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Ground-state properties of ultracold trapped bosons with an immersed ionic impurity
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We consider a trapped atomic ensemble of interacting bosons in the presence of a single trapped ion in
a quasi-one-dimensional geometry. Our study is carried out by means of the newly developed multilayer-
multiconfiguration time-dependent Hartree method for bosons, a numerical exact approach to simulate quantum
many-body dynamics. In particular, we are interested in the scenario by which the ion is so strongly trapped that its
motion can be effectively neglected. This enables us to focus on the atomic ensemble only. With the development
of a model potential for the atom-ion interaction, we are able to numerically obtain the exact many-body ground
state of the atomic ensemble in the presence of an ion. We analyze the influence of the atom number and the
atom-atom interaction on the ground-state properties. Interestingly, for weakly interacting atoms, we find that the
ion impedes the transition from the ideal gas behavior to the Thomas-Fermi limit. Furthermore, we show that this
effect can be exploited to infer the presence of the ion both in the momentum distribution of the atomic cloud and
by observing the interference fringes occurring during an expansion of the quantum gas. In the strong interacting
regime, the ion modifies the fragmentation process in dependence of the atom number parity which allows a clear
identification of the latter in expansion experiments. Hence, we propose in both regimes experimentally viable
strategies to assess the impact of the ion on the many-body state of the atomic gas. This study serves as the first
building block for systematically investigating the many-body physics of such hybrid system.
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I. INTRODUCTION

In recent years, the physics of hybrid atom-ion systems
has attracted more and more attention, both theoretically and
experimentally [1]. Separately, both systems can be superbly
controlled with an unprecedented accuracy at the single-
particle as well as at the multiparticle level. However, the
combination of atoms and ions poses experimental challenges,
for example, in trapping technology, that have to be overcome.
The most prominent one is related to micromotion, as it
hampers the reaching of the ultracold collisional regime
for atoms and ions in trapping systems based on the Paul
trap scheme [2,3]. Alternative suggestions to circumvent
this problem have been put forward, for instance, by using
optical fields [4]. However, it is still an open question which
technological solution is the best to accomplish this task.

Nonetheless, hybrid atom-ion systems make it possible to
explore new physics that the two systems separately would not
permit. For instance, the development of atom-ion hybrid traps
[5] has paved the way for the investigation of ultracold elastic
and inelastic atom-ion collisions [6–11], controlled chemical
reactions [12–14], and sympathetic cooling of ions by means
of atomic gases [5,12,15,16]. Furthermore, such systems lend
themselves to applications in quantum information processing.
Exploiting the state-dependent atom-ion interaction allows for
the realization of quantum gates such that the advantages of
charged and neutral particles are combined [17] or makes
it possible to control the tunneling in a bosonic Josephson
junction such that the generation of entanglement between the
atomic system and a single ion can be engineered [18,19].
Moreover, such systems offer possibilities to investigate and
understand spin-decoherence processes and spin-exchange
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interactions at the fundamental level [20], aiming at negligible
spin relaxation and efficient spin exchange as desirable features
for quantum information science. Besides, atom-ion systems
are an excellent platform to simulate condensed-matter sys-
tems and Fröhlich polaron Hamiltonians more closely [21].
For instance, an important component of a solid-state system
is the charge-phonon coupling, which is naturally mimicked
in an atom-ion system [22]. Another interesting application of
atom-ion research concerns charge transport in an ultracold
quantum gas. Indeed, it has been shown that a neutral gas
doped with few ions should exhibit a transition from insulating
at higher temperatures to conducting at lower temperatures by
changing the nature of the charge mobility [23].

Apart from these long-term perspectives, up to now special
attention has been paid to hybrid systems realized in the
laboratory by immersion of a single ion into a Bose-Einstein
condensate (BEC) [9,10,24,25]. Theoretical studies of this
setup were considered in the past, predicting, for example,
the formation of mesoscopic molecular ions [26] and ion-
induced density bubbles [27]. However, most of the theoretical
investigations focused on either two or few-body physics or
on many-body analyses based on an effective single-particle
description, like mean-field theory, or by means of a two-mode
approximation, like in Ref. [18]. To the best of our knowledge,
an actual many-body study has been performed only in
Ref. [27]. That work, however, focuses on infinite interaction
strength, the so-called Tonks-Girardeau regime [28], which
can be solved exactly even in the presence of an impurity like
an ion. Hence, a detailed many-body study exploring the weak
up to the strong interaction regime in order to understand the
role of the atom-atom interaction, which can be tuned either by
Feshbach resonances [29] or by modulation of the confinement
[30], is still missing.

Therefore, the aim of the present work is to investigate such
a hybrid system in the ultracold regime from a many-body
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point of view. To this end, we employ the recently developed
multilayer multiconfiguration time-dependent Hartree method
for bosons (ML-MCTDHB) [31,32], which is a numerical
exact tool to perform time-dependent simulations of many-
body quantum systems. The method belongs to the family of
multiconfiguration time-dependent Hartree methods [33,34]
existing for bosons [35] and fermions [36]. We emphasize
that the combination of the multilayer structure together with
the inclusion of the particle symmetry of ML-MCTDHB
is unique such that it perfectly suits the simulation of the
dynamics of such hybrid quantum systems. Besides, by means
of an improved relaxation method [34] based on imaginary
time propagation, ML-MCTDHB makes it possible also to
determine stationary states (ground and excited states) and
their properties.

In particular, we concentrate on the scenario in which a
single strongly trapped ion is immersed in a cloud of ultracold
atomic bosons held in a quasi-one-dimensional (quasi-1D)
trap. Since we consider the experimentally realistic situation
in which the ion is trapped much more tightly than the atoms
and since we assume that the ion is prepared in the ground
state of its trap (e.g., by sideband cooling), the ion can be
treated statically. This enables us to neglect the ionic motion.
Of course, these assumptions simplify the simulation of the
many-body problem, but we would like to note that this is also
the natural first step to investigate the many-body dynamics in
the presence of an impurity ion.

Our analysis focuses mainly on the static properties of this
system and the dynamics of the expansion of the quantum gas.
More precisely, we investigate in detail the impact of the ion on
the atomic cloud by comparing the ground-state properties to
the situation without ion by varying both the atom number and
the atom-atom interaction. Interestingly, for weakly interacting
atoms, we find that the ion impedes the transition from the
ideal gas behavior to the so-called Thomas-Fermi (TF) limit.
Furthermore, in the strong interacting regime, the ion modifies
the fragmentation process depending on the parity of the
number of atoms. Additionally, we are able to reproduce
the density bubbles in a Tonks-Girardeau gas induced by
the presence of the ion as reported in Ref. [27]. Finally,
we show that the presence of the ion manifests itself in
both the momentum distribution of the atomic cloud and the
interference fringes occurring during an expansion. The latter
provides us with an indicator to identify the ion and its impact
on the atomic cloud in experiments.

This paper is organized as follows. Section II is devoted
to the development of a model potential for the atom-ion
interaction suitable for the subsequent many-body investiga-
tions. Indeed, since the ML-MCTDHB method is based on a
spatial grid representation of the many-body wave function, it
is essential to define the potential everywhere on the spatial
grid. This is not the case for the atom-ion polarization potential
∼r−4, which is singular at the origin. To this end and for the
sake of completeness, we briefly review the theory of ultracold
atom-ion collisions and compare the results obtained via our
model potential to quantum defect theory (QDT). The latter
has proven to be an accurate tool for the description of ultracold
atom-ion collisions [37–40]. In Sec. III, we introduce the
many-body Hamiltonian of the interacting atomic ensemble
with a centrally localized and static ion in a quasi-1D

setting. In addition, we outline the underlying idea and the
most important features of ML-MCTDHB. In Sec. IV, we
present our results of the ground-state properties (i.e., energy,
density and momentum distributions, first- and second-order
correlation functions) of the hybrid atom-ion many-body
quantum system. For the sake of clarity, the section is divided
into two main parts. In the first part, we investigate weak
atom-atom interactions, while in the second one we consider
the strong interaction regime. In the former case, we analyze
the impact of the ion on the transition to the TF regime with a
detailed view on the atomic density and energy per particle. We
draw the connection to the experimental detection of the ion
from the measurement of atomic observables by time-of-flight
simulations. For strongly interacting bosons, the interplay
of coherence and fragmentation is investigated up to the
fermionization limit in terms of the reduced density matrices,
which imprints characteristic features in the time-of-flight
behavior. Finally, in Sec. V, we conclude our article and give
an outlook on future perspectives.

