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We theoretically propose the measurement of phonon entanglement as a tool to study the quantum dynamics
of atomic Bose-Einstein condensates. In particular, we show that nonseparability of the phonon modes offers
a unambiguous signature of the quantum origin of the phonon emission by analog Hawking and dynamical
Casimir processes. The method is numerically validated by applying a generalized Peres-Horodecki criterion
to a truncated Wigner description of the condensate. Viable strategies to implement the proposed scheme in
state-of-the-art experiments are discussed.

DOI: 10.1103/PhysRevA.90.033607 PACS number(s): 03.75.Gg, 42.50.Lc, 04.60.−m

I. INTRODUCTION

Pairs of entangled photons are a crucial element of
many quantum optical experiments, from Hong-Ou-Mandel
two-photon interference [1], to fundamental tests of Bell
inequalities [2], to linear optical schemes for quantum in-
formation processing [3]. Following the dramatic advances
in cooling and manipulating atomic samples, many groups
have recently demonstrated entanglement effects using atomic
matter waves: Among the most striking observations are
nonclassical violations of the Cauchy-Schwartz inequalities
in the product of atomic collisions [4,5] and noise reduction
in atomic interferometry experiments using squeezed matter
fields [6,7].

A most exciting challenge is now to extend quantum optical
concepts from single-particle excitations such as photons or
atoms to the collective hydrodynamic degrees of freedom of a
macroscopic fluid. The experimental investigation of quantum
hydrodynamical entangled states1 is in fact a fundamental
step in the study of exquisite quantum effects in macroscopic
mechanical systems.2 Beyond standard quantum information
applications, the measurement and the manipulation of collec-
tive variable entanglement using quantum optical techniques
represent promising tools also for the investigation of atomic
many-body systems undergoing large quantum fluctuations,
e.g., close to a quantum phase transition [11], as already
proposed in the context of spin systems [12–16].

Among the first proposals in this quantum hydrodynamics
direction, the pioneering work [17] anticipated that quantum
hydrodynamical fluctuations in a moving fluid are converted
at a black-hole sonic horizon into pairs of propagating
phonons via a mechanism analogous to the Hawking effect
of gravitational physics [18]. Since then, this analogy between
phonons in fluids and quantum fields on curved space-times

*stefano.finazzi@univ-paris-diderot.fr
†carusott@science.unitn.it
1Note that the term quantum hydrodynamics is used here in a

somehow stricter sense than in most many-body literature where
it broadly refers to generic hydrodynamic effects in a quantum fluid.

2See Refs. [8–10] for examples of entanglement in macroscopic
optical systems.

has experienced impressive developments [19]. In particular,
atomic Bose-Einstein condensates (BECs) appear as most
promising platforms where one can study the conversion of
quantum fluctuations into entangled pairs of real phonons:
Acoustic Hawking radiation (HR) is expected when an
acoustic horizon is present in a stationary flowing BEC
[20,21]. On the other hand, a rapid temporal variation of
the speed of sound in homogeneous fluids [22–26] leads to
the emission of pairs of opposite momentum phonons via
a process analogous to the dynamical Casimir effect (DCE)
[27,28] and to particle production in an expanding universe
[29,30]. Experimental research along these lines is presently
very active: The emission of classically correlated pairs was
observed in a temporally modulated BEC [31] and a sonic
horizon was realized in a flowing BEC [32].

As proposed in Refs. [26,33,34], an important window
on these emission phenomena is offered by the correlation
function of density fluctuations. However, while this quantity
encodes detailed information on the emission geometry and
is robust against a nonzero initial temperature, it does not
display any specific signature of the quantum origin of the
emission from zero-point fluctuations. Several strategies to fill
this gap are presently under study. For instance, nonclassical
phonon occupation statistics can be revealed by violations of
Cauchy-Schwartz inequalities, as proposed in Ref. [35]. A
yet stronger signature of the quantum origin of the emission
would be the nonseparability of the phonon state. From a
purely theoretical point of view this question was addressed in
various contexts: time-modulated atomic BECs [36], analog
black holes in BECs [37,38] and ion rings [39], fluids of
light [40], and generic dissipative media [41,42]. Still, little
attention was devoted to experimental strategies to actually
detect this entanglement.

In this paper we propose a realistic scheme to experimen-
tally measure the entanglement between the phonon degrees
of freedom of an atomic BEC. The theoretical framework
and the general principles of the method are presented in
Sec. II. In Sec. III, the efficiency of the method is illustrated
on the spatial and spectral entanglement pattern of phonons
emitted by analog DCE and HR processes in one-dimensional
condensates: Specific signatures of the quantum origin of these
emissions from zero-point fluctuations are identified. Viable
strategies to experimentally implement our proposal in realistic
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setups are discussed in Sec. IV. Conclusions are finally drawn
in Sec.V.

