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Optimal control of multilevel quantum systems in the field-interaction representation
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A control strategy incorporating a fixed carrier frequency constraint on the optimal field is presented. As
an illustrative example we consider the creation of maximum coherence in a six-level � system by solving
the Schrödinger equation without the rotating-wave approximation in the field-interaction representation. We
demonstrate that application of the optimal control theory optimization reformulated in the field-interaction
representation allows one to keep the carrier frequency of the control field constant and successfully optimize
off-resonant processes in multilevel quantum systems.
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I. INTRODUCTION

During the last few decades we have witnessed significant
interest and advances in controlling atomic and molecular
dynamics using shaped ultrafast laser pulses. Coherent control
of quantum systems has found broad applications in atomic
and molecular spectroscopy, laser-induced cooling, quantum
optics, manipulation of chemical reactions and biological
processes, as well as in quantum information [1–4]. Various
experimental and theoretical methods have been developed
to achieve a target quantum state in atomic and molecu-
lar systems, including stimulated Raman adiabatic passage
(STIRAP) [2,5,6] and chirped-pulse excitation [7].

Optimal control theory (OCT) [8–12] is a control technique
that is considerably more advanced mathematically. The
OCT provides a powerful tool for the efficient manipulation
of the quantum system to reach a desired objective at a
given time by means of an optimized laser field, and it has
been applied successfully to a broad variety of problems in
physics and chemistry [13–20]. In order to design an optimal
field, OCT requires the maximization or minimization of the
field-dependent cost functional which usually incorporates the
desired dynamical transformation that has to be achieved, and,
in many cases, it contains a penalty term to minimize the
field energy. An additional state-dependent penalty term can
be incorporated into the cost functional if it is required to
minimize the population of some unwanted states [5,6,20].
The field equations obtained in the variational OCT framework
are solved numerically in an iterative fashion and analytically
in some rare instances. Various numerical iterative methods
have been used for the maximization or minimization of the
cost functional [14]. The progress of the optimization depends
on the choice of the initial guess field and the efficiency of
the numerical iterative method; a large number of iterations
are required for a bad guess of the field while progress is
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faster for a good guess of the field. The analysis of the
optimal field and extracting control mechanism can be very
challenging, depending on the complexity of the quantum
system under investigation. However, the spectrum of the opti-
mal field obtained using OCT always has major contributions
corresponding to the resonance transition frequencies of the
system, regardless of the initial choice of carrier frequency
of the guess field [21]. This result can be explained by the
presence of the field energy penalty term in the cost functional;
this energy constraint makes a solution with minimal energy
more favorable, since the resonant excitation is always more
energy efficient than the off-resonant one.

In this paper, we propose an OCT algorithm incorporating
a spectral constraint on the optimal control field. We test
the performance of the method using an example of creating
maximum coherence in the multilevel � system and focusing
on the off-resonant excitation scenario. To address the desired
constraints on the spectral characteristics of the optimal control
field, which are defined by the laser setup parameters in
an experiment, we modify the optimization procedure by
solving the Schrödinger equation without the rotating-wave
approximation (RWA) in the field-interaction representation
[22]. The proposed strategy allows us to choose the spectral
bandwidth in a controllable fashion and optimize only the
external field envelopes while the central frequency of the
control field is fixed. In contrast to earlier developed methods
[23–27], the proposed optimization scheme does not require
the use of a numerically expensive procedure of fast Fourier
transformation in each iteration, while it makes it possible to
incorporate realistic experimental constraints in computational
pulse optimization.

The paper is organized as follows. In Sec. II we present the
objective cost functional which must be maximized to obtain
an optical field to achieve the desired optimization. The control
field equations are derived using a penalty on the field energy
and an additional penalty function to minimize the population
of the excited intermediate state throughout the time evolution.
Section III outlines the parameters of the quantum six-level �
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system, gives a detailed description of the optimal control
theory implementation using the Krotov method [28] for the
creation of maximum coherence, and presents a strategy that
incorporates the carrier frequency constraint on the optimal
field. Finally, Sec. IV is the conclusion.

II. OPTIMAL CONTROL EQUATIONS

In this section we outline the OCT approach [8–12,21] to
optimize an external field which drives an initial state |ψ〉
to a specified target state |φ〉 at the final time t = T . From
an optimal solution we require that the system wave function
at the final time, |ψ(T )〉, should be as close as possible to
the target state, |φ(T )〉, i.e., the overlap |〈ψ(T )|φ(T )〉|2 is
maximal at time T . In order to obtain a control field equation
with a realistic field amplitude we minimize the field energy
by using a respective penalty. In addition, if it is desirable
during the control process to suppress the transient population
of some excited or intermediate states [5,6,14,29], one may
introduce another penalty function, and use (as shown below) a
projection operator P̂ = |ψint(t)〉〈ψint(t)| = ∑

k |k〉〈k|, where
|k〉 is the eigenket of the unwanted state. To make sure that the
wave function |ψ(t)〉 is satisfying the Schrödinger equation,
the Lagrange multiplier function |χ (t)〉 is used.