II. TWO-BODY ATOM-ION SYSTEM

In this section, we briefly describe the ultracold collisions of
an atom and an ion with the aim of developing a suitable model
potential for the atom-ion interaction. As we have previously
mentioned, this is indeed an essential ingredient to perform
many-body quantum simulations with ML-MCTDHB which
we present and discuss in the subsequent sections.

A. Atom-ion interaction and 1D conditions

The interaction between an atom at position �rA and an ion
at position �rI scales at large distances as [41]

VAI(r) = −C4

r4
. (1)

Here r = |�rA − �rI| is the interparticle distance, C4 = αe2/2,
and α is the static atomic polarizability. It originates from the
interaction between the electric field generated by the ionic
charge e and the dipole moment of the atom induced by the
ion. We note that the form given by Eq. (1) is only valid for
distances larger than a radius R0, which defines the size of
the inner core region of the atom-ion complex. This radius
is typically on the order of 2.5–4 Å [42,43]. Below R0, the
form of the potential is generally unknown. Additionally, the
interaction can be characterized by the length and energy scale
R∗ =

√
αe2μ/�2 and E∗ = �

2/(2μR∗2), respectively, where
μ is the reduced mass of the atom-ion system. Values of E∗
and R∗ range from a few kHz to some hundreds of kHz and
from tens of nm to a few hundreds of nm, respectively. This
shows that the atom-ion interaction is effectively long range,
which is opposite to ultracold atom-atom interactions.

Since we are interested in the simulation of the atom-ion
system in a quasi-1D setup, we assume that the frequency of
the transverse confinement is much larger than the longitudinal
one, that is, ω⊥ � ω‖, for both the atom and the ion. Transverse
trapping frequencies of ω⊥ ≈ 2π100 kHz can be reached
experimentally both for atoms [44] and ions [4] leading to a
transverse harmonic confinement length of l⊥ = √

�/(μω⊥) ≈
10–100 nm. Without entering into details, it can be shown [45]
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that, under these conditions, an effective atom-ion interaction
in the quasi-1D geometry can be derived, whose expression is
given by

V 1D
AI (z) = −C4

z4
. (2)

Here z = zA − zI denotes the longitudinal atom-ion separa-
tion. We note that Eq. (2) is valid for |z| � R1D, where
the validity range R1D is defined by the maximum of the
transversal trapping length l⊥ and the length scale R⊥ at
which the polarization potential is equal to the transverse
trapping potential. Since R∗ is typically larger than R1D, the
application of the pseudopotential would be inappropriate, and
therefore we are forced to employ the effective 1D interaction
V 1D

AI (z). This situation, however, allows us to explore different
and more rich physics. Finally, hereafter we assume always that
the atom and the ion cannot undergo spin-changing collisions,
allowing the application of a single-channel model.

B. Quantum defect theory description

Quantum defect theory is a general and powerful method to
describe scattering processes, especially when the pseudopo-
tential approximation is not applicable and the precise form of
the interaction at short distances is unknown. Its strength stems
from its accurate description of the scattering dynamics by
means of a small number of (energy-independent) parameters,
the so-called quantum defect parameters, which describe the
complicated short-range dynamics below interparticle separa-
tions of R1D. We refer the interested reader to Refs. [46–48]
for a detailed general description of QDT and to Refs. [37–40]
for its application to the atom-ion system.

The ultracold atom-ion scattering in 1D is described by the
Schrödinger equation[

− �
2

2μ

∂2

∂z2
− C4

z4

]
ψ(z) = Eψ(z), (3)

with total energy E and relative wave function ψ(z). For the
sake of convenience, we rescale the equation with respect to
the characteristic units R∗ and E∗, that is, z 
→ z/R∗ and
E 
→ E/E∗, such that we obtain[

∂2

∂z2
+ 1

z4
+ E

]
ψ(z) = 0. (4)

The above equation admits both even (ψe) and odd (ψo)
solutions and since the atom and the ion are distinguishable
particles, the general solution to Eq. (4) is given by the linear
combination of ψe and ψo.

At short distances, namely when z → 0, the atom-ion
interaction is dominant. Hence, the energy E in Eq. (4) can
be safely neglected and the resulting equation can be solved
analytically. Then, the behavior of the relative wave function
at short distances is governed by [49]

ψe(z) ∝ |z| sin(1/|z| + ϕe), |z| 
√

1/k, (5)

ψo(z) ∝ z sin(1/|z| + ϕo), |z| 
√

1/k, (6)

with k = √
E. These solutions oscillate increasingly fast for

small z and in the limit |z| → 0 they vanish. The phase of

the oscillation is defined by the quantum defect parameters ϕe

and ϕo, which depend on the internal structure of the atom
and the ion. Hence, under the above outlined assumptions
for the validity of Eq. (4), the quantum defect parameters
effectively set boundary conditions at |z| = R1D (in numerical
practice when z → 0). Besides, we note that in the low energy
limit, the quantum defect parameters ϕe and ϕo are related
to the 1D zero-energy scattering lengths as ae,o(k = 0) =
− cot (ϕe,o)R∗. Since experimental values for the scattering
lengths are still not available, we use ϕe,o as adjustable
parameters in the range [−π/2,π/2].

In the opposite limit |z| � R∗, the solutions of Eq. (4) for
E > 0 are given by plane waves

ψasym
e,o ∝ sin (kz) + tan (ξe,o) cos (kz), (7)

with asymptotic phase shifts ξe,o. As shown in Ref. [39], these
asymptotic phase shifts and the scattering lengths, ae,o(k) =
− tan(ξe,o)/k, can be analytically related to the quantum defect
parameters. This connection can be viewed as the full solution
of the scattering problem. Please note that this QDT formalism
is indeed applicable in 1D when the condition l⊥ � R0 applies,
which is generally fulfilled.

In Fig. 1, we illustrate the dependence of ae,o(k) on ϕe,o

for different energies E. This relationship will turn out to
be useful in Sec. II D when connecting our atom-ion model
potential to QDT. We can observe that the scattering length
can be tuned from −∞ to ∞ by adjusting the quantum defect
parameters and that it strongly depends on the total energy
E. This shows that the modeling with the pseudopotential is
indeed inappropriate.

Finally, we conclude with a brief discussion concerning
the bound states supported by the polarization potential. To
begin with, we note that the number of bound states depending
on the cutoff radius R1D can be estimated via the following
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FIG. 1. (Color online) Scattering length a(k)/R∗ versus the
quantum defect parameter ϕ for four different energies E/E∗ =
0,0.1,1,10. Since this relation does not depend on the parity of the
solution ψ(z), we dropped the subscript e,o.
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FIG. 2. (Color online) Most weakly bound states of the polar-
ization potential. In the top panel, the wave functions for different
quantum defect parameter are shown. Since even and odd solutions
are equal for z > 0, we show only the positive semiaxis and dropped
the index e,o. The full solutions can be found by either symmetric
or antisymmetric continuation to z < 0. In the lower panel, the
corresponding energies are shown as a function of the quantum defect
parameters ϕe,o. To identify the energy of a certain wave function, they
are colored corresponding to their energy.

relation [50]:

ν = Int[R∗/(R1Dπ )]. (8)

For example, for R1D = 0.02R∗ we have 15 bound states.
Since typically most of these states are strongly localized and
far detuned from the energy threshold, only the weakest bound
states are of relevance for the ultracold atom-ion collision. In
Fig. 2, we show the weakest bound states together with their
energy as a function of the quantum defect parameters ϕe,o.
In order to compute them we used the renormalized Numerov
method [51,52]. Two main observations can be made: The
spatial maximum of the bound state varies in position from
|z| = 0.2R∗ up to |z| = R∗; its energy changes from near
threshold for ϕe,o < 0 to strong binding energies of about
E = −80E∗ for ϕe,o > 0.

Given this, we now have the necessary background infor-
mation to construct a proper model potential for the atom-ion
interaction, which is the topic of the next section.