II. THEORETICAL FRAMEWORK

A. Generalized Peres-Horodecki (GPH) criterion

Among the many available criteria to assess whether the
state of a bipartite system is entangled [43], we adopt the one
proposed by Peres and Horodecki [44,45] and later extended in
Refs. [46,47] to the continuous variable case of present interest.
Consider two generic degrees of freedom j = 1,2 described
by the pairwise canonically conjugated operators q̂j and p̂j .
We group these operators in a vector X̂ ≡ (q̂1,p̂1,q̂2,p̂2), with
expectation value X̄ = 〈X̂〉ρ̂ = tr(X̂ρ̂) and covariance matrix
Vαβ = 1

2 〈�X̂α�X̂β + �X̂β�X̂α〉ρ̂ , where �X̂ = X̂ − 〈X̂〉.
Following Ref. [47], the generalized Perez-Horodecki

(GPH) criterion states that if a state is separable, then the
GPH function P defined as

P ≡ det A det B +
(

1

4
− |det C|

)2

− tr[AJCJBJCT J ] − 1

4
(det A + det B) (1)

is positive. Here A,B,C are 2 × 2 submatrices of V and J is
the 2 × 2 simplectic matrix,

V =
(

A C

CT B

)
, J =

(
0 1

−1 0

)
. (2)

B. Phonon operators

To practically use the GPH criterion to assess phonon
entanglement in a specific configuration, one must first
identify the relevant degrees of freedom and construct the
corresponding q̂j and p̂j operators in terms of the microscopic
phonon operators. The associated bosonic operators then read
âj = (q̂j + i p̂j )/

√
2 and satisfy bosonic commutation rules

[âj ,âl] = 0 and [âj ,â
†
l ] = δjl .

To capture phonon entanglement features in both real and
momentum spaces, it is convenient to introduce phonon wave-
packet operators âk,x0 defined by projecting the full atomic
field �̂(x) onto a localized phonon wave packet,

âk,x0 =
∫

dx f ∗
k,x0

(x)[uk �̂(x) − vk�̂(x)†], (3)

with the Gaussian envelope

fk,x0 (x) = (πσ 2)−1/4e−(x−x0)2/2σ 2
eik(x−x0) (4)

centered at a spatial position x0, of width σ and carrier
wave vector k. Generalization of this one-dimensional formula
to two- and three-dimensional cases is straightforward. The
exponential factor in the definition �̂(x) ≡ e−i(Kx−�t) �̂(x)
takes into account the space and time dependence of the
condensate phase with wave vector K and frequency � =
�K2/2m + gn. The Bogoliubov coefficients uk and vk serve
to extract the phonon amplitude from the full atomic field. As
usual [48], they are defined by

uk ± vk =
(

εk

εk + 2μ

)±1/4

(5)

in terms of the kinetic and interaction energies εk = �
2k2/2m

and μ = gn, where m is the atomic mass, n the one-
dimensional density, and g the effective one-dimensional
interaction constant [34].

The phonon entanglement involves the measurement of
phonon operators â1 = âk1,x1 and â2 = âk2,x2 centered at
different wave vectors k1,2 and different spatial positions x1,2.
As a first step, one must ensure that these â1,2 indeed satisfy
the proper bosonic commutation rules. Using the canonical
commutation relation for �̂ and assuming σ |k1,2| � 1 to
suppress overlap with the condensate mode [48], one can write
the commutators as[

âk1,x1 ,âk2,x2

] = (
vk1uk2 − uk1vk2

)
ei(x1−x2)(k1−k2)/2

× e−(x1−x2)2/4σ 2
e−σ 2(k1+k2)2/4, (6)

[
âk1,x1 ,â

†
k2,x2

] = (
uk1uk2 − vk1vk2

)
ei(x1−x2)(k1+k2)/2

× e−(x1−x2)2/4σ 2
e−σ 2(k1−k2)2/4. (7)

As expected, all commutators vanish when the two points
x1,2 are separated by a distance |x1 − x2| � σ . Under the
assumed condition σ |k1,2| � 1, one has [âk1,x1 ,âk2,x2 ] ≈ 0 for
any value of |x1 − x2|. Furthermore, [âk1,x1 ,â

†
k2,x2

] ≈ 0 for
well-separated momenta σ |k1 − k2| � 1, while it tends to 1
for wave packets overlapping in both real (|x1 − x2| 	 σ ) and
momentum (σ |k1 − k2| 	 1) spaces.

Summarizing, a sufficient condition for the â1 = âk1,x1 and
â2 = âk2,x2 phonon operators to satisfy the desired bosonic
commutation rules is that the positions are well separated in
space |x1 − x2| � σ and the wave vectors are well separated
from each other σ |k1 − k2| 	 1 and from zero σ |k1,2| � 1.

