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Quantum correlation and entanglement between an ionizing system and a neighboring atom
interacting directly and via a quantized field
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Quantum correlations between two neighboring atoms are studied. It is assumed that one atomic system
comprises a single auto-ionizing level and the other atom does not contain any auto-ionizing level. The excitation
of both atoms is achieved by the interaction with the same mode of the quantized field. It is shown that the
long-time behavior of two atoms exhibits quantum correlations even when the atoms do not interact directly.
This can be shown using the optical excitation of the neighboring atom. Also a measure of entanglement of two
atoms can be applied after reduction of the continuum to two levels.

DOI: 10.1103/PhysRevA.90.033428 PACS number(s): 32.80.Zb, 03.67.Bg, 33.80.Eh, 34.20.−b

I. INTRODUCTION

In the study of atoms with at least two electrons, bound
states and resonances are of interest. The resonances evolve
into states with one free electron after a very short time. This
phenomenon is called auto-ionization of the atom. With a
revival of interest in the auto-ionization, Fano published an
appealing theoretical paper [1] comprising an analysis of the
excitation of the 2s2p level of helium by electrons. He argued
that the natural line shape contains a zero. Later, the optical
absorption spectra of the rare gases have been analyzed [2],
while the paper [3] is one of many studies dealing with the
mechanism of atomic auto-ionization. A unified approach to
the configuration interaction and the influence of strong lasers
have been expounded in Ref. [4]. In this framework, the studies
[5,6] have been realized. The quantum laser field has been
taken into account in Ref. [7] and the effect of the squeezed
state has been studied in Ref. [8].

The Fano resonances can occur also in other physical
settings. The Fano resonances in nanoscale structures can
be mentioned [9]. The treatment of auto-ionization and the
influence of laser may be extended to a simultaneous auto-
ionization, the influence of laser, and to the interaction with
a neighboring two-level atom [10–14]. The presence of a
neighboring system may also considerably increase photo-
ionization and recombination rates [15,16]. In the analysis,
the assumption of weak optical pumping is usually used and
leads to a simpler behavior; cf. Ref. [4].

In Ref. [17], the entanglement between an auto-ionization
system and a neighboring atom is studied for a classical
driving field. Besides the possibility of calculating a measure
of entanglement for the two atomic systems, a somewhat
arbitrary, but systematic, filtering is adopted. Two frequencies
can be selected in the auto-ionization system and the study of
entanglement reduces to the well-known two-qubit problem.
In this paper, we modify this analysis by including the quantal
nature of the field. In Sec. II, we describe the model. In
Sec. III, we discuss photoelectron spectra and the density plots
of entanglement measure. Section IV provides our conclusion.

*vlasta.perinova@upol.cz

II. QUANTUM MODEL OF THE OPTICAL EXCITATION
OF TWO ATOMS

We consider two mutually interacting atoms, a and b, in
the presence of an electromagnetic field (for the scheme, see
Fig. 1). To quantize the electromagnetic field, we have to
add to the usual model annihilation and creation operators
of the modes which participate in the radiative interactions.
Indeed, although only the frequency ωL of optical field is
considered, an infinite number of modes at this frequency can
be introduced.

We may suppose that the atom a interacts with the mode
La and the atom b interacts with the mode Lb. We complete
the levels of the atomic system by the photon-number states,

|na,nb〉L ⊗ |0,0〉ab,|na − 1,nb〉L ⊗ |1,0〉ab,

|na,nb − 1〉L ⊗ |0,1〉ab,|na − 1,nb − 1〉L ⊗ |1,1〉ab,

|na,nb − 1〉L ⊗ |0,Ed〉ad ,

|na − 1,nb − 1〉L ⊗ |1,Ed〉ad , (1)

where na is a photon number in the mode La and nb is a photon
number in the mode Lb. In Eq. (1), |0〉a (|0〉b) is the ground state
of the atom a (b), |1〉a is the excited state of the atom a, |1〉b
is the auto-ionization state of the atom b, |Ed〉 ≡ |Ed〉d is the
continuum state of the atom b, and Ed is an energy difference
between the ground state |0〉b and the state |Ed〉. Here we have
used the photon-number states |na〉, |nb〉, |na − 1〉, and |nb −
1〉 simultaneously to indicate that the Hilbert space of the states
can be decomposed into invariant subspaces. For na,nb � 1,
these subspaces have a dimension equal to 6. Each invariant
subspace is a tensorial product of the subspaces corresponding
to the Jaynes-Cummings model (dimension 2) and the model
due to Leoński and Bužek (dimension 3) [7]. The Hamiltonian
has the form