C. Model potential

In a many-body theory, we cannot use, as already men-
tioned, an interaction potential in the form of Eq. (2) due to
the need for boundary conditions originating from the limited
validity range. Therefore, we introduce a model potential
defined for all values of z.

Such a model potential has to fulfill three criteria. First, it
should reproduce the −1/z4 long-range tail in order to result in
correct bound (at least some) and scattering solutions. Second,
it needs to regularize the unphysical divergence occurring
due to the limited validity range of the polarization potential.
The regularization will also help to reduce the increasingly
fast oscillations for z → 0, which would be numerically very
difficult to handle in ML-MCTDHB. Third, the boundary

conditions imposed by the QDT [Eqs. (5) and (6)] have
to be included in a flexible way such that most of the
quantum defect parameter combinations {ϕe,ϕo} can be indeed
modeled.

A good choice fulfilling the above outlined criteria is given
by the following model potential:

Vmod(z) = v0e
−γ z2 − 1

z4 + 1/ω
. (9)

The polarization tail is controlled by the parameter ω,
expressed in units of (R∗)−4, which can be understood as
the potential depth. Indeed, for |z| → 0, the second term in
Eq. (9) approaches −ω. Additionally, ω defines the number
of bound states within the model potential. Moreover, we
superimpose a Gaussian barrier at z = 0 which is characterized
by the height v0 > 0, in units of E∗, and the inverse width γ

in units of (R∗)−2. Its purpose is to model the short-range
behavior of the polarization potential by properly varying v0

and γ such that several quantum defect parameters ϕe,o can
be modeled. Note that the Gaussian should be localized in the
spatial region dominated by the parameter ω (z4  1/ω) in
order to prevent it from disturbing the long-range part of the
potential. This is achieved by setting a minimal value for γ in
dependence of ω in the following way. Equating the Gaussian
2σ range (2

√
1/γ ) to the length scale at which ω dominates the

−1/z4 polarization tail [≈ 4
√

1/(10ω)] leads to the restriction
γ � 4

√
10ω. Besides, we note that the Gaussian height v0

has to be large enough in order to generate a vanishing wave
function at z = 0, and to this end we set v0 = 3ω.

In Fig. 3, we show an example of the model potential for
several parameter combinations {ω,γ }. As it is displayed,
good agreement between Vmod(z) and the −1/z4 behavior
for separations beyond |z| > 0.5R∗ is achieved. Furthermore,
we can see that for larger ω the model potential approaches
more and more the −1/z4 curve, even for smaller interparticle
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FIG. 3. (Color online) Model potential for the parameter com-
binations ω = [40,80,120]/(R∗)4 and γ = [1,5,9]γmin with γmin =
4
√

10ω. Potentials with the same ω are plotted in equal color (line
style). For each ω three different values of γ are shown. Small values
of γ correspond to a broad Gaussian, while large ones correspond to
a narrow Gaussian. For clarity, we also plot the polarization potential
−1/z4 (black dashed line).
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distances, such that we can view ω as the parameter controlling
the degree of approximation.

D. Connecting the model potential and quantum defect theory

Let us next connect the parameters characterizing Vmod(z) to
the quantum defect parameters in order to demonstrate to what
extend our model potential is capable to describe the ultracold
atom-ion scattering process. This will enable us to establish
a mapping {ϕe,ϕo} ↔ {ω,γ } by comparing the asymptotic
phase shifts ξe,o [see Eq. (7)] of QDT to those of the model
potential.

In order to derive the model solutions ψmod(z), the
interaction term −1/z4 in Eq. (4) is replaced by the model
potential, and we solve the resulting equation again by means
of the Numerov method. As boundary conditions, we use

for the even solutions dψmod
e (z)/dz

z→0−−→ 0 and for the odd

solutions ψmod
o (z)

z→0−−→ 0. For these model solutions with
energy E = k2, the phase shift can be obtained by comparing
the logarithmic derivative of ψmod(z) and a plane-wave
solution at position d � R∗. This yields the relation

cot (ξe,o) = k + Ae,o cot (kd)

−Ae,o + k cot (kd)
, (10)

with Ae,o = dψmod
e,o (z)/dz

ψmod
e,o (z)

∣∣
z=d

. Since the relation between the
quantum defect parameters and the phase shift ξe,o is known
analytically for the pure polarization potential from QDT (see
also Fig. 1), we can match the asymptotic phase shifts, and
therefore obtain the desired mapping.

In Fig. 4, we show examples of the even (left panel) and
the odd (right panel) solutions (thick solid lines) for E =
0.1E∗, ω = 80(R∗)−4, and γ = γmin and, to best visualize
the short-range behavior, we use a logarithmic scale for the z

axis. Additionally, the corresponding QDT solutions (dashed
thin lines) are shown. We can observe that both solutions
coincide perfectly for |z| > 0.2R∗. Only in the vicinity of
z = 0 the model solutions approximate the QDT results in
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FIG. 4. (Color online) Scattering solutions for E = 0.1E∗. Even
(left panel) and odd (right panel) solutions of the model potential for
ω = 80(R∗)−4 and γ = γmin are shown with thick solid lines. The
corresponding QDT solutions with quantum defect parameters ϕe =
0.23π and ϕo = 0.3π , obtained by the mapping (see text), are show
as dashed thin lines in the corresponding color. The solid black line
represents the corresponding model potential and the black dashed
line the polarization potential. Note that due to the symmetry of the
solutions it is sufficient to show the positive semiaxis.
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FIG. 5. (Color online) Mapping {ω,γ } → {ϕe,ϕo} between our
model potential and 1D QDT: Even (left panel) and odd (right panel)
solutions.

the manner of an envelope. This shows that our model is
indeed capable to reproduce the QDT scattering behavior quite
accurately.

We have carried out such an analysis in a systematic way in
order to identify the mapping for all values of the parameters
of the model potential. The result is shown in Fig. 5 for the
even (left panel) and the odd (right panel) solutions where the
color encodes the values of the quantum defect parameters
ϕe,o. The range of ω is chosen in such a way that the model
potential has two bound states and γ varies from its minimal
value γmin = 4

√
10ω to 10γmin.

We observe that a wide range of the quantum defect
parameters ϕe,o can be modeled. Moreover, the odd quantum
defect parameter ϕo is nearly independent of γ such that
it can be tuned by the parameter ω. The parameter γ can
then be used to set the even quantum defect parameter ϕe

independently of ϕo. This fact is helpful for finding the desired
model potential more easily. Additionally, we would like to
point out that the mapping {ω,γ } → {ϕe,ϕo} shown in Fig. 5
is independent of the energy E. This is a necessary requirement
in order to use it as a connection between the two parameter
spaces.

In conclusion, we have established a mapping which makes
it possible to determine the model parameters for a given pair
of quantum defect parameters. Besides, we have shown that
our choice of model potential can reproduce very well the
results of QDT. Given this, we can now perform efficiently
many-body quantum simulations, in particular, in a regime
beyond the pseudopotential approximation.

III. HAMILTONIAN AND COMPUTATIONAL APPROACH

In this section, we first present the many-body system we
are going to investigate, namely, a single strongly localized ion
immersed in an interacting atomic cloud in 1D. Afterwards, we
briefly review the ML-MCTDHB, which we use to compute
the many-body wave function and its time evolution. We would
like to stress once again that in our current study the ion is
treated statically, and therefore no ionic motion is considered.
We show that already for a fixed ion intriguing phenomena and
structures do appear for the atom-ion compound.

A. Many-body atom-ion system

Hereafter, we consider a hybrid system consisting of a
single static ion and a cloud of N bosonic atoms at zero
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temperature in the quasi-1D regime. As already discussed
in Sec. II A, for both systems this situation can be met
experimentally. Besides, we also assume that the static ion
is localized in the center of the trap (z = 0) confining the
atoms, which we consider to be harmonic. We note that in
order to treat the ion statically, the ionic trapping frequency
has to be larger than the frequency of the atomic trap such
that the ionic wave function is strongly localized. However,
in an experimental realization based on a radio-frequency trap
for the ion the effect of micromotion can be quite important
for atom-ion systems, as extensively discussed in Ref. [53].
Nevertheless, there it has been found that bound atom-ion
states are almost unaffected by the micromotion. Hence, since
we focus in the following mainly on the properties of the
ground state of the system, which is principally dominated by
bound states, the effect of micromotion can be safely neglected
in our subsequent analysis.