C. Calculation of the GPH function

An efficient tool to calculate the covariance matrix V and
the GPH function P in a realistic configuration is provided
by the truncated Wigner method [49,50]: The quantum
field is represented in terms of a stochastic classical field
distributed according to the so-called Wigner distribution and
the expectation value of any symmetrized operator is obtained
as the average of the corresponding classical quantity.

In our calculations, we numerically sampled the Wigner
distribution [34] using a large number Nr of stochastic wave
functions �j=1,...,Nr (x,t): The initial conditions �j (x,t = 0)
are chosen in a way to reproduce either the ground state or a
thermal distribution at the desired T . At later times t > 0, each
realization �j (x,t) evolves according to a Gross-Pitaevskii
equation. At each time, the expectation value of the phonon
operators âk,x0 are obtained as the average

〈
âk,x0

〉 = 1

Nr

Nr∑
j=1

α
j

k,x0
(8)

of the corresponding classical quantities extracted from each
realization �j (x,t) via the classical counterpart of Eq. (3),

α
j

k,x0
(t) =

∫
dx f ∗

k,x0
(x)[uk�

j (x,t) − vk�
j (x,t)∗]. (9)
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Analogously, the elements of the correlation matrix V involved
in the GPH function P via Eq. (1) are obtained as the average
of the products of the corresponding classical amplitudes
(9).

III. REAL- AND MOMENTUM-SPACE STRUCTURE OF
ENTANGLEMENT

A. Analog dynamical Casimir emission

As a first application of our method, in this section we study
the entanglement between phonons spontaneously created in
spatially homogeneous one-dimensional condensates at rest by
a sudden variation of the speed of sound c from c− at t = 0−
to c+ at t = 0+, obtained, e.g., via a modulation of the atomic
interaction constant. This quench process is a condensed-
matter analog of the DCE and of the spontaneous particle
creation in an expanding universe [22,23,25,26,51]. While the
classical correlations experimentally observed in Ref. [31]
originate from thermally stimulated processes, detection of
entanglement in the same experiment starting from a lower
initial temperature would be an unambiguous signature of
quantum processes. A first theoretical study in this direction
[36] was restricted to correlations in wave-vector space. Here
we extend the discussion by unveiling peculiar structures in
the space-wave-vector entanglement pattern.

In Fig. 1 we display the region in the k1-k2 momentum
plane where the GPH function P is negative. The numerical
observation is performed at the same time t = tobs =
120�/μ−, for different distances, �x = x2 − x1 = 120ξ− (left
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FIG. 1. Entanglement between phonons generated by the analog
DCE. The shading indicates the regions of the k1-k2 momentum plane
where the GPH function P < 0 (darker gray, larger |P|) for wave
packets centered at �x = |x1 − x2| = 120ξ− (left) and 240ξ− (right)
with σ = 35ξ−, at kBT /μ− = 0 (top) and 0.2 (bottom). Dashed lines
indicate k2 = −k1. In all plots tobs = 120�/μ−.
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FIG. 2. Entanglement between phonons generated by the analog
DCE. The shading indicates the region of the �x-tobs plane where
the GPH function P < 0 (darker gray, larger |P|) for wave packets
with k2 = −k1 = 0.25/ξ− (top) and 1/ξ− (bottom) with σ = 15ξ−,
at T = 0. Dashed lines indicate tobs = �x/2|vgr(k1,2)|. In all plots
tobs = 120�/μ−.

panels) and 240ξ− (right), and initial temperatures kBT /μ− =
0 (top) and 0.2 (bottom), measured in units of the initial
μ− = mc2

− and healing length ξ− = �/mc−. According to
translational invariance, entanglement is visible only between
phonons with opposite wave vectors k1 = −k2 (up to an
uncertainty 1/σ set by the wave-packet size). In analogy
with density correlations [26,52], entanglement for a van-
ishing initial temperature T = 0 (upper panels) is strongest
at |k1,2| = k̄ = 0 (left) and 0.93/ξ− (right), satisfying the
ballistic condition 2vgr(k̄)tobs = �x, where vgr(k) = dω/dk

is the group velocity derived by the Bogoliubov dispersion
ω2 = c2k2 + �

2k4/4m2.
However, in contrast to density correlations, which are

reinforced by thermally stimulated processes, entanglement is
very sensitive to the zero-point nature of the initial fluctuations.
The decrease of the signal for growing temperatures is apparent
when comparing the upper and lower panels. In agreement
with Ref. [36], entanglement disappears first at low k (lower
left), because of the large initial thermal occupation of low-k
modes, while it is more robust at large k (lower right). Overall,
entanglement persists up to kBT /μ− 
 0.615. Note that
effective temperatures kBTeff/μ 
 1/2 below this limit were
experimentally demonstrated for the asymmetric modes of
split one-dimensional condensates in Refs. [53,54]. Arbitrarily
lower temperatures are expected for slower, quasiadiabatic
splitting sequences.3

