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The Crank-Nicolson (C-N) method combined with a B-spline basis set can be used in both time-dependent and
time-independent calculations of the photoionization cross sections of atoms and molecules. For time-independent
systems, the imaginary-time propagation (ITP) method can usually only converge an arbitrary initial state to the
ground state directly. Contrary to existing methods, it is found that the C-N method can converge an arbitrary
initial state directly to not only the ground state but also excited and continuum states by controlling the time-step
size. It is very useful if one is interested in only part of the spectral information since the computation is relatively
cheap. The C-N method can also be directly applied in time-dependent calculations. During the time evolution,
the spectral information, such as energy and momentum, can be retrieved by projecting the wave function on the
eigenstates obtained using the ITP method. Both time-dependent and time-independent calculations agree very
well with previous results. This method can also be extended to two-electron systems directly.
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I. INTRODUCTION

Photoionization of atoms and molecules is a fundamental
physical process which has been studied for many years.
Proper and efficient accounting of high-lying excited states
of the discrete and the continuous spectrum is necessary
for the ionization dynamics of Rydberg states. Accurate
solution of continuum states is an essential task in the various
quantum-mechanical problems, such as the calculation of
multiphoton ionization, above-threshold ionization (ATI), and
electron scattering. However, the wave functions of continuum
states oscillate to infinity. As a result, the calculations of the
continuum states are not as easy as those of low-lying bound
states using L2 basis functions.

There are a number of methods to calculate the resonance
states. The complex scaling method [1] rotates the coordinates
into the complex plane, which allows us to solve the resonance
states using the L2 basis set. However, it is complex to
apply it in time-dependent calculations. Although the varia-
tional method [2,3] and least-squares schemes [4] have been
introduced in the calculation of continuum wave functions,
efficient and accurate solutions are still necessary. In general, a
variational approach can be used to calculate all the eigenstates
of any quantum system using some appropriate basis set.
After direct diagonalization of a Hamiltonian matrix for
appropriate potentials, all the eigenvalues and wave functions
are obtained. Negative eigenvalues correspond to bound states,
while positive eigenvalues correspond to the continuum states.
However, this method is not efficient for large-scale matrix
problems involving large basis sets for convergence and high
accuracy. In any standard matrix diagonalization program,
the demand on computer memory grows as N2, and the
CPU time grows as N3 (N is the size of the Hamiltonian
matrix) [5]. When N > 10 000, the computation becomes
very slow, even impractical in some cases. It becomes much
more complicated when arbitrary electronic structures and
multichannel continua are involved. In addition, the obtained
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discrete continuum states may not be what we want because
we do not know their boundary conditions. It is very expensive
to obtain all the spectral information for a large Hamiltonian
matrix.

However, the imaginary-time-propagation (ITP) method is
quite efficient if only part of the eigenstates is needed. For
certain chemical and physical problems, not all the eigenstates
of a system are required. For example, to numerically solve
time-dependent Schrödinger equations (TDSE), one only
needs the initial wave function and then propagates it under
a Hamiltonian including time-dependent interaction terms by
using general split-operator methods (SOM) [6,7] or efficient
large-vector-matrix operations [8,9]. If the initial state in a
simulation is the ground state, one does not need to diagonalize
a basis-set-dependent Hamiltonian, but one propagates a
TDSE for an arbitrary initial vector using the ITP method [10].
The above existing methods can only converge an arbitrary
state to the ground state directly. In this paper, we show that ITP
method based on the Crank-Nicolson (C-N) [11,12] scheme
can be generalized to converge to bound exited and unbound
continuum states directly by changing the time step. To our
knowledge, this has not been reported. The ITP calculations
and time-dependent calculations based on the C-N method
agree very well.

This paper is organized as follows: The principle of the ITP
method for excited and continuum states is presented in Sec. II.
The application of the ITP method in the photoionization
of one-electron diatomic molecular ions H2

+ and HeH2+ is
shown in Sec. III. In Sec. IV, we illustrate the application of
the proposed ITP method in two-electron systems. The paper
concludes in Sec. V.

II. PRINCIPLE OF THE ITP METHOD

In this section, we briefly introduce the principle of the usual
ITP method for the ground state and our proposed ITP method
based on the C-N scheme for all the bound and continuum
states.
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A. Usual ITP method for the ground state

The principle of the ITP method can be found as follows.
For a general TDSE (atomic units, e = � = me = 1, are used
unless otherwise specified),

i
∂

∂t
|�(r,t)〉 = H |�(r,t)〉, (1)

introducing the imaginary time t → −it in an ITP method,
and if the Hamiltonian H is time independent, then the new
time-dependent wave function after a time step �t can be
written as

|�(r,�t)〉 = exp−H�t |�(r,0)〉. (2)