Now the interaction between the atom at position zj and the
ion at position zI = 0 is described by our previously introduced
model potential Vmod(zj ) [see Eq. (9)]. Further, we allow for
interactions among the atoms. Due to the short-range nature of
the ultracold atom-atom scattering, we model their interaction
by a pseudopotential. Hence, the quasi-1D bosonic gas with a
central static ion is described by the Hamiltonian

Ĥ =
N∑
i

[
− ∂2

∂z2
i

+Vtrap(zi) + Vmod(zi)

]
+g

N∑
i<j

δ(zi − zj ),

(11)

which is expressed in new characteristic polarization length
and energy units R∗ =

√
αe2m/�2 and E∗ = �

2/(2mR∗2),
respectively. Here we have replaced the reduced mass μ used
in the relative frame with the mass m of the atoms [54]. The
first sum appearing in Eq. (11) contains the single-particle
operators: the kinetic energy, the longitudinal harmonic trap,

Vtrap(z) = 1

l4
‖
z2, (12)

with trapping length l‖ = √
�/(mω‖)/R∗ expressed in units of

R∗, and the ionic potential. The second sum represents the
atom-atom interaction with the coupling constant g expressed
in units of E∗R∗.

In order to easily resolve the polarization potential within
our numerical calculations, we choose R∗ to be of the order
of l‖, e.g., l‖ = 1/2. Assuming ω‖ ≈ 2π1 kHz, this choice,
for instance, corresponds to R∗ ≈ 600 nm and l‖ ≈ 300 nm
for 87Rb atoms. Further, we fix for the remaining part of
the paper the quantum defect parameters to ϕe = 0.23π and
ϕo = 0.3π which correspond to the model parameters ω =
80(R∗)−4 and γ = γmin. We note, however, that this choice
for the quantum defect parameters is not essential for the
ground-state properties of the quantum gas we present later
in the paper. Nevertheless, the choice of ϕe,o can be relevant
for the dynamics, as it can, for example, lead to assistance or
inhibition of tunneling in a bosonic Josephson junction [18].

B. Methodology

The ML-MCTDHB belongs to the class of multicon-
figuration time-dependent Hartree methods. They all share
the concept to expand the many-body wave function in a
time-dependent basis which is comoving with the system. This
allows for an accurate and numerically efficient simulation of
the dynamics of an interacting quantum many-body system.
In the extension for bosons, the many-body wave function
is symmetrized in order to respect the bosonic symmetry
of the particles. The multilayer feature enables us to even
simulate bosonic mixtures taking all (inter- and intraspecies)
correlations into account [31,32].

The ansatz for the many-body wave function is taken as
a linear combination of Hartree products built by Mσ states
|ψ (σ )

i (t)〉 (i = 1 · · · Mσ ) for each species σ :

|ψ(t)〉 =
M1∑

i1=1

· · ·
MS∑

iS=1

A1
i1···iS (t)

∣∣ψ (1)
i1

(t)
〉 · · · ∣∣ψ (S)

iS
(t)

〉
. (13)

The coefficients on this first layer of the expansion, denoted
by A1

i1···iS (t), depend on the species indices iσ and on time t . In
a hybrid atom-ion setup, we would have two species (S = 2)
with the first σ = 1 representing the atoms and the second
σ = 2 the ion.

On the second layer, the species wave functions for
Nσ bosons are expanded in bosonic number states |�n〉σt to
incorporate their indistinguishability,

∣∣ψ (σ )
i (t)

〉 =
∑
�n|Nσ

A
2;σ
i;�n (t)|�n〉σt . (14)

In a number state |�n〉σt , each σ boson occupies one of the
mσ single-particle functions (SPFs) |φ(σ )

j (t)〉. The vector �n =
(n1, . . . ,nmσ

) contains the occupation numbers nj of every
SPF. Further, the coefficients A

2;σ
i;�n (t) depend on the species σ ,

on the species number state �n, and on time t .
On the third and last layer, the time-dependent SPFs are

represented in a time-independent basis {|rσ
j 〉}Mσ

j=1,

∣∣φ(σ )
j (t)

〉 =
Mσ∑
i=1

A
3;σ
j ;i (t)

∣∣rσ
i

〉
, (15)

with the coefficients A
3;σ
j ;i (t).

This expansion of the full many-body wave function is
based on a cascade of truncations introduced through finite
basis sets {|ψ (σ )

j (t)〉}Mσ

j=1, {|φ(σ )
j (t)〉}mσ

j=1, and {|rσ
j 〉}Mσ

j=1, leading
to a wave function in a truncated Hilbert space. This truncation
error can be kept small even during the dynamical evolution
of the system due to the time-dependent basis functions.

By using the Dirac-Frenkel variational principle [55,56],

〈δψ |(i∂t − Ĥ )|ψ〉 = 0, (16)

where 〈δψ | denotes the variation of the total wave function,
one can derive the equation of motion for the above outlined
expansion coefficients on each layer in order to describe the
temporal evolution of the wave function. Please note that the
usage of the Dirac-Frenkel variational principle guarantees
variational optimal basis sets which makes it possible to keep
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the number of needed basis functions small. We refer to
Refs. [31,32] for more details.

We note that in addition to the real-time evolution, ML-
MCTDHB makes it possible to obtain the ground and the
excited states of the system by imaginary time propagation
[57] of an initial guess wave function. In the simplest
case, such an initial wave function can be a number state
built by the noninteracting single-particle functions |φ0

i 〉 with
energies E0

i .
The analysis of the resulting high-dimensional time-

dependent many-body wave function is typically carried
out in terms of reduced density matrices. The one-particle
density matrix and its spectral decomposition can be written
as

ρ1 = N tr2···N |ψ〉〈ψ | =
∑

i

ni |χi〉〈χi |. (17)

Here |χi〉 are the so-called natural orbitals and ni represent
the natural populations with the property

∑
i ni = N . With

these ni , we can judge the convergence of the algorithm [34].
Furthermore, the largest natural population n0 can be used as a
measure of the fragmentation [58]. One refers to a fragmented
state or fragmented condensate, when more than one natural
population is on the order of N . Fragmentation in the ground
state is especially linked to the interacting strength, since to
minimize the interaction energy it is favorable to distribute
the particles in many natural orbitals [59]. When n0/N = 1,
one recovers the well-known Gross-Pitaevskii solution and
therefore |χ0〉 is also sometimes referred to as the BEC
state.

Finally, since we will also investigate two-body correla-
tions, we simply recall that these are described by the diagonal
elements of the reduced two-body density matrix ρ2, which is
defined as

ρ2(r,r ′) = 〈r,r ′| (tr3···N |ψ〉〈ψ |) |r,r ′〉. (18)

It represents the probability of finding a boson at position r

and another one at position r ′.

IV. RESULTS

In this section, we analyze in detail the ground-state
properties of the system described above. We separate the
investigation into two parts: weakly and strongly interacting
bosons up to the fermionization regime.

For the subsequent analyses, the so-called Lieb-Liniger
parameter γLL [60] turns out to be a useful measure for
the degree of the interactions. We recall that for a homo-
geneous system in 1D the effective interaction strength can
be described by γLL = g/(2ρ), which is the ratio between
the interaction strength g and the mean density ρ = N/L,
where L is the system size. For γLL  1, we have the
weakly interacting or equivalently high-density regime, which
is characterized by single-particle behavior. In contrast, γLL �
1 corresponds to the strongly interacting or low-density
regime revealing fermionization behavior for γLL → ∞
[28].

In order to analyze the impact of the ionic potential on the
bosonic cloud, we perform all calculations with and without
the ion potential such that we can compare the case of the

purely harmonic trapping (i.e., without ion) to the situation
of the additional ionic potential. In the following, we refer to
these two situations as the harmonic (H) case and the ionic
(I) case, respectively, to distinguish between the two different
scenarios.