The peculiar spatial structure of the entanglement pattern is
illustrated in Fig. 2, where the GPH function P is plotted in the
�x-tobs plane for two values |k1,2| = k̃ at T = 0. Entanglement
is concentrated within a distance σ from the (dashed) straight

3This procedure is valid only for one-dimensional systems where
symmetric and antisymmetric modes are efficiently decoupled. The
initially negligible occupation of the gapped antisymmetric mode
remains negligible during the adiabatic splitting. As the HR and DCE
occur independently in the symmetric and antisymmetric channels,
one only needs a detection scheme that is able to isolate the
antisymmetric component of the fluctuations [53,54].
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FIG. 3. Cut of the left panel of Fig. 2 along the horizontal dotted
line: The GPH P function is plotted as a function of the distance �x

between the centers of two wave packets with opposite wave vectors
k2 = −k1 = 0.25/ξ− and spatial width σ = 15ξ−, at tobs = 110 �/μ−
after the sudden temporal modulation originating the analog DCE.
Solid curve: Best fit of the Gaussian function of Eq. (10); values of
the parameters in Eq. (11).

line tobs = �x/2|vgr(k)| whose slope is determined by the
selected phonon wave vector k = k̃.

To provide more quantitative insight on the behavior of
the GPH function P , in Fig. 3 we plot the numerical values
of P (dots) as a function of �x for a cut at constant time
tobs = 110�/μ− of the left panel of Fig. 2, as indicated by the
horizontal dotted line. The solid curve is a Gaussian fit of the
form

f (�x) = α + β e−(�x−ζ )2/2δ2
, (10)

whose parameters α, β, δ, and ζ have been determined through
a standard nonlinear chi-squared fit procedure, yielding

α ≈ 0.0196, β ≈ −0.146, δ ≈ 15.6ξ−, ζ ≈ 117 ξ−.

(11)

The presence of entanglement is attested by the negative value
of the GPH functionP at the bottom of the dip centered around
�x = ζ ≈ 117ξ−. The position of the dip is in good agreement
with the separation �x(tobs) = 2|vgr(k̃)|tobs ≈ 120ξ− that is
expected for the ballistic propagation of phonons at k̃ =
0.25/ξ−. Moreover, the width � ≈ 15.6 ξ− of the negative
dip well matches the spatial width of the wave packets,
σ = 15 ξ−.

To quantify the numerical precision with which the
quadrature variances need to be measured to reliably assess
entanglement, we quote here the values of the full covariance
matrix at the two points indicated in the figure as open
and solid dots. The first point is located at the distance
value �x = 120ξ− where entanglement is strongest: Here,
the covariance matrix is

V120 


⎛
⎜⎝

0.624 0 0.210 −0.284
0 0.624 −0.284 −0.210
0.210 −0.284 0.624 0

−0.284 −0.210 0 0.624

⎞
⎟⎠. (12)

The second point is located at a larger distance �x = 240ξ−
for which the phonon wave-packet operators are effectively
uncorrelated. As a result, not only is the submatrix C of
the covariance matrix defined in Eq. (2) zero, but the full

covariance matrix is diagonal:

V240 
 0.624 I4×4, (13)

where I4×4 is the 4 × 4 identity matrix. The numerical values
are given with three significant digits and all matrix elements
smaller than 10−5 have been set to zero.

B. Analog Hawking radiation

As a second application, we characterize the phonon
entanglement pattern that results from analog Hawking emis-
sion in a flowing condensate displaying a sonic black-hole
(BH) horizon. For the sake of simplicity, we focus on the
configuration of Ref. [34]: a condensate with homogeneous
density n(x) = n0 flowing with a uniform rightward velocity
v(x) = v0 > 0 (upper panel of Fig. 4). The sonic horizon is
created by a suitable space dependence of both the interaction
constant g(x) and the external potential V (x). In the upstream
(downstream) region, corresponding to the exterior (interior)
of the BH, the flow is subsonic (supersonic) c(x < 0) = csub >

v0 [c(x > 0) = csup < v0], while the point x = 0, where
c(x) = v0, behaves as the sonic horizon. As in Ref. [34], all
simulations start from a uniform flow configuration at given T

and the horizon is switched on at t = 0.
The physical origin of HR can be understood from the Bo-

goliubov dispersion relation (ω − v0k)2 = c2k2 + �
2k4/4m2

in the laboratory frame [55,56], shown in the lower panels of
Fig. 4 for the subsonic (left) and supersonic (right) regions.
Owing to the presence of negative energy modes in the super-
sonic region, pairs of phonons can be spontaneously created
at no energy cost: The emission of a positive energy phonon
propagating away from the BH (solid dot) is compensated by
the simultaneous emission of a negative energy phonon falling
inside the BH (open dot); energy conservation only imposes
a relation ωsub(k1) = −ωsup(k2) between the momenta k1,2 of
the two emitted phonons.
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FIG. 4. Flowing condensate showing a sonic horizon at x = 0.
Upper panel: Flow velocity (dashed line) and speed of sound (solid
line). Lower panels: Bogoliubov dispersion in the subsonic (left) and
supersonic (right) regions. Open and solid dots indicate the modes
where the dominant Hawking emission occurs.
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FIG. 5. Entanglement between Hawking phonons. The shading
indicates the region of the k1-k2 momentum plane where the GPH
function P < 0 (darker gray, larger |P|) for initial temperatures
kBT /μsub = 0 (left) and 0.1 (right) and a late observation time
tobs = 480�/μsub, where μsub = mc2

