thermal result at
Ueff/J = 3 at various temperatures.
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FIG. 8. (Color online) Steady-state operator space entropy (left)
and bipartite fluctuations F for a block size of L/2. The dashed lines
in the left panel denote fits to a ln L + b where the solid lines on the
right-hand side are linear fits to AL + B.

The convergence towards the steady state is governed by
the damping spectrum, the real part of the eigenvalues, of the
Liouville operatorL. We find that the observables, for instance,
the entropy shown in Fig. 9, convergence exponentially to
their steady-state values. The decay constant α is obtained
by fitting the entropy to the form SL/2(t) = Ce−αtκ + Sss. α

obeys a power law and scales like κL−2—Fig. 9(b) shows the
decay rate for different values of the couplings and fillings
for different fillings and interactions (see also Fig. 13 for
the single-particle case). This is consistent with the results

FIG. 9. (Color online) Increase of operator space entanglement
entropy SL/2 with respect to the initial state for L = 40, n = 0.1
κ/J = 2, and different values of the interaction strength. Inset (a):
The figure shows 1 − [SL/2(t) − SL/2(t = 0)]/[Sss

L/2 − SL/2(t = 0)] in
order to illustrate the exponential convergence of the entropy towards
the steady-state values for the data shown in the main panel. Inset (b):
Relaxation rate α of the long-time behavior of S. The n = 0.1 data
corresponds to κ/J = 2 (solid symbols) with interaction parameters
U/J = 2 (red circles), 4 (green squares), and 6 (blue diamonds)
and J = 0 (hollow symbols) with U/κ = 1 (red circles), 2 (green
squares), and 3 (blue diamonds). For n = 1, we show data for J = 0
and U/κ = 2.5 (blue triangles) and 3 (red triangles). They obey a
power law scaling α ∼ L−2, indicated by a dashed line, compatible
with the low-momentum damping spectrum of L.

FIG. 10. (Color online) Time evolution of the operator space
entanglement (top) and energy (bottom) for U/J = 4 and κ/J = 2
for different initial thermal density matrices. The upper dashed line
corresponds to the T = 0 and the lower dash-dotted line to the T = ∞
initial state, whereas the soliod lines correspond to temperatures
βJ = 0.2, 0.4, 0.6, 0.8, 1, 2, 4, 6, 8, and 10. The arrows indicate
increasing temperatures.

obtained by analyzing the linearized equations of motions
[22,23] showing that, albeit there is the possibility of a CDW
instability, the damping spectrum for small momenta q has the
form κq2. In particular, this system does not have a dissipative
gap and the convergence time diverges in the thermodynamic
limit.

Although the initial density matrix does not affect the steady
state of the system, the transient dynamics differs. Thus far we
used the ground state of H as the initial density matrix but
the superoperator framework allows us to start from arbitrary
mixed states. In particular, we consider thermal (Gibbs) initial
states at different temperatures. Whereas the time evolution
starting from the ground state shows only a mild increase in
entropy for small times, the short-time dynamics of a thermal
initial state a high temperatures, exemplified in Fig. 10 (see also
Fig. 9), shows a strong initial increase of SL/2 even exceeding
its steady-state value. The convergence of the energy and
the entropy to their large-time value, on the other hand, is
significantly faster for the large-T states. As the steady state
for finite interactions only has very short-ranged correlations,
to some extent resembling those of a high-T state as discussed
in Sec. III D, quantum correlation in the ground state has to be
diminished by the dissipator. Hence, it can be understood that
the large-T states will eventually converge faster as they are
more “classical” than low-T or ground states.

IV. CONCLUSION

We applied the superoperator renormalization algorithm
to a Bose-Hubbard chain with engineered bond dissipation
with a BEC dark state of the Liouvillian. In contrast to
a translationally invariant setup, frustration of the kinetic
energy leads to a nontrivial interplay with the dissipator that
drives the system into a mixed state. As a consequence, the
Green’s function is suppressed at the boundaries but the bulk
for a large enough system is similar to the pure dark state.
Although a possible CDW instability has eluded itself from our
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calculations—possibly due to the small system sizes accessible
with our method—a possible precursor of this phenomenon in
terms of a long-wavelength density modulation was found.
For the interacting system, ODLRO is lost completely and the
correlation functions compare quite well to thermal states at
some effective interaction.

Apart from steady-state phenomena, we present data for
the time evolution from which we probe the low-wavelength
nature of the damping spectrum and confirm a closing of
the dissipative gap for large system sizes. Although the
damping in the long-time limit is solely determined by the
spectrum of the superoperator, the buildup and convergence
of operator space entropy for thermal initial states shows
intriguing properties such that the Gibbs initial systems at
T = 0 and T = ∞ provide upper and lower bounds for the
operator space entanglement for thermal initial states.