In general, the complete cost functional J [ε(t)], which
must be maximized, is represented as a sum of the final
time objective, the constraint over the field energy, the
unwanted state constraint, and the dynamical part containing
the Lagrange multiplier,

J [ε(t)] = |〈ψ(T )|φ(T )〉|2 − α

s(t)

∫ T

0
dt[ε(t) − εr (t)]2

−β

∫ T

0
dt〈ψ(t)|P̂ |ψ(t)〉

− 2 Re

[∫ T

0
dt 〈χ (t)| ∂

∂t
+ i

�
Ĥ |ψ(t)〉

]
, (1)

where α is the penalty parameter which defines the significance
of the field energy, s(t) denotes the shape function to smoothly
switch the field on and off (to ensure an experimentally feasible
profile of the laser pulse), εr (t) denotes a reference field
[εr (t) = 0 corresponds to a common choice of minimizing the
field energy], and β is the penalty parameter for the unwanted
state population. The optimization procedure can be controlled
by the value of α: A small value results in a small weight
of the field energy and allows for large modifications of the
field, while a large value of α represents a conservative search
strategy, allowing only small modifications of the field during
each iteration.

FIG. 1. Schematic of a six-level � system.

Taking variations of the cost functional with respect to
|χ (t)〉, |ψ(t)〉, and ε(t) leads to the following set of control
equations,

i�
∂

∂t
|ψ(t)〉 = Ĥ |ψ(t)〉, (2)

∂

∂t
|χ (t)〉 = − i

�
Ĥ |χ (t)〉 + βP̂ |ψ(t)〉, (3)

ε(t) = εr (t) + s(t)

α�
Im 〈χ (t)| ∂Ĥ

∂ε(t)
|ψ(t)〉 , (4)

and variation with respect to |ψ(T )〉 provides the ini-
tial condition for the Lagrange multiplier, |χ (T )〉 =
|φ(T )〉〈φ(T )|ψ(T )〉. Equations (2) and (3) determine the time
evolution of the system wave function and the Lagrange
multiplier, which are used in Eq. (4) to determine the optimal
field providing the maximum of the overlap |〈ψ(T )|φ(T )〉|2.

As an example, we consider an implementation of the
general OCT formalism to a six-level �-type system shown
in Fig. 1; the pump field with carrier frequency ωP couples
the initial state |1〉 and an intermediate state |2〉, while the
Stokes field with carrier frequency ωS couples the intermediate
state |2〉 to the rest of the states |3〉–|6〉. Our goal here
is to design the pump and Stokes pulses which provide a
maximal coherent superposition of the ground state |1〉 and
the adjacent states |4〉 and |5〉 while the population of the
intermediate state |2〉 and the two other states |3〉 and |6〉 is
minimized.

In the field-interaction representation [22], the system wave
function |ψ(t)〉 = ∑6

i=1 ai(t)|i〉, where ai(t) is the probability
amplitude to be in state |i〉, is governed by the Schrödinger
equation with the Hamiltonian of the form

Ĥ = −�

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

2�P WP (t) 0 0 0 0

W ∗
P (t) 0 W ∗

S (t) W ∗
S (t) W ∗

S (t) W ∗
S (t)

0 WS(t) 2(�S + δ) 0 0 0

0 WS(t) 0 2�S 0 0

0 WS(t) 0 0 2(�S − δ) 0

0 WS(t) 0 0 0 2(�S − 2δ)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (5)
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where WP,S(t) = P,S(t)(1 + e−2iωP,S t ), P,S(t) = μijE
0
P,S(t)/� are the pump and Stokes Rabi frequencies, μij are

the dipole moments, and E0
P,S(t) are the envelopes of the pump and Stokes pulses, �P,S = ωP,S − ω21,24 are the

single-photon detuning of the pump and Stokes carrier frequency ωP,S from the respective transition frequency ω21,24,
and spacing in the four-level manifold is ω34 = ω45 = ω56 = δ.