Ĥ = Ĥ
′
free + Ĥ

′
a−i + Ĥt−a + Ĥtrans, (2)

where

Ĥ
′
free = �ωL(â†

LâL + b̂
†
Lb̂L), (3)

with âL and b̂L (â†
L and b̂

†
L) being the photon annihilation

(creation) operators. The Hamiltonian Ĥ
′
a−i of atom b with
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FIG. 1. Sketch of an auto-ionization system b interacting with a
two-level atom a through a quantized field in the Fock state|n〉. The
ground (excited) states are denoted as |0〉a and |0〉b (|1〉a , |1〉b, and
|Ed〉). The dipole moments μa , μb, and μ describe the interactions
between atoms and field. The excited discrete state of atom a (b) has
the energy Ea (Eb), whereas the energies Ed characterize the excited
states |Ed〉 of the continuum. Symbol V stands for the Coulomb
configurational coupling between the excited states of atom b. The
constants Jab and J describe the dipole-dipole interaction between
the atoms a and b.

auto-ionizing level in Eq. (2) is written as

Ĥ
′
a−i = Eb|1〉bb〈1| +

∫
Ed |Ed〉〈Ed | dEd

+
∫

(V |Ed〉 b〈1| + H.c.) dEd

+ (μbb̂L|1〉bb〈0| + H.c.)

+
∫

(μb̂L|Ed〉 b〈0| + H.c.) dEd, (4)

where Eb means an energy difference between the ground state
|0〉b and the state |1〉b. Symbol μb gives the strength of optical
excitation from the ground state |0〉b into the auto-ionization
state |1〉b, μ is the strength of optical excitation from the ground
state |0〉b of the atom b into the continuum state |Ed〉, and V

describes the Coulomb configuration interaction between the
excited states of atom b. The Hamiltonian of the neighboring
two-level atom in Eq. (2) reads

Ĥt−a = Ea|1〉aa〈1| + (μaâL|1〉aa〈0| + H.c.) , (5)

where Ea means an energy difference between the ground
state |0〉a and the state |1〉a , and μa is the strength of optical
excitation from the ground state |0〉a into the excited state |1〉a .

In Eq. (2), the Hamiltonian Ĥtrans characterizes the dipole-
dipole interaction between the atoms a and b,

Ĥtrans = (Jab|1〉bb〈0||0〉aa〈1| + H.c.)

+
∫

(J |Ed〉 b〈0||0〉aa〈1| + H.c.) dEd, (6)

where Jab (J ) characterize energy transfer from the ground
state |0〉b into the state |1〉b (|Ed〉) at the cost of the decay from
the state |1〉a into the state |0〉a . We note that if Jab = 0 and
J = 0, the Hamiltonian Ĥ describes uncoupled atoms.

We treat the situation where the atoms a and b interact with
a single mode L, b̂L → âL. In this case, the levels written in

Eq. (1) simplify,

|n〉L ⊗ |0,0〉ab,|n − 1〉L ⊗ |1,0〉ab,

|n − 1〉L ⊗ |0,1〉ab,|n − 2〉L ⊗ |1,1〉ab,

|n − 1〉L ⊗ |0,Ed〉ad ,|n − 2〉L ⊗ |1,Ed〉ad , (7)

and n is the number of photons in the mode L. Here we have
used the photon-number states |n〉L, |n − 1〉L, and |n − 2〉L
simultaneously to indicate that the Hilbert space of the states
can be decomposed into invariant subspaces. But in the case of
a single mode, an invariant subspace cannot be investigated as
a tensorial product. We can see from Eq. (7) that the atom a at
the level |0〉a interacts with the field in the state |n〉L or |n − 1〉L
in the dependence on the state of the atom b and the atom a

at the level |1〉a interacts with the field in the state |n − 1〉L or
|n − 2〉L in the dependence on the state of the atom b.

The Hamiltonian has the form

Ĥ = Ĥfree + Ĥa−i + Ĥt−a + Ĥtrans, (8)

where

Ĥfree = �ωLâ
†
LâL (9)

and

Ĥa−i = Ĥ ′
a−i

∣∣
b̂L→âL

. (10)

Following Ref. [7], we modify the Schrödinger picture by
considering the state vector |ψ〉(t) in the form

|ψ〉(t) =
∞∑

n=0

′
exp

[
− i

�
EL(n − 2)t

]

×
[
c

(n)
00 (t)|n〉L|0,0〉ab + c

(n−1)
10 (t)|n − 1〉L|1,0〉ab

+ c
(n−1)
01 (t)|n − 1〉L|0,1〉ab

+ c
(n−2)
11 (t)|n − 2〉L|1,1〉ab

+
∫

d
(n−1)
0 (Ed,t)|n − 1〉L|0,Ed〉ad dEd

+
∫

d
(n−2)
1 (Ed,t)|n − 2〉L|1,Ed〉ad dEd

]
, (11)

where EL = �ωL. The prime indicates that for n = 0,1 some
of the components must be omitted. The components with
|n − 2〉L have to be omitted for n = 0,1 and those with
|n − 1〉L have to be left out for n = 0.