sub in the subsonic region. To
optimize the signal the wave packets are located at x1 = −61ξsub

and x2 = 59ξsub with σ = 35ξsub. Dashed lines indicate the energy
conservation condition (see text). The velocity profile is the one shown
in Fig. 4.

This feature is illustrated in Fig. 5 where the GPH function
P is plotted in the k1-k2 plane for two values of the initial
temperature kBT /μsub = 0 (left) and 0.1 (right) for a late
time at which P has attained its steady-state value; the
positions x1,2 lie on the two sides of the horizon, respectively.
As expected, entanglement is present for pairs of phonons
whose wave vectors k1,2 are within a distance 1/σ from the
dashed line, indicating the energy conservation condition. This
result is the entanglement counterpart of the momentum-space
correlations of Ref. [57] and of the sub-Poissonian features of
Ref. [35]. As in the DCE case, the entanglement signal first
disappears at low k for growing temperatures4 and eventually
completely disappears for kBT /μsub � 0.195. As already
mentioned, temperatures below this bound may be achieved
through an adiabatic generalization of the splitting technique of
Refs. [53,54].

Finally, the spatial structure of the entanglement pattern in
the x1-x2 plane is shown in Fig. 6. Wave vectors k1 = k2 =
−0.25/ξsub approximately satisfying the energy conservation
condition are chosen. Analogously to density correlations
[33,34], entanglement is maximum in the vicinity of the
dashed lines indicating the ballistic condition x1/v

gr
sub(k1) =

x2/v
gr
sup(k2). As Hawking phonons start being emitted after

the horizon formation time t = 0, entanglement is restricted
to the x1 > v

gr
sub(k1)tobs and x2 < v

gr
sup(k2)tobs regions [see the

different lengths of the entanglement tongues at tobsμsub/� =
240 (left) and 480 (right)].

IV. EXPERIMENTAL REMARKS

In the previous sections we have theoretically studied
the entanglement pattern that results from the quantum

4A calculation with a smaller σ (not shown) confirms that the weak
Hawking emission rate at high k is blurred by the finite-momentum
resolution 1/σ : The entanglement band in the k1-k2 plane becomes
proportionally wider and the entanglement of high-momentum modes
disappears at lower temperatures.
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FIG. 6. Entanglement between Hawking phonons. The shading
indicates the region of the x1-x2 plane where the GPH function P < 0
(darker gray, larger |P|) for different evolution times tobsμsub/� =
240 (left) and 480 (right). Wave packets are centered at k2 = k1 =
−0.25/ξsub with σ = 15ξsub. Initial temperature T = 0. Dashed lines
indicate the ballistic condition (see text). The velocity profile is the
one shown in Fig. 4.

emission of phonons via DCE and HR processes. Our study
was based on numerical data for the covariance matrix V

obtained from a truncated Wigner sampling of the atomic
quantum field. A practical implementation of our proposal
requires a method to efficiently measure the covariance
matrix V in an actual experiment: A brief discussion of
some possible experimental strategies to perform this task
is the subject of this last section. It is interesting to note
that a closely related strategy was recently adopted in a
quantum optical framework to assess the quantum properties
of the DCE emission in a circuit quantum electrodynamics
device [58,59].

One possibility to measure the phonon field consists of
mapping it onto a bare atomic field through phonon evap-
oration [31,60] and then performing a homodyne detection
of the noncondensed atoms [61–63]. Unfortunately, this
technique is likely to require a very precise control of the
relative phase of the condensate and the matter-wave local
oscillators.