A. Weak interactions

To begin with, we analyze the spatial density distribution
n(z) and the energy per particle E/N . Thereby, it is convenient
to separate the energy into its components—kinetic, trapping,
interaction, and ionic—such that E = Ekin + Etrap + Eint +
Eion. Besides, we fix the interaction strength to the value g =
2E∗R∗ and vary the number of bosons from N = 2 up to N =
200. Such a choice for g well describes the regime in which we
are now interested because the population of the lowest natural
orbital n0/N does not fall below 95% for all N . This becomes
even more the case for large particle numbers because the
Lieb-Liniger parameter scales as 1/N (for N = 50 we have
n0/N = 0.98). Therefore, the system could be described to a
good approximation by the Gross-Pitaevskii equation, where
the atoms occupy only one single-particle orbital |χ0〉. Given
this, we use only m = 3 SPFs in our numerical simulations in
this regime.

1. Energy in the low- and high-particle-number regimes

One can distinguish the low- and the high-particle-number
regimes. For small numbers of particles, the system should
behave like an ideal gas because the interaction energy Eint is
small with respect to E. Thus, we can expect the density to
be given by the lowest noninteracting single-particle orbital
occupied by all particles, that is, nideal(z) = N |φ0

0(z)|2. Then
the ground-state energy of the system can be estimated by using
first-order perturbation theory, with respect to the interaction
term appearing in Eq. (11), yielding

Eweak(N )

N
= E0

0 + g

2
(N − 1)

∫ ∣∣φ0
0(z)

∣∣4
dz. (19)

In the harmonic case, this leads to a ground-state energy per
particle of EH

weak(N )/N = E0
0 + g(N − 1)/(

√
2πl‖) scaling

linearly with the particle number. In the presence of the ion,
Eq. (19) has to be evaluated numerically, but the linear scaling
with N is still preserved.

On the other hand, for large particle numbers, the system
is well-described by the TF approximation. In this limit, the
density can be described by nTF(z) = [μ − V (z)]/g, where
V (z) is either only the trap or the sum of the trap and the ionic
potential, whereas μ denotes the chemical potential. Thus, the
total energy can be expressed in the TF regime as

ETF(N ) =
∫

{nTF(z)>0}
dz

{
V (z)nTF(z) + g

2
[nTF(z)]2

}
. (20)

For the harmonic case, following Ref. [59], one can analyti-
cally derive the energy per particle: EH

TF(N )/N = 3e0N
2/3/5

with e0 = [3g/(4l2
‖ )]2/3 and the TF radius zH

μ = l2
‖
√

μ. In
order to understand the composition of the total energy,
the ratio of interaction energy and potential energy can be
derived leading to EH

int/E
H
trap = 2. For the ionic case, we obtain

ETF(N ) numerically by imposing the condition μ = gn(z0)
with V (z0) = 0 from which one can define an inner zI

μ and an
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FIG. 6. (Color online) Sketch of the TF density nTF(z) with the
ion. The blue line corresponds to −V (z), where V (z) is the sum of the
trapping and the atom-ion potentials. The black dashed line marks the
chemical potential μ. Above μ, the condition nTF(z) > 0 holds and
when μ = V (z) an inner zI

μ and outer zO
μ TF radius can be defined,

leading to the density distribution nTF(z) shown by the gray shaded
area.

outer zO
μ TF radius. This defines a zone in which nTF(z) is well

defined as it is indicated by the gray region in Fig. 6.
Now, for large particle numbers and for the ionic case,

Eq. (20) can be approximated, yielding for the total energy the
following expression:

EI
TF(N ) = 3e0

5
(N − N0)5/3 + EI

0. (21)

Here N0 = −g−1
∫ zO

μ

−zO
μ

Vmod(z)dz and EI
0 = −g−1

∫ zO
μ

−zO
μ

[Vtrap(z)Vmod(z) + Vmod(z)2/2]dz. Expressions for the
components of the energy per particle are given in the
Appendix. Similarly, one can show that for N → ∞ the ratio
between the interaction energy and the potential energy is the
same as in the harmonic case, i.e., EI

int/(EI
trap + EI

ion) = 2.
Therefore, we can conclude that for N → ∞ (i.e., N � N0)
the impact of the ion on the interacting atomic cloud becomes
negligible even though the shift by N0 of the total energy does
not vanish.

2. Density and energy per particle in the harmonic
and the ionic cases

In the left panels of Figs. 7 and 8, the ground-state
density n(z)/N is plotted for several particle numbers for the
harmonic and the ionic cases, respectively. For small particle
numbers, the harmonic case reveals the expected Gaussian
shape, whereas in the ionic case, we see a density hole at
the ion position and two peaks on each side. Atoms in these
peaks are localized in the ion potential such that we can think
of them as being bound to the ion. In both cases, the atomic
density for N = 4 can be well described by the noninteracting
ground-state density distribution nideal(z) (see blue dashed line
and gray shaded area). For the ionic case this agreement looks
even better. Now, by increasing the atom number, one can
observe a broadening of the density distribution in both cases.
The central region becomes depleted and the wings of the
distribution are populated, and therefore n(z) � nideal(z) is not
any longer a good approximation. At large particle numbers,
the density can be well described by the TF approximation.
Indeed, in the harmonic case, the density for N = 50 (cyan
solid line) rather accurately reproduces the TF density nTF(z)
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FIG. 7. (Color online) (Left) Atomic density distributions of the
many-body ground state obtained without ion for various values of the
atomic number N = 4,10,30,50 (dashed, dash-dotted, dotted, solid
lines). The central peak height reduces with the atom number. The
gray shaded area represents the noninteracting ground state nideal(z),
whereas the thick black dashed line represents the TF profile. The
latter has been computed for N = 50 atoms. Note that due to the
symmetry of the ground state it is sufficient to show the positive
semiaxis. (Right) Energy per particle and its components. The black,
red, green, and blue lines represent the total, interaction, trapping, and
kinetic energy per particle, respectively. The perturbative solution
of the total energy given in Eq. (19) is displayed with the dashed
line, whereas the TF results are indicated with the crosses (×). Both
approximations are only plotted in their range of validity. In both
panels, the interaction strength is g = 2 E∗R∗.

(thick black dashed line). Also with the ion the TF distribution
can be reproduced, even though larger particle numbers are
needed. For N = 150 (cyan solid line), the wings of the density
distribution are in excellent agreement with the TF profile
(thick black dashed line), but close to the ion (z = 0) deviations
can be observed, in particular for the two density peaks.
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FIG. 8. (Color online) (Left) Atomic density distributions of the
many-body ground state obtained with ion for various values of
the atomic number N = 4,30,50,150 (dashed, dash-dotted, dotted,
solid lines). The peak height reduces with the atom number. The
gray shaded area represents the noninteracting ground state nideal(z),
whereas the thick black dashed line represents the TF profile. The
latter has been computed for N = 150 atoms. Note that due to the
symmetry of the ground state it is sufficient to show the positive
semiaxis. (Right) Energy per particle and its components (notation
as in Fig. 7). The additional magenta line represents the ionic energy
per particle. The perturbative solution of the total energy given in
Eq. (19) is displayed with the dashed line, whereas the TF results are
indicated with the crosses (×). Both approximations are only plotted
in their range of validity. In both panels, the interaction strength is
g = 2 E∗R∗.
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In the right panels of Figs. 7 and 8, we show the corre-
sponding energy per particle. In both cases, the total energy
per particle (black solid line) starts linearly for small atom
numbers. This behavior is well captured by the perturbative
approximation of Eq. (19) (black dashed line). However, the
perturbative result quickly deviates from the exact many-body
calculation based on ML-MCTDHB as the number of atoms
increases. For larger particle numbers, the energy per particle
bends over and reveals the expected N2/3 behavior. For the
harmonic case, the TF approximations for the total energy
per particle and its components are in good agreement with
the exact many-body simulations (crosses and solid curves),
especially the total (black line) and the trapping (green line)
energy per particle match the TF limit almost perfectly. On the
other hand, the interaction energy component (red line) agrees
less well. The disagreement with the TF result can be easily
understood by noting that the kinetic energy does not vanish
at N = 50, and consequently the TF approximation is not
optimally fulfilled. Even though the ionic case reveals at first
sight a similar behavior, we see that, apart from the trapping
energy, all energy components converge significantly slower
to the TF solution, even at rather large atom numbers. (Note
that results for particle numbers up to N = 200 are shown.)
Nevertheless, the TF curves can be nicely reproduced at such
large particle numbers.

The fact that larger particle numbers compared to the
harmonic situation are needed indicates the impact of the ion
on the transition from the ideal gas to the TF limit. In particular,
it seems that the atom-ion potential significantly “slows” this
transition.