It holds that [Ĵ ,Ĥ ] = 0̂ for

Ĵ = |1〉b b〈1| +
∫

|Ed〉〈Ed | dEd + |1〉a a〈1| + â
†
LâL. (12)

An invariant subspace H(n) is the eigenspace of the operator
Ĵ related to an eigenvalue n. We assume that n � 2. In this
invariant subspace, the composite system is described by the
equations

d

dt
c(n)(t) = − i

�
A(n)c(n)(t) − i

�

∫
B(n)

1 d(n)(Ed,t) dEd,

d

dt
d(n)(Ed,t) = − i

�
B(n)

2 c(n)(t) − i

�
K(n)(Ed )d(n)(Ed,t), (13)
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where

c(n)(t) =

⎛
⎜⎜⎜⎜⎝

c
(n)
00 (t)

c
(n−1)
10 (t)

c
(n−1)
01 (t)

c
(n−2)
11 (t)

⎞
⎟⎟⎟⎟⎠ ,

(14)

d(n)(Ed,t) =
(

d
(n−1)
0 (Ed,t)

d
(n−2)
1 (Ed,t)

)
.

Further

A(n) =

⎛
⎜⎜⎜⎝

2EL μ∗
a

√
n μ∗

b

√
n 0

μa

√
n Ea + EL J ∗

ab μ∗
b

√
n−1

μb

√
n Jab Eb + EL μ∗

a

√
n−1

0 μb

√
n−1 μa

√
n−1 Ea + Eb

⎞
⎟⎟⎟⎠,

(15)

B(n)
1 =

⎛
⎜⎜⎜⎝

μ∗√n 0

J ∗ μ∗√n − 1

V ∗ 0

0 V ∗

⎞
⎟⎟⎟⎠ , (16)

B(n)
2 =B(n)†

1 , (17)

K(n)(Ed )=
(

Ed + EL μ∗
a

√
n − 1

μa

√
n − 1 Ea + Ed

)
. (18)

We introduce the matrix

M(n) = A(n) − iπB(n)
1 B(n)

2 , (19)

let ξ
(n)
1 and ξ

(n)
2 denote the eigenvalues of the matrix K(n)(0),

and let �
(n)
M(n)j

, j = 1,2,3,4, be the eigenvalues of the matrix

M(n). Let us recall the possibility of decompositions

K(n)(0) = ξ
(n)
1 K(n)

1 + ξ
(n)
2 K(n)

2 , (20)

M(n) =
4∑

j=1

�
(n)
M(n)j

M(n)
j , (21)

where K(n)
1 , K(n)

2 are solutions of the equations

K(n)
1 + K(n)

2 = I2,
(22)

ξ
(n)
1 K(n)

1 + ξ
(n)
2 K(n)

2 = K(n)(0).

Similarly, M(n)
j , j = 1,2,3,4, are solutions of the equations

4∑
j=1

�
(n)k
M(n)j

M(n)
j = M(n)k, k = 0,1,2,3. (23)

In Eqs. (22) and (23), I2 and
∑4

j=1 M(n)
j = I4 are 2 × 2 and

4 × 4 unit matrices, respectively.
The first vector of the components of the solution of

Eqs. (13) has the very simple form

c(n)(t) = exp

(
− i

�
M(n)t

)
c(n)(0). (24)

We introduce a 2 × 4 matrix T(n)(Ed ) as the solution of the
Sylvester equation

K(n)(Ed )T(n)(Ed ) − T(n)(Ed )M(n) = B(n)
2 . (25)

The solution has the form

T(n)(Ed ) =
2∑

k=1

4∑
j=1

K(n)
k B(n)

2 M(n)
j

Ed + ξ
(n)
k − �M(n)j

. (26)

The dependence of the components of the amplitude spectrum
on the initial state of the system with d(n)(Ed,0) = 0 is

d(n)(Ed,t) =
{

exp

[
− i

�
K(n)(Ed )t

]
T(n)(Ed )

− T(n)(Ed ) exp

[
− i

�
M(n)t

]}
c(n)(0). (27)

We observe that

d(n)(Ed,t) � d(n)
out(Ed,t) for t → ∞, (28)

where

d(n)
out(Ed,t) = exp

[
− i

�
K(n)(Ed )t

]
T(n)(Ed )c(n)(0). (29)

The increase of the diagonal terms by 2EL means that
also the eigenvalues ξ

(n)
k , k = 1,2, �

(n)
Mj are raised by the

same amount. In the relations like Eq. (26), these increments
mutually cancel and elsewhere they already correspond to the
relation (11).