For the Lagrange multiplier vector bi(t), probability amplitudes ai(t), and the Rabi frequency envelopes P,S(t), Eqs. (2)–(4)
take the following forms,

i�
∂ai(t)

∂t
= Ĥij aj (t), (6)

∂bi(t)

∂t
= − i

�
Ĥij bj (t) + βa2(t)δi2, (7)

P (t) = r
P (t) − s(t)

2α�
Im[b�

1(t)(1 + e−2iωP t )a2(t) + b�
2(t)(1 + e2iωP t )a1(t)], (8)

S(t) = r
S(t) − s(t)

2α�
Im[b�

2(t)(1 + e2iωS t )a3(t) + b�
2(t)(1 + e2iωS t )a4(t) + b�

2(t)(1 + e2iωS t )a5(t) + b�
2(t)(1 + e2iωS t )a6(t)

+ b�
3(t)(1 + e−2iωS t )a2(t) + b�

4(t)(1 + e−2iωS t )a2(t) + b�
5(t)(1 + e−2iωS t )a2(t) + b�

6(t)(1 + e−2iωS t )a2(t)], (9)

where r
P,S(t) are the reference pump and Stokes Rabi

frequencies.

III. NUMERICAL RESULTS AND DISCUSSION

To achieve our optimization goal, we solve Eqs. (8) and (9)
for pump and Stokes Rabi frequencies using the iterative Kro-
tov method [14,28]. As an initial guess, we use the Gaussian
form for the pump and Stokes Rabi frequencies, P,S(t) =
0 exp[−(t − Tc)2/2τ 2

0 ], where 0 = 0.05 fs−1, τ0 = 125 fs,
and Tc = 500 fs, and the target time is equal to T = 1 ps.
We consider the two-photon resonant excitation scheme, with
the single-photon detunings �P = �S = 0.1 fs−1; the tran-
sition frequencies are chosen to be ω21 = 0.517 fs−1, ω24 =
0.375 fs−1, and spacing in the four-level manifold is ω34 =

0

0.2

0.4

0.6

0.8

1

po
pu

la
tio

n

0 200 400 600 800 1000
t [fs]

0

0.04

0.08

Ω
P,

S(t)

(a)

(b)

FIG. 2. (Color online) Population dynamics in the six-level �

system optimized without a penalty on the second state population.
(a) The population of the target states is shown by solid lines: |1〉
(black), |4〉 (blue), |5〉 (red); the transient population of other states is
shown by dashed lines: |2〉 (green), |3〉 (cyan), and |6〉 (brown). (b) The
optimal pump (black line) and Stokes (green line) Rabi frequencies.

ω45 = ω56 = 0.02 fs−1. The time-dependent Schrödinger
equation, Eq. (6), and the inhomogeneous equation for the
Lagrange multiplier vector, Eq. (7), are solved without the
rotating-wave approximation. Neglecting the relative phase
relations between the probability amplitudes ai in the target
wave function, we chose the population distribution (|a1|2 =
|a4|2 = |a5|2 = 1/3,|a2|2 = |a3|2 = |a6|2 = 0) as the target of
the optimization procedure.

The optimized results obtained for the off-resonant ex-
citation (�P,S = 0.1 fs−1), with and without a penalty on
the intermediate excited-state population, are presented in
Figs. 2 and 3. The target state populations (|a1,4,5|2) are
shown by solid lines, while the transient population of other
states is shown by the dashed lines. Optimized pump and
Stokes Rabi frequency envelopes and populations are obtained
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FIG. 3. (Color online) Population dynamics in the six-level �

system optimized with a penalty on the second state population. (a)
The population of the target states is shown by solid lines: |1〉 (black),
|4〉 (blue), |5〉 (red); the transient population of other states is shown
by dashed lines: |2〉 (green), |3〉 (cyan), and |6〉 (brown). (b) The
optimal pump (black line) and Stokes (green line) Rabi frequencies.
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after 5000 iterations in both cases (Figs. 2 and 3). However,
the transition probability defined as P = |〈ψ(T )|φ(T )〉|2 and
the optimized cost functional J [ε(T )] reaches nearly 100%
after only a few iterations. We observe that, independently
on the value of the penalty parameter on the intermediate
excited-state population, we successfully obtain the maximum
coherences |�14| ≈ |�15| ≈ 1/3 at the target time T = 1 ps,
here �ij = a∗

i aj .
The amplitudes of the pump and the Stokes Rabi frequen-

cies are modulated in time, which is shown by fast oscillations
in Figs. 2(b) and 3(b). This amplitude modulation splits the
excitation fields so that the pump and the Stokes fields contain
several subpulses (we will discuss this point in more detail
later in the text). Overall, more intense pulses are required
for the constrained optimization [Fig. 3(b)] in comparison to
the unconstrained optimization [Fig. 2(b)]—this is due to a
penalty on the state |2〉 population.