3. Discussion of the emerging differences between the harmonic
and the ionic cases

In order to understand the differences between the harmonic
and ionic case in more detail, we compare the different
components of the energy per particle for both cases in Fig. 9.
Notably, the total energy per particle in the harmonic case
(black solid line) is always above the one of the ionic case
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FIG. 9. (Color online) Energy per particle E/N (black) and its
components Ekin (blue), Etrap (green), Eint (red), and Eion (magenta)
for the harmonic (solid) and the ionic (dashed) cases. The vertical
line marks the particle number Nμ necessary for spatial expansion.

(black dashed line) because of the additional (negative) ionic
potential. They get closer for large N , but nevertheless a finite
shift by N0 particles between EH

TF(N )/N and EI
TF(N )/N is

present [see Eq. (21)], which tends to N0 � 9 in the limit
N → ∞ (N � 380).

Now for small particle numbers, we can see that the
potential energy (green solid and dashed lines) for both
cases starts almost equally, meaning that the density has a
comparable radius. However, by enhancing the atom number,
Etrap/N for the ionic case remains always below the one of
the harmonic case. This indicates that the density distribution
is more localized at z = 0 (compare, e.g., the left panels of
Figs. 7 and 8 for N = 30). This is also clearly visible in
the interaction energy Eint/N in the presence of the ion.
It grows more rapidly than in the harmonic case for small
particle numbers, as the particles are held together in the ionic
potential. Only at intermediate particle numbers (N ∼ 30), the
particles start to leak out of the ionic potential, leading to a
relaxation of the interaction energy growth rate and allowing
the Etrap/N to approach the trapping energy per particle of the
harmonic case. Furthermore, the energy per particle stemming
from the ionic potential (magenta dashed line) quickly rises at
small particle numbers. This shows that the density expands,
but a small spatial spread needs a lot of energy per boson due
to the steep −1/z4 potential. Only when the bosonic density
is able to leave the ionic potential, the ionic part of the energy
per particle flattens and crosses over to its TF behavior scaling
N−1/3 [see also Eq. (A5)].

In order to better understand what actually impedes the
transition to the TF regime and keeps the density from
broadening, we project the many-body ground state onto
number states |�n〉 (see Sec. III B for the definition) of the
noninteracting single-particle basis |φ0

i 〉. We find that, apart
from the state |N,0,0, . . .〉, the number state distribution of
the ground state differs for the harmonic and the ionic cases.
Indeed, without the ionic potential, the number state which is
the most populated due to interaction is the |N − 1,0,1, . . .〉
state (note that |N − 1,1,0, . . .〉 is forbidden due to symmetry).
In contrast, in the ionic case the |N − 2,2,0, · · · 〉 state is
populated the most. This difference can be understood by
looking at the noninteracting single-particle energy levels
which are listed in Table I. In the harmonic case, we see
the well-known equidistant energy spacing, but for the ionic
case pairs of energies exist which are close to each other.
Therefore, the state |N − 2,2,0, . . .〉 is energetically favorable
in the presence of the ion. Besides, since the two energetically
lowest single-particle orbitals, corresponding to the even and
the odd bound states, are localized around the ion, the state
|N − 2,2,0, . . .〉 does not contribute to the spread of the wave
function. Hence, the broadening of the density can only occur
with energetically higher number states (i.e., n > 1).

TABLE I. Harmonic and ionic single-particle energy E0
n/E

∗ of
the first five single-particle states |φ0

n〉.

E0
n/E

∗ n = 0 n = 1 n = 2 n = 3 n = 4

Harm 4.0 12.0 20.0 28.0 36.0
Ion −22.2 −18.6 16.5 18.0 34.8
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We can approximate the energy at which the broadening of
the density becomes possible by using the third single-particle
energy level. By equating this energy with the chemical
potential μ(N ) = ∂E/∂N , we can estimate the minimum
particle number necessary for the expansion. By doing so
we find Nμ = 26, which is marked by the vertical dashed
black line in Fig. 9. It nicely identifies the position where the
interaction part of the energy per particle as well as the trapping
energy per particle for the ionic case change their slope.

In summary, we can interpret the observed differences
between the ionic and the harmonic case by thinking of the ion
as a “hole” which needs to be filled before the growth in space
and thus a behavior comparable to the harmonic case can be
observed. This explains nicely the larger validity range of the
perturbative results and the delayed crossover to the TF regime.

4. Momentum distribution and expansion

Let us next investigate the (experimental accessible) mo-
mentum distribution n(k),

n(k) = 1

2π

∫∫
dzdz′ρ1(z,z′)e−ik(z−z′). (22)

It can be used as a measure for coherence, since it incorporates
the on- and off-diagonal contributions of the one-body reduced
density matrix. We can start the analysis by looking at the
amplitude of the peak at zero momentum n(k = 0), recalling
that for a homogeneous noninteracting Bose condensate at
zero temperature n(k) is a δ function at k = 0. The inset in
Fig. 10 shows the value n(k = 0) as a function of the particle
number with and without the ion. Due to the presence of the
ion, the coherence is smaller for all particle numbers studied
here, since the induced density hole reduces the coherence to
the central region. Only for high particle numbers, both cases
become comparable, as we have already seen in the previous
section in terms of energy and spatial density. The reduced
peak height of the momentum distribution goes hand in hand
with its broadening. Therefore, we show in Fig. 10 the wings of
the k-space distribution for the harmonic case (left panel) and
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FIG. 10. (Color online) The k-space density distribution for the
harmonic (left panel) and the ionic case (right panel) for the particle
numbers N = 2,20,50,200 (solid, dashed, dotted, dash-dotted lines).
The smaller the particle number is, the larger is the distribution width.
Note that due to the symmetry of the k-space density distribution it is
sufficient to show one semiaxis. (Inset) Amplitude of the momentum
distribution n(k) at k = 0 as a function of the particle number N for
the harmonic (solid line) and the ionic (dashed line) case.

the ionic case (right panel) for multiple particle numbers. In
the harmonic case, the distribution is Gaussian for N = 2 and
shrinks in width for growing N . In contrast, the ionic case is
much broader due to two side peaks at k ≈ ±10/R∗ for small
particle numbers. Nevertheless, for high particle numbers,
when the system enters the TF regime, the distribution has
sharpened again and the side peaks have vanished. For N =
200, both cases exhibit a similar momentum distribution. We
can explain the broader distribution for the ionic case by the
overall loss of coherence due to the separation of the cloud into
two parts by the ion. The bimodal structure at the neck of the
momentum distribution, however, arises due to the coherence
of particles in the left and the right peaks of the spatial density
distribution. Their distance dictates the positions of the peaks
in the momentum distribution.

Since the momentum distribution for the harmonic case
is approximatively zero at the values k ≈ ±10/R∗ one could
use these two side peaks as an indicator for the presence of
an ion in a experiment, e.g., by time-of-flight measurements.
Nevertheless, such a signal might be hard to detect due to the
small amplitude of the peaks.

A further possibility to check the presence of the ion could
be to measure the atomic density during the expansion in
a quasi-1D waveguide, as experimentally realized by Bongs
et al. [61]. In order to simulate such an expansion experiment,
we study the temporal evolution of the interacting atomic cloud
after the removal of both potential terms, namely, the trapping
and the atom-ion potentials. The former can be switched off in
a time much smaller than the inverse of the trap frequency,
whereas removing the latter might have an impact on the
atomic cloud due to the long-range nature of the atom-ion
interaction. Here, however, we neglect these effects and simply
switch off the atom-ion interaction. Additionally, we note
that during the expansion the atomic quantum gas is not any
longer in the weakly interacting regime, since the Lieb-Liniger
parameter scales as γLL ≈ 1/ρ with the mean density ρ, and
therefore the interaction becomes larger and larger. Because
of this anomalous behavior in 1D, the total expansion time we
can actually simulate is limited by the number of used SPFs.

In Fig. 11, we show the density n(z)/N during the
expansion. At t = 0, the system is in the ground state and for
t > 0 both the trap and the atom-ion interaction are switched
off. In the harmonic case, the atomic cloud just expands in
space as a single macroscopic object for all particle numbers
as it can be seen in Fig. 11 (top row). In contrast, the time
evolution of the ionic case, Fig. 11 (bottom row), shows
clear interference fringes. These stem from the interference
of “particles” from the left and the right sides of the ion. They
show the interference pattern at |z| > 0 due to the different
path lengths they have traveled during the expansion.