All the previous exposition beginning with Eq. (14) should
be modified for n < 2. Let us note that the initial vacuum field
and the ground states of the atoms a and b, n = 0, do not lead
to any transitions to the continuum states. It holds that c(0)(t) =
(c(0)

00 (t)) and the description reduces to the equation d
dt

c
(0)
00 (t) =

− i
�

2ELc
(0)
00 (t). The reduction for n = 1 is a consequence of

nonexistence of |n − 2〉L as in Eq. (11) and need not be made
explicit. Let us note that transition to a continuum state can
occur for n = 1, but not simultaneously with an excitation of
the atom a.

III. NUMERICAL RESULTS

The long-time behavior is characterized by a complete
ionization of the atom with an auto-ionizing level and by
both the levels of the two-level atom a being occupied. The
long-time behavior is periodical due to the dynamics of the
two-level atom in the cw laser field. At all times the spectra can
be determined as the probability distribution of the two-level
atom at its levels and of the atom with the auto-ionizing level
in the continuum of levels. By the normalization, conditional
spectra are defined. The difference between the conditional
spectra is an effect of the atomic quantum correlation and can
be seen even in the case where the dipole-dipole interaction of
the atoms is missing.

An important case of the quantum correlation is the entan-
glement. We measure this entanglement using the negativity.
The entanglement is conserved, even though we restrict the
continuum of levels to two of them, in the most of the pairs
of the selected frequencies. We calculate the negativity of
the partially transposed statistical matrix for two levels of the
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two-level atom and selected continuum levels of the atom with
an auto-ionizing level.

A. Appropriate parametrization

In the previous work, the functions

qb = μb

πV ∗μ
, γb = π |V |2 (30)

of the parameters of the atom b without a neighbor have been
conveniently introduced. Also the functions

qa = μa

πJ ∗μ
, γa = π |J |2 (31)

of the parameters of both the atoms have been defined. Here
we conveniently introduce a one-photon version of the usual
“excitation” parameter �,

� =
√

4π	(Q2 + 1)μ, (32)

where

	 = γa + γb, Q = γaqa + γbqb

	
. (33)

By the replacements μb → Jab, μ → J in the function qb, the
function

qtrans = Jab

πV ∗J
(34)

originates. For V,J � 0, the parameters of the model can be
expressed in the forms

V =
√

γb

π
, J =

√
γa

π
, μ = �√

4π	(Q2 + 1)
,

(35)
μa = πJ ∗μqa, μb = πV ∗μqb, Jab = πV ∗Jqtrans.

From this, qa,γa,qb,γb,�,qtrans are new parameters.
In what follows, we assume Ea = Eb = EL = 1 and

four different physically interesting cases that elucidate the
behavior of the analyzed system:

(a) qa = 0; γa = 0; qb = γb = 1; � = 0.1,1; qtrans = 0,
(a′ ) qa = 100; γa = 0; qb = γb = 1; � = 0.1,1; qtrans = 0,
(b) qa = 100; γa = 10−4; qb = γb = 1; � = 0.1; qtrans = 0,
(c) qa = 100; γa = 10−4; qb = γb = 1; � = 0.1; qtrans = 1.
Whereas atom b is alone in (a), it feels the presence of

atom a due to the quantized optical field in (a′ ). In (b), both
atoms interact by the dipole-dipole interaction that includes
only the continuum of states at the atom b. Finally, also
the dipole-dipole interaction between the discrete levels of
both atoms is taken into play in (c). We note that detuning
of energy levels of both atoms from the laser frequency
does not qualitatively modify the behavior of the system (for
more details, see Ref. [17] for semiclassical model). Also, we
analyze the system at time t = 2 below. For the considered
values of parameters, the behavior of the system at time t = 2
already corresponds to that appropriate to the long-time limit.

As for the choice of units, we consider any system of units,
where � = 1 (dimensionless). Then the energy and frequency
have the same unit, that of the autoionization width γb. The
time has the unit of γ −1

b . The photoelectron spectra have the
unit of γ −1

b and the negativity is dimensionless.