The presented study has direct consequences for possible
experimental realizations as they illustrate how boundary
effects affect the nature of the steady state and can lead to
unwanted heating. The convergence to the steady state, on the
other hand, improves for mixed initial states at intermediate
temperatures highlighting the feature that an initial-state
preparation is not needed but (almost) each initial system will
be driven to the same steady state.
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APPENDIX A: INTEGRATION OF THE SINGLE
PARTICLE PROBLEM

We integrate the equations of motion for a single boson
on a chain of length L using a fourth-order Runge-Kutta
integrator. This simple integration gives us some insight into
the convergence and nature of the steady state on the single

FIG. 11. (Color online) F = trρ2 for the single-particle problem
for J = 0 (upper panel) J = κ for different system sizes.

FIG. 12. (Color online) Finite-size extrapolation of F = trρ2 for
the single-particle problem at J = κ .

particle level and supplements the findings for the many-body
problem discussed in this paper.

First, Fig. 11 shows the real-time evolution of purity F =
trρ2 starting from the ground state of H. If the density matrix
evolves purely dissipative (J = 0), the system will be mixed in
the transient regime and eventually converge towards the pure
state |�〉. The competition of kinetic energy and the dissipator,
however, drives the system into a mixed state for long times.
The steady-state value of F can be extrapolated to a finite
value in the thermodynamic limit (see Fig. 12); i.e., the state
is mixed even for L → ∞ and F ss → 0.32.

The convergence towards the steady state is exponential,
F (t) − F ss ∝ exp(−αtκ), as Fig. 13 clearly shows, where the
damping rate α scales with system size as α ∝ L−2. This
can be attributed to the dampening spectrum that is found
to be of the form κq2 [2,22] for small momenta q, where the
smallest momentum accessible is proportional to 1/L, thus
leading to the smallest damping rate proportional to κ/L2. The
results obtained for the single-particle problem are compatible
with the MPS simulations including many-particle effects and
interactions.

FIG. 13. (Color online) Convergence of F = trρ2 for the single-
particle problem at J = κ . Inset: Power-law behavior of the exponent
α = τ−1 ∝ L−2.
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APPENDIX B: SUPEROPERATOR
RENORMALIZATION GROUP

We simulate the time evolution of the density matrix
governed by the quantum master equation in Eq. (1) using
a generalization [32] of the time evolving block decimation
(TEBD) algorithm [49,50]. Within the superoperator renor-
malization scheme, the density matrix for a chain with L lattice
sites and open boundary conditions,

ρ =
d∑

ia ,ja=1

ci1,i2,...iL,j1,j2,...,jL
||i1,i2, . . . ,iL; j1,j2, . . . ,jL〉〉,

(B1)

is represented by a MPS in an enlarged Hilbert space of
dimension D = d2, where d is the size of the local Hilbert
space H, by consecutive singular-value decompositions of
the tensor ci1,i2,i3,...,j1,j2,j3,.... Thus, we recover the Vidal
representation of ρ:

ρ =
d∑

ia ,ja=1

χ∑
α,β,...,γ=1

B
[1]i1,j1
1,α λ[1]

α B
[2]i2,j2
α,β λ

[2]
β · · · λ[L−1]

γ

× B
[L]iL,jL

γ,1 ||i1,i2, . . . ,iL; j1,j2, . . . ,jL〉〉. (B2)

Here, ||i1,i2, . . . ,iL; j1,j2, . . . ,jL〉〉 = ⊗L
a=1 |ia〉〈ja| are the

basis states for the density matrix in the product Hilbert space

H⊗L ⊗ H⊗L. The Schmidt spectrum {λ[l]
α } is truncated, keep-

ing only the largest χ Schmidt values. This provides a faithful
approximation in terms of MPS if the Schmidt spectrum decays
fast enough [32]. The equation of motion for the density matrix
is integrated using a Suzuki-Trotter decomposition of the time
evolution superoperator. Expectation values with respect to
ρ of some operators are calculated using the standard form
〈O〉 = Z−1tr[ρÔ], where Z = trρ is the partition function.
For convenience, we drop the 〈·〉 in this article.

We use imaginary time propagation to prepare our system
in the ground state of H. In the same manner, thermal states
can be obtained starting the imaginary time propagation with
the infinitely hot state.

In analogy to the entanglement entropy in pure states, the
operator space entanglement entropy [51] of a bipartition A of
size l, Sl , can be obtained from the Schmidt spectrum as

Sl = −2
∑

α

(
λl

α

)2
ln λl

α. (B3)

For a pure state ρ = |�〉〈�|, Sl is twice the von-Neumann
entropy SvN

l = −∑
α τ [l]

α ln τ [l]
α of |�〉, where {τ [l]

α } are the
eigenvalues of the reduced density matrix trBρ and B denotes
the complement of block A [52].
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