In conclusion, one can use the reduced peak amplitude
n(k = 0), the bimodal structure in the momentum distribution,
or the interference patterns from the 1D expansion to prove
the presence of the ion within the atomic cloud.

B. Strong interactions

Now, we leave the mean-field regime and face the situation
of an interaction dominated system. This means that the
interaction becomes strong enough to deplete significantly the
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first natural orbital making a multiorbital description of the
system essential [62]. We want to study this fragmentation
process up to the fermionization limit characterized by g →
∞. In this limit, the Bose-Fermi mapping can be applied. The
strong repulsive forces deplete the interaction regions {zi =
zj } for particles i and j , which emulates the Pauli exclusion
principle for fermions. Thus, our strongly interacting bosonic
system, also called Tonks-Girardeau (TG) gas, behaves like
a noninteracting fermionic system [28]. In this case, for
example, the density nTG(z) = ∑N−1

i=0 |φ0
i (z)|2 and the total

energy ETG = ∑N−1
i=0 E0

i can be determined analytically. With
our method, however, we can study the transition for increasing
g to the TG limit. It was shown that due to the used truncated
Hilbert space, introduced by the ML-MCTDHB, this limit can
be achieved for a finite interaction strength g0 [63]. Thus, we
can compare our simulations to these exact expressions even
though a finite g is used. Moreover, a rescaling procedure
makes it possible to identify the physical interaction strength
gphys, leading to solutions which are independent of the chosen
Hilbert space truncation.

The harmonic case has been extensively studied from the
condensation via the fragmentation up to the fermionization
limit [62,64]. Here we only summarize the most relevant
results which will be used in our later analysis. In the
fermionization limit, the lowest natural population scales like
n0/N ∝ N−0.41 in a harmonic trap [65], which is in contrast
to the homogeneous case (N−0.5) and to the fermionic system
in a harmonic trap (N−1). A distinct feature is the transition
of the density profile n(z) from the Gaussian to a multihump
structure revealing as many peaks as particles in the system
[66]. Furthermore, the momentum distribution, still having a
strong peak at k = 0, spreads to higher k values, revealing a

universal decay ∝k−4 in the asymptotic regime [67] due to the
short-range contact interaction. Finally, exemplary one- and
two-body reduced density matrices for the harmonic case can
be found in Refs. [68] and [69], respectively.

Now let us analyze the situation in the presence of an ion. In
Fig. 12 (left panel), the density distribution for N = 4 for the
ionic case is plotted for different interaction strengths using
m = 10 orbitals. We observe the development of two extra
side peaks with respect to the noninteracting ground state.
For g = 160 R∗E∗, the result is perfectly consistent with the
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FIG. 12. (Color online) Bosonic density for large values of the
interaction strength g = 10,40,160 E∗R∗ (solid, dashed, dotted lines)
for N = 4 (left panel) and N = 5 (right panel) using m = 10 orbitals
with the ion located in the center of the harmonic confinement. The
peak height reduces with the interaction strength. Additionally, we
plot the Tonks-Girardeau density distribution nTG(z)/N as a gray
shaded area. Note that due to the symmetry of the ground state it is
sufficient to show the positive semiaxis.
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fermionized density nTG(z) shown as gray shaded area. Thus,
the fermionized density for the ionic case with N = 4 atoms
also reveals an N -hump structure which has been conjectured
to be a universal feature for a general trapping potential [62].
Nevertheless, for an odd number of particles the density cannot
have an odd number of peaks. For symmetry reasons, this
would require a central peak at z = 0, but this is hindered by
the presence of the ionic potential.

In Fig. 12 (right panel), we show the evolution of the
density profile for increasing interaction strength g for N = 5
bosons using m = 10 orbitals. The TG density profile is nicely
reproduced for high g. Further, we can clearly see that the
additional particle is distributed mostly in the outer region
of the density profile leading to shoulders on both sides of
the distribution. Therefore, the two additional side peaks are
slightly pushed inwards compared to the N = 4 case (see the
left panel of Fig. 12) due to the repulsive interaction between
the atoms.

In order to better understand this behavior, we have inves-
tigated the evolution of the populations of the natural orbitals
for increasing g. Figure 13 shows the natural populations
n0/N and n1/N , introduced in Eq. (17), for an even (N = 4,
red) and an odd (N = 5, black) particle number for the ionic
(dashed lines) as well as for the harmonic (solid lines) case.
For the latter, the fragmentation is stronger for the case
of N = 5 particles, since n0/N ∼ N−0.41. Interestingly, this
behavior is opposite for the ionic case. For N = 4 particles,
we can see a significantly stronger fragmentation for all
interaction strengths. Further, n1/N becomes comparable to
n0/N in this case. The former can be explained by noting
that the ion separates the cloud into two parts leading to two
degenerate subsystems with N/2 atoms. Thus, for an even
number of atoms, the ion assists the fragmentation process
and finally enhances the fragmentation in the fermionization
limit. However, for N = 5 we can observe nearly the same
behavior for all g as in the harmonic case with the same
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FIG. 13. (Color online) Natural populations n0/N (four upper
lines) and n1/N (four lower lines) for the harmonic (solid lines) and
the ionic (dashed lines) case for N = 4 (red lines) and N = 5 (black
lines) particles in dependence of the interaction strength g. Note that
even though ni for i > 1 are not plotted here they are nonzero.
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FIG. 14. (Color online) Reduced one-body density matrix for the
ionic case for N = 4 (left panel) and N = 5 (right panel). The white
circle in the right panel indicates the region of strong off-diagonal
coherence.

atom number. This behavior can be understood as follows: The
additional particle, which is distributed on both sides of the
cloud, as we have seen above, counteracts the fragmentation
and preserves the spatial coherence of the system. On the
other hand, the density hole induced by the ion is also
present for an odd particle number and should enhance the
fragmentation comparably. These two competing processes
seem to nearly balance each other, leading only to a slight
enhancement of fragmentation compared to the harmonic
case.

These conclusions are further supported by looking at the
one-body reduced density matrices. In Fig. 14, we plot ρ1(z,z′)
[see Eq. (17) for its definition] for N = 4 (left panel) and
N = 5 (right panel) atoms in the limit g → ∞. For N = 4,
we can clearly see that the two parts of the atomic cloud have
lost their coherence completely. Our numerical finding is also
supported by a recent study [70], where it has been analytically
proven that for a TG with an even number of particles and
with an infinite central barrier off-diagonal correlations are
negligible. This explains the enhanced fragmentation induced
by the presence of the ion. In contrast, the N = 5 case
exhibits still significant off-diagonal contributions which are
most prominent between the two outermost density accumu-
lations at |z| ∼ 1.5R∗, as indicated by the white circle in
Fig. 14. These strong coherences almost perfectly compensate
the loss of coherence around z,z′ = 0 due to the ionic
potential.

We complete the analysis of the fragmentation process by
inspecting the diagonal of the reduced two-body density matrix
ρ2(z,z′) defined by Eq. (18). In Fig. 15, ρ2(z,z′) is shown in
the fermionization limit again for N = 4 and N = 5. In the
case of an even particle number, we observe the characteristic
depletion of the diagonal as well as the “checkerboard” pattern
known from the harmonic case. The effect of the ionic potential
can only be observed in the strong suppression of correlation at
z,z′ = 0. We can understand the distribution in the following
way: Imagine that we have one particle in one of the four peaks
of the density distribution n(z) (see the left panel of Fig. 12).
Then the probability to find another particle in each of the other
three peaks is nearly one. The situation is different for N = 5.
For a particle in one of the four peaks (see the right panel of
Fig. 12), we can observe enhanced probability to find a second
particle at the position of the three other peaks and additionally
at the shoulders of the distribution. Since there are only four
other particles, one particle has to be delocalized. In addition
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FIG. 15. (Color online) Reduced two-body density matrix for the
ionic case for N = 4 (left panel) and N = 5 (right panel). The
white circle in the right panel indicates the strong suppression of
correlation between two particles at the two positions marked by white
arrows.

to this, no correlation is found between the left (vertical arrow)
and right (horizontal arrow) density shoulders at z ∼ −1.5R∗
and z′ ∼ 1.5R∗, respectively, which we highlight by the white
circle in Fig. 15. This indicates that these additional shoulders
do not result from two different particles. Therefore, the picture
of having one particle distributed on both sides of the atomic
cloud is qualitatively valid.