B. The role of atom a in forming the ionization spectra

In the model, atoms a and b are in fact mutually coupled
by two types of interactions. Side by side with the discussed
dipole-dipole interaction, the interaction mediated by photons
in the quantized field also occurs. This interaction qualitatively
distinguishes the presented fully quantum model from the com-
mon semiclassical models that assume a classical predefined
optical pump field [11,12].

The long-time limit of the two atomic systems is described
by a statistical matrix (ρout

jk (Ed,E
′
d ,t)), with two discrete

indices j,k and two continuous arguments Ed , E′
d . Here

ρout
jk (Ed,E

′
d ,t)

=
∞∑

n=max(1+j,1+k)

d
(n−1−j )
jout (Ed,t)d

(n−1−k)∗
kout (E′

d,t). (36)

As usual, the photoelectron spectra are identified with the
distributions

W out
j (Ed,t) = ρout

jj (Ed,Ed,t), j = 0,1. (37)

This joint description may be reduced to the marginal
probability distribution of the levels of the atom a,

pout
j (t) =

∫ ∞

−∞
W out

j (Ed,t)dEd. (38)

We consider also the conditional distributions or spectra

W out
|j (Ed,t) = W out

j (Ed,t)

pout
j (t)

, j = 0,1. (39)

The closed formula for pout
j (t) is rather complicated,

pout
j (t) =

∞∑
n=1+j

∫ ∞

−∞

∣∣d (n−1−j )
jout (Ed,t)

∣∣2
dEd, (40)

where ∫ ∞

−∞

∣∣d (n−1−j )
jout (Ed,t)

∣∣2
dEd

=
(∫ ∞

−∞
d(n)

out(Ed,t)d
(n)†
out (Ed,t)dEd

)
jj

, (41)

with∫ ∞

−∞
d(n)

out(Ed,t)d
(n)†
out (Ed,t)dEd = 2π

×
2∑

k=1

4∑
j=1

2∑
k′=1

4∑
j ′=1

exp
[

i
�

(
ξ

(n)
k′ − ξ

(n)
k

)
t
]

i
(
ξ

(n)
k′ − ξ

(n)
k − �∗

M(n)j ′ + �M(n)j

)
× K(n)

k B(n)
2 M(n)

j c(n)(0)c(n)†(0)M(n)†
j ′ B(n)

1 K(n)
k′ . (42)

The long-time total photoelectron spectrum is time indepen-
dent,

W out(Ed ) = W out
0 (Ed,t) + W out

1 (Ed,t). (43)

In Figs. 2 and 3 the case (a′) of data with � = 0.1 and for the
initial coherent state |1〉L is illustrated. The unconditioned and
conditional photoelectron spectra have a multipeak structure
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FIG. 2. Unconditioned photoelectron spectra W out
j (Ed,t), t = 2,

j = 0,1. Initially the laser mode is in a coherent state with the mean
photon number equal to 1. The photon energy is EL = 1. The energy
differences Eb = Ea = 1. The parameters are qa = 100, γa = 0, qb =
γb = 1, � = 0.1, and qtrans = 0.

and the peak positions are about the same for both the values
of the subscript j . Therefore the plot is restricted to an interval
which includes a single peak of a spectrum. In Fig. 2, it is
seen that the unconditioned photoelectron spectra coincide
and cannot be discerned in the chosen interval. In contrast,
in Fig. 3 it is obvious that the conditional spectra differ
significantly in the selected interval. It proves the dependence
of the occupation of the atom b’s level on the atom a’s level.

To reveal the role of atom a in ionization of atom b, we
compare the long-time ionization spectra of atom b for atom
a present and absent. We consider a greater value of single-
photon Rabi frequency � to emphasize quantum features of
the model (� = 1).

Ionization of isolated atom b in a quantized field leads,
in general, to the occurrence of sharp peaks in the ionization
spectra (see Fig. 4). These peaks arise from the ionization
caused by individual Fock states of the optical field. This
is documented in Figs. 4 and 5, in which the ionization
spectra corresponding to the coherent and Fock states are
shown. It holds that as the Fock number n is greater, the
corresponding spectral peak becomes narrower and closer to

FIG. 3. Same as in Fig. 2, but the conditional spectra W out
|j (Ed,t),

j = 0,1, are plotted.

FIG. 4. Photoelectron spectrum W out(Ed ). Initially the laser mode
is in a coherent state with the mean photon number equal to 1. The
parameters are Ea = Eb = EL = 1, qa = 0, γa = 0, qb = γb = 1,
� = 1, and qtrans = 0.

the position of energy of the Fano zero (see Fig. 4). Such
behavior qualitatively resembles that of an ionization spectrum
caused by a classical strong pump field [5].