Another, possibly easier, alternative consists of measuring
the Fourier component of the atomic density fluctuations
corresponding to the phonon mode of interest. For the sake
of concreteness, we shall focus our attention on a scheme
based on coupling the atomic condensate to an optical cavity
which has already been experimentally exploited in a slightly
different context. As it was studied in Refs. [64–66], the
frequency shift of the optical mode of a cavity enclosing the
condensate is proportional to the amplitude of the phonon
mode maximizing the overlap with the optical cavity mode. All
quadratures of the phonon amplitude can then be reconstructed
from a few measurements of the optical mode shift performed
at slightly different positions and times, so the complete
covariance matrix V is finally obtained by averaging over
many realizations of the experiment. While doing so, it
is essential to note that some of the matrix elements of
V involve noncommuting observables, so clever schemes
are needed to reformulate them in terms of commuting
observables to be measured on the same realization of the
experiment.
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A. Phonons and density fluctuations

We begin our discussion from the simplest case of a
homogeneous and stationarily flowing one-dimensional Bose-
condensed atomic gas. Within the Bogoliubov picture [48,67],
we decompose the atomic field into a classical coherent
condensate and quantized phonon excitations on top of the
condensate,

�̂(x) = eiKx

[
�0 +

∫
dk

2π

(
âkuke

ikx + â
†
kv

∗
k e

−ikx
)]

, (14)

where K and � are the momentum and the frequency of the
condensate defined after Eq. (4), �0 is chosen as real and
positive, uk and vk as real [see Eq. (5)], and âk are bosonic
operators describing the amplitude of the plane-wave phonon
modes.

Reminding the Bogoliubov form of the atomic density
operator,

n̂(x) = �̂†(x)�̂(x)

≈ �2
0 + �0

∫
dk

2π
(uk + vk)(âk eikx + H.c.), (15)

it is straightforward to express the k0 �= 0 component of the
Fourier transform of the density in terms of some quadrature
of the phonon operators,

n̂(k0) =
∫

dx e−ik0x n̂(x) = �0 (uk + vk)
(
âk0 + â

†
−k0

)
. (16)

Taking into account the harmonic evolution of free phonon
operators at frequency ωk0 , the other quadratures can be
extracted by repeating the density measurement at time �t =
π/(2ωk0 ) later, which gives

n̂(k0,�t) =
∫

dx e−ik0x n̂(x)

= −i�0 (uk + vk)
(
âk0 − â

†
−k0

)
. (17)

A naive look at these formulas might suggest that a complete
information on the covariance matrix V could be extracted
from a simultaneous measurement of the four observables,
n̂(k0) ± n̂†(k0) and n̂(k0,�t) ± n̂†(k0,�t), followed by a suit-
able averaging over realizations. Still, great care has to be
paid to the fact that only commuting observables can be
simultaneously measured in quantum mechanics and, more
generally, measurement of one observable can affect later
measurement of other ones.

B. Optomechanical detection of phonons

To firmly assess these issues, from now on we focus our
attention on the cavity scheme experimentally pioneered in
Refs. [64,65] and sketched in Fig. 7. In such systems, the
optomechanical coupling between the cavity mode and the
density fluctuations in the atomic condensate can be written in
the form [66]

Ĥint = G2

�

∫
dx Ê †(x)Ê(x)n̂(x), (18)

where Ê(x) = Ec(x)(ĉ + ĉ†) is the electric field operator in the
(single-mode) cavity mode at position x, G is the atom-light
coupling, and � is the detuning between the atomic transition

θ

1

2 3

4

FIG. 7. (Color online) Sketch of the proposed experimental cav-
ity configuration. The cavity mode has a ring structure with two
intersecting running waves generating a longitudinal standing-wave
pattern in the region of interest.

and the cavity mode frequency. As a most promising example,
in the figure we show the eight-shaped running optical mode
of a ring cavity enclosed by four mirrors. At the condensate
position, the cavity mode consists of a standing wave created
by the interference of two intersecting beams forming an angle
θ with the condensate velocity. Taking into account the waist
σc of the cavity mode, the longitudinal profile of the cavity
mode in this region has the form

Ec(x) = A cos

(
k0x

2

)
e−(x−x0)2/2σ 2

, (19)

where k0 = 2kc cos θ , kc is the wave vector of the field forming
the standing wave in the cavity, and σ = σc/ sin θ is the spatial
size of the measurement region centered at x0.

Postponing the more realistic case of a finite cavity mode
to the next section, we first consider the σ → ∞ limit in
which the light field in the cavity forms an infinite standing
wave. In this limit, the interaction Hamiltonian involves the
overlap

Ôk0 = 2
∫

dx n̂(x) cos2

(
k0x

2

)

=
∫

dx n̂(x)[1 + cos(k0x)] = �2
0V + ν̂k0 , (20)

where the first constant �2
0V is the total number of condensate

atoms in the interaction region and the fluctuation term ν̂k0

involves a combination of phonon operators at ±k0 of the
form

ν̂k0 = (uk0 + vk0 )�0

2

(
âk0 + â

†
k0

+ â−k0 + â
†
−k0

)

= (uk0 + vk0 )�0√
2

(
q̂k0 + q̂−k0

)
. (21)

Here, we have used uk0 = u−k0 and vk0 = v−k0 and we have de-
fined the phonon quadrature operators as q̂k0 = (âk0 + â