When the population of the intermediate state is not
penalized, we observe sequential population transfer from the
ground state |1〉 to the excited state |2〉 and then from |2〉 to
the target states |4〉 and |5〉 [Fig. 2(a)]. At an earlier time, we
observe a few Rabi oscillations between states |1〉 and |2〉; the
population of the second state reaches about 40%. Sequential
population transfer can be explained by the intuitive pulse
sequence: The pump pulse precedes the Stokes pulse, and the
pump field is a bit stronger [see Fig. 2(b)].

By applying a penalty on the second state population we
impose suppression of the transient population in this state,
which results in a different solution of the optimization proce-
dure: The structure of the optimal control fields resembles the
counterintuitive pulse sequence [see Fig. 3(b)]. The transient
second state population is now substantially reduced, with
a maximum value of a few percent. It is well known that
the second state population suppression can be successfully
accomplished using a counterintuitive pulse sequence, when
the Stokes pulse precedes the pump pulse, as in the STIRAP
scheme [2]. That time-delay feature can clearly be seen in the
pulse sequence shown in Fig. 3(b); moreover, the Stokes field
is more intense in this case.

The demonstrated differences in the population dynamics
and in the observed control field structures reveal clearly the
influence of the excited-state population constraint on the
optimization procedure and the optimal results of the OCT
implementation.

The spectra of the pump and the Stokes fields are shown
in Fig. 4(a). The pump spectrum shown by the black
line in Fig. 4(a) has a major frequency structure at about
0.417 fs−1 corresponding to the pump carrier frequency. The
Stokes spectrum shown by the gray (green online) line in
Fig. 4(a) has major peaks at 0.275 fs−1 corresponding to the
Stokes central frequency. There are some additional extra
peaks which are clearly artificial components related to the
iterative optimization procedure and to the presence of the fast
oscillating terms in the Hamiltonian. These detrimental spec-
tral components are not essential for control and can be easily
suppressed without considerable change in the time-dependent
control fields and degradation of the desired system dynamics.
By applying a simple (unit step function) filter mask we remove
these extra frequency peaks. The allowed frequency range
is chosen as ω ∈ [0.25,0.6] and ω ∈ [0.1,0.45] for the pump
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FIG. 4. (Color online) Spectra of the pump (black line) and
Stokes (green line) pulses: (a) Optimized fields corresponding to
the results presented in Fig. 3. (b) Modified fields after filtering as
discussed in the text.

and the Stokes fields, respectively. The modified field spectra
are presented in Fig. 4(b). By making the inverse Fourier
transformation to the time domain, we obtained modified fields
[see Fig. 5(b)] and solve the time-dependent Schrödinger
equation.

Figure 5(a) shows the population dynamics under control
by the filtered fields. As we see, the dynamics of the state
amplitudes is very similar to the optimal control solution
presented in Fig. 3(a). There is some discrepancy in the target
state populations of a few percent order, which is related to
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FIG. 5. (Color online) Population dynamics in the six-level �

system. (a) The population of the target states is shown by solid lines:
|1〉 (black), |4〉 (blue), |5〉 (red); the transient population of other states
is shown by dashed lines: |2〉 (green), |3〉 (cyan), and |6〉 (brown). (b)
The pump (black line) and Stokes (green line) fields obtained by
filtering extra frequencies in the optimized solution.
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the numerical realization of the fast Fourier transformation.
The modified control fields in Fig. 5(b) show clearly the two-
subpulse structure and the counterintuitive pulse sequence, as
we mentioned above.

IV. CONCLUSION

We have proposed a modification of the OCT technique
to control the dynamics of the multilevel wave function by
optimizing the external field envelope. The presented strategy
keeps the main ingredients of the well-established OCT
methodology, including a penalty on the field energy and on
the unwanted state population, while the dynamical part of
the optimization procedure is treated in the field-interaction
representation. In this way, we find the optimal field envelope
and keep the carrier frequency of the control field constant,
meaning that we have complete freedom to define the central
frequency of the optimal field. We have demonstrated a
successful implementation of the scheme by considering the

creation of a maximum coherence in the six-level � system
using off-resonant external control fields. Note that our method
does not require the use of a spectral filtering constraint in the
cost functional (which is usually implemented by applying
a numerically expensive procedure of forward and backward
fast Fourier transformation in each iteration), while it makes
it possible to incorporate realistic experimental constraints
in the computational pulse optimization. We believe that
the proposed modification of the OCT strategy provides a
useful tool to control the central frequency in the iterative
optimization and can facilitate future applications of the
optimal control methods in experiments.
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