The presence of atom a in the quantized pump field
considerably modifies the ionization spectra of atom b due
to the mutual indirect interaction of both atoms through the
quantized pump field. Contrary to the spectra of isolated atom
b, the ionization spectra have contributions both below and
above the pump-field frequency. Moreover, the spectral peaks
above and below the pump-field frequency occur in pairs,
which results in nearly symmetric ionization spectra (see
Figs. 6 and 7). This symmetry is inherent to the Fock states
from which it transfers into the coherent states, as documented
in Figs. 6 and 7. It holds as the Fock number n becomes greater,
the two peaks become closer to the pump-field frequency.

If the pump-field intensity increases, the spectrum of
isolated atom b is built more from contributions of higher
number Fock states and it moves to lower energies crossing
the energy of Fano zero. As the pump field is more intense,
the more suppressed (smoothed) the spectral structure of
individual Fock states becomes (see Figs. 8 and 9). Also the

FIG. 5. Fock components W
(N)
out (Ed ), N = 1, . . . ,4, of the spec-

trum W out(Ed ). The parameters are the same as in Fig. 4.
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FIG. 6. Photoelectron spectrum W out(Ed ). The parameters are the
same as in Fig. 4, but the parameter qa = 100.

narrowing of the overall ionization spectrum in the vicinity of
the energy of Fano zero is observed. When atom a is present,
the ionization spectra also gradually lose their peaked structure
with the increasing pump-field intensities (see Figs. 10 and 11).
For sufficiently high pump-field intensities, the spectrum
approaches that of the isolated atom a.

When the interaction mediated by the quantized field is
weaker, the behavior of ionization spectra with the increasing
pump-field intensities is qualitatively similar to the usual one
discussed in the Fano model. The spectra move towards lower
energies with the increasing pump-field intensities and cross
at a certain intensity the energy of Fano zero, as documented
in Figs. 12 and 13. Whereas the isolated atom b has a one-peak
spectrum, the spectrum of atom b influenced by atom a consists
of two peaks that form a spectral doublet at greater pump-field
intensities, as clearly visible in Fig. 13.

C. Ionization spectra formed by the dipole-dipole interaction

The dipole-dipole interaction between atoms a and b, in
general, splits the peaks in the ionization spectra of isolated
atom b into two parts (see Figs. 14–16). As a consequence,
there are two major peaks in the ionization spectra for greater
pump-field intensities. These spectral peaks are broken into
many subpeaks for low pump-field intensities as a consequence

FIG. 7. Fock components W
(N)
out (Ed ), N = 1, . . . ,4, of the spec-

trum W out(Ed ). The parameters are the same as in Fig. 4, but the
parameter qa = 100.

FIG. 8. Photoelectron spectra W out(Ed ). The parameters are
Ea = Eb = EL = 1, γa = 0, qb = γb = 1, � = 1, and qtrans = 0.
Here the initial mean photon number is equal to 5, qa = 0.

of quantum character of the pump field (see Fig. 14). Individual
subpeaks can be connected with the appropriate Fock states, as
in the previous section. Two major peaks approach each other
with the increasing pump-field intensity and form a spectral
doublet at a certain moment (see Fig. 15).

If only the dipole-dipole interaction between the discrete
level of atom a and the continuum of states of atom b (J �= 0)
is considered, the Fano zero of isolated atom b is inevitably
lost. However, when also the dipole-dipole interaction between
the discrete levels of atoms a and b occurs (Jab �= 0), the
Fano zero can be preserved under certain conditions found
in Ref. [13]. The two mentioned dipole-dipole interactions
compete in ionizing atom b in certain sense. If the strengths of
two interactions equal for the energy of Fano zero formed at
atom b, the Fano zero is preserved. The appropriate condition
was derived in Ref. [13] for the semiclassical model in the
form

Jab

J
= μb

μ
. (44)

FIG. 9. Same as in Fig. 8, but the initial mean photon number is
equal to 29, qa = 0.
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FIG. 10. Same as in Fig. 8, but the initial mean photon number is
equal to 5, qa = 100.

Numerical computations have revealed that the condition in
Eq. (44) is valid also in the analyzed quantum model (see
Fig. 17). Here, we note that the original Fano zero of isolated
atom b is usually replaced by a broad deep minimum in the
ionization spectra provided that the condition in Eq. (44) is not
fulfilled (see Fig. 17). Such behavior originates in the weakness
of dipole-dipole interactions compared to the Coulomb and
optical dipole interactions that form the Fano zero of isolated
atom b.