†
k0

)/
√

2

and p̂k0 = (âk0 − â
†
k0

)/
√

2i.
Noting that the interaction Hamiltonian (18) is of the

generic form

Ĥint = G ĉ† ĉ Ôk0 (22)

in terms of the cavity mode operator ĉ, a nondestructive
measurement of the overlap operator Ôk0 can be obtained
by measuring the cavity frequency shift, which in turn can
be extracted from the transmission spectrum through the
cavity.
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In the states of the fluid considered in this work, the
expectation value of ν̂k0 vanishes 〈ν̂k0〉 = 0, so for each
realization of the experiment,

ν̂k0 = Ôk0 − 〈
Ôk0

〉 = Ôk0 − �2
0V. (23)

By performing a similar measurement of Ôk0 after a time
delay �t , using a detector spatially displaced by �x, different
combinations of the operators âk0 , â

†
k0

, â−k0 , and â
†
−k0

can be
measured:

ν̂k0 (�t,�x) ≡
∫

dx n(�t,x) cos[k0(x − �x)]

=
(
uk0 + vk0

)
�0

2

[
âk0e

−i(ωk0 �t−k0�x)

+ â−k0e
−i(ω−k0 �t+k0�x) + H.c.

]
, (24)

where

ωk0 = ω̃k0 + vk0, ω−k0 = ω̃k0 − vk0, (25)

ω̃k0 is the phonon frequency in the reference frame where the
condensate is at rest, and v = �K/m is the velocity of the
condensate. Defining the temporal �τ and comoving spatial
�χ phase shift as

�τ ≡ ω̃k0 �t, �χ ≡ k0 �x − v�t, (26)

all quadratures of interest are grouped in the normalized
operators

N̂k0 (�τ,�χ ) ≡
√

2

�0
(
uk0 + vk0

) ν̂k0 (�t,�x̃), (27)

taken at suitable values of �τ and �χ , namely,

q̂k0 + q̂−k0 = N̂k0 (0,0), (28)

q̂k0 − q̂−k0 = N̂k0

(π

2
,
π

2

)
, (29)

p̂k0 + p̂−k0 = N̂k0

(π

2
,0

)
, (30)

p̂k0 − p̂−k0 = N̂k0

(
0, − π

2

)
. (31)

Since q̂k0 + q̂−k0 and q̂k0 − q̂−k0 commute, the corresponding
normalized phonon operators at different times N̂k0 (0,0) and
N̂k0 (π

2 , π
2 ) can be measured together on the same realization of

the experiment. This allows one to simultaneously measure

q̂k0 = 1

2

[
N̂k0 (0,0) + N̂k0

(π

2
,
π

2

)]
, (32)

q̂−k0 = 1

2

[
N̂k0 (0,0) − N̂k0

(π

2
,
π

2

)]
, (33)

for each realization of the experiment. After averaging over
many realizations, one can estimate the expectation values
〈q̂k0〉 and 〈q̂−k0〉 as well as the variances 〈q̂2

k0
〉, 〈q̂2

−k0
〉, and the

cross product

〈
q̂k0 q̂−k0

〉 = 1

4

[〈
N̂k0 (0,0)

2〉 −
〈
N̂k0

(π

2
,
π

2

)2
〉]

. (34)

Note that, differently from a standard in situ measurement
of the density via, e.g., phase contrast imaging [68] which
simultaneously projects the many-body wave function on
eigenstates of the density operators n̂(x) at all positions x,
our proposed cavity-assisted measurement is only sensitive to
the desired quadratures of the phonon operators and leaves all
other quadratures and all other phonon modes unaffected. This
is crucial to be able to perform a second measurement after a
certain time without being disturbed by the result of the first
measurement.

Analogously, the operators p̂k0 + p̂−k0 and p̂k0 − p̂−k0

commute, so one can measure N̂k0 (π/2,0) and N̂k0 (0, − π/2)
on the same realization. This allows one to construct the
expectation values 〈p̂k0〉 and 〈p̂−k0〉 as well as all required
variances 〈p̂2

k0
〉, 〈p̂2

−k0
〉, and cross products

〈
p̂k0 p̂−k0

〉 = 1

4

[〈
N̂k0

(π

2
,0

)2
〉
−

〈
N̂k0

(
0, − π

2

)2
〉]

. (35)

The measurement of the remaining covariance 〈q̂k0 p̂k0 +
p̂k0 q̂k0〉 requires a bit longer procedure. As the commutators

[
q̂k0 + q̂−k0 ,p̂k0 − p̂−k0

] = [
q̂k0 − q̂−k0 ,p̂k0 + p̂−k0

]
= [

p̂k0 + q̂−k0 ,q̂k0 + p̂−k0

] = 0

(36)

vanish, all following quantities can be experimentally mea-
sured:〈

N̂k0 (0,0)N̂k0

(
0, − π

2

)〉
= 〈(

q̂k0 + q̂−k0

)(
p̂k0 − p̂−k0

)〉

= 〈
q̂k0 p̂k0

〉 − 〈
q̂−k0 p̂−k0

〉
− 〈

q̂k0 p̂−k0

〉 + 〈
q̂−k0 p̂k0

〉
, (37)