Finally, it is interesting to compare the behavior of the ionic
case with two other systems that have been discussed in the
literature. First, we can look at a double-well setup investigated
by Zöllner et al. [68,69]. They found by successively enlarging
g that an even particle number assists while an odd particle
number delays the fragmentation process compared to the
harmonic case. Nevertheless, this difference vanishes for
increasing g when the system has enough interaction energy
to start filling the central hole induced by the potential with the

extra particle. In the ionic case, the ionic potential forces the
atomic wave function to be zero near the origin [see Eqs. (5)
and (6)], which is achieved by using a large Gaussian height v0.
Therefore, the density hole is not filled even for infinite values
of g or higher particle numbers. Instead, a density bubble
forms in the atomic cloud [27]. Note that the density hole
observed here is smaller than the one found in Ref. [27] since
we included the two highest bound states. Second, we can
compare the ionic case to a so-called split trap, a harmonic
trap with a superimposed central δ peak κδ(z), as it has been
recently investigated in Refs. [71–73]. Even for large κ , it
has been found that the density hole is preserved. Further, the
behavior of the natural populations is comparable to the one
of the ionic case reported here.

Hence, we can conclude that an atomic cloud with an
immersed static ion shows features which are comparable to
the ones of a double-well setup. Nevertheless, this analogy
fails in the fermionization limit where some properties of the
system can better be compared to a split trap, as already pointed
out by Goold et al. [27].

Expansion

Fragmentation reduces the ability to interfere. Therefore,
the above-discussed difference in the fragmentation origi-
nating from particle number parity can be experimentally
observed within an expansion measurement. As before, we
remove the harmonic and the ionic potentials and propagate
the above-obtained ground states in time in order to simulate
the expansion in a quasi-1D waveguide.

In Fig. 16, we show the time-dependent density profile
for the harmonic and the ionic cases for N = 4 and N = 5
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FIG. 16. (Color online) Density profile n(z,t)/N of the atomic cloud during an expansion for increasing g. The expansion starts from the
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time scales are given in the caption of Fig. 11.
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particles. Starting with the harmonic case (first and second
columns), we can see that for g = 10 E∗R∗ (top row) the
expansion shows for N = 4,5 a similar behavior as in the
weakly interacting case (compare Fig. 11). At intermediate
g = 30 E∗R∗ (middle row), density modulations are visible in
the expansion which reflect the N -hump structure of the initial
profile which starts to appear as we approach the TG regime.
In the limit g → ∞ (bottom row), the N -hump structure
becomes clearly visible and is preserved during the expansion.
In the ionic case (third and fourth columns), the behavior for
N = 4,5 and g = 10E∗R∗ (top row) is also similar to that
of the weakly interaction regime (see Fig. 11). Nevertheless,
for an increased interaction strength of g = 30 E∗R∗ (middle
row), we can observe that an even (N = 4) particle number
and an odd (N = 5) particle number lead to different expansion
behaviors. For N = 4, a rather flat density profile shows up
during the expansion while for N = 5 five density peaks
appear. This difference becomes even more pronounced for
g → ∞ (bottom row). We can understand this expansion
behavior as follows. After the removal of the harmonic and
ionic potentials, the left and the right parts of the density
distribution (see Fig. 12) start to penetrate into each other. In
the case of four atoms, both sides are completely incoherent, as
we have seen in Fig. 14 (left panel), and therefore no structure
appears during the expansion. In contrast, the additional
particle for N = 5 establishes coherence between the two
sides (see the right panel of Fig. 14) such that interference
fringes occur during the expansion. We note that a similar
behavior has been observed for a TG gas with a Diracs δ

in the center of the trap [72]. This signature can be used to
distinguish between an even atom number and an odd atom
number. Hence, we can conclude that the atom number parity
in the presence of the ion can be measured by a quasi-1D
expansion.

V. CONCLUSIONS AND OUTLOOKS

In this paper, we have presented many-body calculations
concerning the ground-state properties of the hybrid multiatom
single-ion system. To accomplish this task, we have first
introduced a model potential for the two-body atom-ion
interaction which is able to reproduce the QDT results. This
was an essential ingredient for the subsequent investigation
via the ML-MCTDHB. We have then investigated in detail
the transition from the weak to the strong interaction regime
for a single ion immersed in a bosonic atomic cloud. For
weakly interacting bosons, we found, by increasing the atom
number N , that the ion impedes the transition from the ideal
gas behavior to the TF limit. We showed that this effect can
be exploited in expansion experiments in order to prove the
presence of an ion. On the other hand, in the strong interaction
regime, we observed that the ion assists the fragmentation
process and enhances the fragmentation in the fermionization
limit for an even atom number. In contrast, the fragmentation
is nearly unaffected by the ion for an odd N . We explained
this behavior by the spatial splitting of the additional particle
which counteracts the fragmentation. Further, we showed
that this difference for even and odd particle numbers can
be observed by looking at the interference in an expansion
experiment.

Note that in view of the experimental verification of our
results, one has to face the problem of atom loss from the trap
which we neglected in the present work. Loss can result from
three-body scattering which might become important in the
weakly interacting regime [74], from spontaneous scattering
induced by high power traps with decay times of several
hundred milliseconds [75], and from atom-ion collisions which
can become the dominant loss channel if the ion is not cooled
to the ultracold regime [9].

In conclusion, the present results can be viewed as the first
step towards the simulations of such hybrid quantum many-
body system. Since our method is specifically designed for
the simulation of multispecies systems, an obvious extension
of our work is the study of the ground state when the ion
motion is included, which will be pursued in the near future.
Moreover, this work opens the way for the study of dynamical
processes within the atom-ion hybrid system. Focusing on
the atomic cloud, one can think of the investigation of
the dynamical formation of a density bubble and charged
molecules within the atomic cloud and of tunneling dynamics,
e.g., in a bosonic Josephson junction setup [18]. With respect
to the ion, the study of sympathetic cooling, i.e., energy
transfer from an excited ion to the atomic cloud, and the
impact of micromotion are also of current interest and could
be possibly simulated with our technique. Even the inclusion
of spin degrees of freedom is possible in our method, allowing
for the study of a single-ion qubit in an atomic bath as
recently reported in Ref. [20]. Finally, one could extend
the setup to multiple ions, making it possible, for instance,
to investigate the polaron physics emerging in such hybrid
systems.
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APPENDIX: THOMAS-FERMI LIMIT FOR
THE IONIC CASE

The energy per particle in the TF regime cannot be derived
analytically for the ionic case. Nevertheless, we can find
approximative expressions for large particle numbers. In this
limit, the outer TF radius zO

μ is large enough that we can
neglect the ionic potential at the borders of the density
distribution. Therefore, integrals over the ionic potential [see
Eq. (20)] become independent of the particle number N ,
making it possible to identify the chemical potential via the
normalization of the wave function,

μ(N ) =
[

(N − N0)
3g

4l2
‖

]2/3

. (A1)
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This leads to an energy per particle of

EI
TF(N )

N
= 3

5

e0(N − N0)5/3

N
+ EI

0

N
. (A2)

In the same way, we can approximate the single components
of the energy per particle by

EI
TF,int(N )

N
= 2

5

e0(N − N0)5/3

N

+N0e0
(N − N0)2/3

N
− EI

0

N
, (A3)

EI
TF,trap(N )

N
= 1

5

e0(N − N0)5/3

N
+ EI

1

N
, (A4)

EI
TF,ion(N )

N
= N0e0

(N − N0)2/3

N
+ EI

2

N
, (A5)

with the constants

EI
1 = −1/g

∫ zO
μ

−zO
μ

[Vtrap(z)Vmod(z)]dz, (A6)

EI
2 = −1/g

∫ zO
μ

−zO
μ

[Vtrap(z)Vmod(z) + Vmod(z)2]dz, (A7)

which have the property EI
1 + EI

2 = 2EI
0.
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