D. Entanglement of atoms a and b

We have assessed the entanglement by the “computable
measure of entanglement,” i.e., the negativity [18]. It is recom-
mended as such in the case of two parties (components), each
possessing a finite number of levels. We mark a difference,
because in our analysis one of the two parties has an infinite
number of levels. The straightforward approach was successful

FIG. 11. Same as in Fig. 8, but the initial mean photon number is
equal to 29, qa = 100.

on the assumption of a classical light field [17], because
the two components are in a joint pure quantum state. To
our knowledge, such an approach cannot be based on simple
formulas on inclusion of the quantum nature of the field which
leads to a mixed quantum state describing the involved parties.
Numerical calculation would be a challenging task.

Recently, a selection of the frequencies has been realized
in a somewhat arbitrary, but systematic, way [17]. Two states
with these frequencies are just the levels needed for producing
a qubit. In such a way, we return to the well-known two-qubit
problem. For Ed,E

′
d ∈ [−2,3], [−20,20],[−5,10],[−1.5,1.5],

we generate a “density” plot of the negativity at t = 2 that is

N (t) =
4∑

l=1

|λ̄l(t)| − λ̄l(t)

2
, (45)

where λ̄l(t) are eigenvalues of the partially transposed statisti-
cal matrix

⎛
⎜⎜⎜⎝

ρout
00| (Ed,Ed,t) ρout

00| (Ed,E
′
d ,t) ρout

10| (Ed,Ed,t) ρout
10| (Ed,E

′
d ,t)

ρout
00| (E

′
d,Ed,t) ρout

00| (E
′
d ,E

′
d ,t) ρout

10| (E
′
d,Ed,t) ρout

10| (E
′
d,E

′
d ,t)

ρout
01| (Ed,Ed,t) ρout

01| (Ed,E
′
d ,t) ρout

11| (Ed,Ed,t) ρout
11| (Ed,E

′
d ,t)

ρout
01| (E

′
d,Ed,t) ρout

01| (E
′
d ,E

′
d ,t) ρout

11| (E
′
d,Ed,t) ρout

11| (E
′
d,E

′
d ,t)

⎞
⎟⎟⎟⎠ . (46)

Here (
ρout

jk|(Ed,Ed,t) ρout
jk|(Ed,E

′
d ,t)

ρout
jk|(E

′
d ,Ed,t) ρout

jk|(E
′
d ,E

′
d ,t)

)
= 1∑1

j=0

[
ρout

jj (Ed,Ed,t) + ρout
jj (E′

d,E
′
d ,t)

]
(

ρout
jk (Ed,Ed,t) ρout

jk (Ed,E
′
d ,t)

ρout
jk (E′

d,Ed,t) ρout
jk (E′

d ,E
′
d ,t)

)
, (47)

with

ρout
jk (Ed,Ed,t) = ρout

jk (Ed,E
′
d ,t)(E

′
d → Ed ),

ρout
jk (E′

d ,Ed,t) = ρout
jk (Ed,E

′
d ,t)(Ed ↔ E′

d ),
(48)

ρout
jk (E′

d ,E
′
d ,t) = ρout

jk (Ed,E
′
d ,t)(Ed → E′

d ),

j,k = 0,1.

Both the dipole-dipole interaction and the interaction mediated
by the quantized pump field create the entanglement between
the bound electron at atom a and the ionized electron at atom

b. Suitable conditions for creating highly entangled states have
been revealed in Ref. [17] concerning a classical pump field. It
holds that as the dipole-dipole interaction strengthens, a more
entangled state is reached. However, also a weaker dipole-
dipole interaction can provide highly entangled states if the
ionization process is sufficiently slow. This can be reached
when the strengths of the direct ionization path (connecting
the ground state of atom b with the continuum) and the indirect
ionization path (that ionizes an electron from the ground state
of atom b through the auto-ionizing discrete state of atom b)
are balanced.

033428-7
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FIG. 12. Photoelectron spectra W out(Ed ). Initially the laser mode
is in coherent states with the mean photon numbers equal to 1, 30,
600, and 1000. The parameters are Ea = Eb = EL = 1, γa = 0, qb =
γb = 1, � = 0.1, and qtrans = 0. Here qa = 0.

FIG. 13. Same as in Fig. 12, but qa = 100.

FIG. 14. Photoelectron spectra W out(Ed ). The parameters are
Ea = Eb = EL = 1, qa = 100, γa = 10−4, qb = γb = 1, � = 0.1,
and qtrans = 0. Initially the laser mode is in a coherent state with the
mean photon number equal to 5.