〈
N̂k0

(
π

2
,
π

2

)
N̂k0

(
π

2
,0

)〉
= 〈(

q̂k0 − q̂−k0

)(
p̂k0 + p̂−k0

)〉

= 〈
q̂k0 p̂k0

〉 − 〈
q̂−k0 p̂−k0

〉
+ 〈

q̂k0 p̂−k0

〉 − 〈
q̂−k0 p̂k0

〉
, (38)

〈
N̂k0

(
π

4
, − π

4

)
N̂k0

(
π

4
,
π

4

)〉
= 〈(

p̂k0 + q̂−k0

)(
q̂k0 + p̂−k0

)〉

= 〈
p̂k0 q̂k0

〉 + 〈
q̂−k0 p̂−k0

〉
+ 〈

q̂−k0 q̂k0

〉 + 〈
p̂k0 p̂−k0

〉
.

(39)

Summing the first two equations, one obtains

〈
q̂k0 p̂k0

〉 − 〈
q̂−k0 p̂−k0

〉 = 1

2

[〈
N̂k0 (0,0)N̂k0

(
0, − π

2

)〉

+
〈
N̂k0

(
π

2
,
π

2

)
N̂k0

(
π

2
,0

)〉]
.

(40)

Summing Eq. (40) with Eq. (39), noting that [q̂k0 ,q̂−k0 ] = 0,
and using Eqs. (34) and (35), one obtains an explicit expression
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for the desired cross correlation 〈q̂k0 p̂k0 + p̂k0 q̂k0〉,〈
q̂k0 p̂k0 + p̂k0 q̂k0

2

〉
= 1

2

〈
N̂k0

(
π

4
, − π

4

)
N̂k0

(
π

4
,
π

4

)〉

+ 1

4

[〈
N̂k0 (0,0)N̂k0

(
0, − π

2

)〉

+
〈
N̂k0

(
π

2
,
π

2

)
N̂k0

(
π

2
,0

)〉]

+1

8

[〈
N̂k0

(
π

2
,
π

2

)2〉

+
〈
N̂k0

(
0, − π

2

)2〉
− 〈

N̂k0 (0,0)
2〉

−
〈
N̂k0

(
π

2
,0

)2〉]
, (41)

with which the picture is complete.
Summing up, this discussion shows how a suitable series

of measurements of the atomic density using an optical cavity
provides full information on the whole covariance matrix V of
the quadratures of a given single phonon mode in a spatially
homogeneous atomic gas.

C. Spatial selectivity

This protocol is straightforwardly generalized to a spatially
selective measurement of the quadratures of phonon wave-
packet operators by taking into account the finite waist of
the cavity mode σc as depicted in Fig. 7. Using the actual
form (19) of the cavity mode profile, it is easy to see that the
overlap now becomes a localized operator Ok0,x0 proportional
to a combination of spatially and spectrally localized phonon
wave-packet operators of the form (3): All their correlations
can then be extracted using the method described in the
previous section.

The phonon quadratures at different spatial positions
x1,2 that enter the GPH function P can be measured by
using two independent cavity modes localized at different
positions x1,2: Commutation of observables at different po-
sitions is guaranteed provided |x1 − x2| � σc, as shown in
Sec. II. The desired wave vectors k1,2 are selected by a

suitable design of the two cavity modes. Within each cavity,
the spatial shift �x1,2 is easily controlled by changing the
relative phase between the two beams by, for instance, varying
the optical paths from mirror 1 to mirror 2 and from mirror 3
to mirror 4, while keeping the total path constant.

Summarizing, the diagonal submatrices A and B of the
covariance matrix V are extracted by applying at each
position x1,2 the method described in the previous section. The
nondiagonal submatrix C is extracted by taking the average of
the product of (commuting) q and p operators referring to the
two regions.

V. CONCLUSIONS

In this paper we have proposed entanglement between
phonon degrees of freedom as a probe to study the physics
of atomic Bose-Einstein condensates. We have illustrated a
viable experimental method to study the quantum coherence
of the phonons emitted by analog dynamical Casimir and
Hawking radiation processes. Numerical simulations show
that the temperatures needed to observe entanglement are
within the reach of state-of-the-art experiments and that a deep
insight in the emission processes can be extracted from the rich
structure of the entanglement patterns in real and momentum
spaces. In particular, such an experiment would provide an
unambiguous proof of the quantum origin of the analog
dynamical Casimir and Hawking radiations from zero-point
fluctuations.

As parametric downconversion and homodyne detection
are nowadays routinely used to generate and detect entangled
photons in photonics, we may anticipate that spontaneous
phonon-pair generation processes and our proposed entangle-
ment detection scheme will become standard tools to study
entangled phonons in BECs.
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