FIG. 15. Same as in Fig. 14, but with the mean photon number
equal to 30.

FIG. 16. Same as in Fig. 14, but with the mean photon number
equal to 1000.

FIG. 17. Photoelectron spectra W out(Ed ). Initially the laser mode
is in a coherent state with the mean photon number equal to 3. The
parameters are Ea = Eb = EL = 1, qa = 100, γa = 10−4, qb = γb =
1, � = 0.1, and qtrans = 0 (solid curve),1 (dashed curve).
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FIG. 18. Density plot of the negativity N (t = 2) that measures
the entanglement between the neighbor atom a and the atom b with
a continuum. The parameters are Ea = Eb = EL = 1, qa = 100,
qb = γb = 1, � = 0.1, and qtrans = 0. Initially, the laser mode is in a
coherent state with the mean photon number equal to 1, γa = 0.

Similarly as in the semiclassical model analyzed in
Ref. [17], the overall negativity can roughly be composed of
negativities of qubit-qubit systems obtained from the qubit of
atom a and all possible qubits found in the continuum of atom
b. Such densities of negativity give us information about the
spectral distribution of entanglement. The density of negativity
for the ionization spectrum shown in Fig. 6 and appropriate
for the interaction mediated by the quantized field is plotted in
Fig. 18. We can see in Fig. 18 that the negativity is distributed in
the whole area of energies present in the ionization spectrum.
It is remarkable that the values of density of negativity are very
low for the degenerate energies of qubits inside the continuum
of atom b (Ed ≈ E′

d ). This behavior can be explained by the
long-time energy conservation that does not allow to entangle
such qubits in the continuum with the qubit of atom a. The
densities of negativity appropriate to the coherent and Fock
states completely differ, as demonstrated in Figs. 18 and 19.
We note that a pump field in the Fock state with one photon
cannot create entanglement due to the energy conservation.
However, higher number Fock states are already suitable for
the entanglement creation.

FIG. 19. Same as in Fig. 18, but initially the laser mode is in the
Fock state |2〉L, γa = 10−4.

FIG. 20. Same as Fig. 18, but γa = 10−4.

The densities of negativities formed by the dipole-dipole
interaction behave similarly to those created by the interaction
mediated by the quantized field. It holds also here that
appreciable values of the density of negativity are found for
energies appreciably present in the ionization spectra. Also,
very low values of the density of negativity occur around the
degenerate energies Ed ≈ E′

d (see Figs. 20 and 21). Thus,
the spectral concentration of negativity is observed as the
pump-field intensity increases (compare Figs. 20 and 21).
When the spectrum forms a spectral doublet, the entanglement
is encoded between the two peaks of the doublet.

As follows from the above results, effects stemming
from quantum features of the pump optical field are clearly
visible both in ionization spectra and entanglement provided
that the one-photon “excitation” parameter � is greater or
comparable to 0.1 and the mean number of photons is smaller
or comparable to 10. Both coherent laser fields and highly
nonclassical Fock-state fields are suitable for the observation
of quantum signatures of auto-ionization process. As for the
Fock-state fields, they can be generated, e.g., in heralded
single-photon sources [19] or their generalizations [20] and
in QED cavities [21]. Greater values of the one-photon
“excitation” parameter � represent experimental challenges
as the values reached in current ionization experiments are
much smaller. However, modern photonic band-gap structures

FIG. 21. Same as Fig. 18, but the initial mean photon number is
equal to 1000, γa = 10−4.
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[22,23] give hope here. They allow us to dramatically increase
electric-field amplitudes inside due to constructive interference
on one side. On the other side, they form photonic bands with
continuum of states which are similar to those participating in
ionization.

IV. CONCLUSIONS

We have studied quantum correlations of two atoms. We
have assumed that one atomic system contains an auto-
ionizing level whereas the other atom does not have any
auto-ionizing level. Both the atoms interact with the same
mode of the quantized field. We have concentrated on the
long-time behavior of the atomic systems. The long-time
behavior exhibits quantum correlations of the two atoms
even in the case where the atoms do not interact directly.
We have illustrated quantum correlations by comparing the

one-peak spectrum appropriate for the neighbor atom without
optical excitation with the two-peak spectrum occurring for the
optically excited neighbor atom. In the classical limit of strong
field the differences vanish. We have identified conditions
for the observation of quantum features in long-time electron
ionization spectra. Also the Fano zero has been found in these
spectra for the quantized optical field considering the same
conditions as for the classical optical field.
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