Expanding an initial arbitrary wave function |�(r,0)〉 as a
linear combination of the time-independent eigenstates ϕn(r)
of H ,

|�(r,0)〉 =
∑

n

anϕn(r), (3)

where Hϕn(r) = Enϕn(r), Eq. (2) can be written as

|�(r,�t)〉 =
∑

n

exp−En�t anϕn(r). (4)

It is obvious that higher-energy states will exponentially
decay as a function of E�t [see Fig. 1(a)] at a rate which is

FIG. 1. (Color online) Prefactors of Eqs. (4) and (6) as a function
of x = E�t/2.

faster than that for the lower-energy states. After a sufficiently
long time evolution, any arbitrary initial wave function will
thus converge to the ground state. If we are interested in
an excited state ϕn(r), we have to first obtain the converged
ground state ϕ1(r) and other lower excited states ϕn′ (r), with
n′ = 2,3, . . . ,n − 1, then project out all the lower-energy
states by (1 − ∑n−1

n′=1 |ϕn′ (r)〉〈ϕn′(r)|) from the initial state
before evolution [13]. For higher excited states, this method
becomes slowly convergent and difficult to apply. It is not even
practical for continuum states due to the large degeneracy of
those states.

B. C-N ITP method for any bound state

We show next that by using the C-N and ITP methods,
we can simply restrict any initial arbitrary state to converge to
desired excited states by changing the appropriate time step �t

of the iteration. It can also be easily extended to calculate any
continuum state, such as the final states in photoionization. The
principle of the C-N ITP method is similar to inverse iteration.

The C-N method is a unitary and unconditionally stable
method [11,12]. It is based on expressing the exponential
operator exp−H�t to second-order accuracy in Eq. (2) as

exp−H�t = 1 − H�t/2

1 + H�t/2
+ O(�t3). (5)

Then Eq. (4) can be equivalently written for any arbitrary state,

|�(r,�t)〉 =
∑

n

1 − En�t/2

1 + En�t/2
anϕn(r). (6)

Setting x = En�t/2, the factor in Eq. (6) is 1−x
1+x

= 1 − 2
1+ 1

x

,

which does not evolve with exponential decay but has a
maximum around x = −1, as shown in Fig. 1(b). As a
result, after long-time evolution, only the eigenstate with
En�t/2 ≈ −1 remains dominant in the superposition of
states in Eq. (6). However, in practice, since nondegenerate
bound-state energies are separated, En�t/2 ≈ −1 is not a
strict condition. We do not need to project out other lower
bound states as described in Sec. II A. As long as the absolute
“action” distance |En�t/2 + 1| is smaller than that of other
bound states, the state with energy En will remain while other
states decay faster. Choosing a time step �t which is positive
and small enough, with E1�t/2 > −1 or �t < 2/|E1|, Eq. (6)
will converge to the ground state with the lowest eigenvalue
E1. If one then gradually increases the time step �t , when
E2�t/2 + 1 < −1 − E1�t/2, the ground state and other
excited states excluding the first excited state will decay,
thus converging to the first excited state. Similarly, by further
iteration, we can obtain other converged excited states directly
only by gradually increasing the time step �t ; that is, the
process filters out all undesired states except one.

As a demonstration of the proposed method, we calculate
the s bound states of H. The wave function is expanded in
radial B splines [14–16] and angular spherical harmonics as

|�(r,t)〉 =
N∑

i=1

Ci(t)
Bk

i (r)

r
Ym

l (θ,ϕ), (7)

where l = m = 0, Ci(t) is the time-dependent coefficients of
the corresponding B splines, and k is the order of the B splines.
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TABLE I. Comparison of the eigenvalues of H s states obtained using the ITP method with time step �t and iterations j and the analytic
values −1/2n2 (a.u.). �t = 2,10, and 40 a.u. for E1, E2, and E3, respectively.

j E1 (a.u.) E2 (a.u.) E3 (a.u.)

1 0.02074985099579411 0.01704393876353220 −0.03172899941642318
2 −0.004.535732379123197 −0.02707373759307351 −0.05502525262084053
3 −0.157925711875305 −0.102192312548041 −0.05553857185259704
4 −0.440683975870317 −0.122870665895126 −0.05555477488356365
5 −0.494240272539091 −0.124820611212683 −0.05555551614437183
6 −0.499235363892429 −0.124985275640302 −0.05555555352112400
7 −0.499870405769063 −0.124999310529914 −0.05555555544994874
8 −0.499975900374919 −0.125000203414494 −0.05555555555006548
9 −0.499995389821222 −0.125000111564971 −0.05555555555526998

10 −0.499999110747678 −0.125000039965192 −0.05555555555554072
11 −0.499999828045146 −0.125000012764312 −0.05555555555555482
12 −0.499999966722960 −0.125000003889258 −0.05555555555555550
13 −0.499999993558485 −0.125000001158381 −0.05555555555555556
14 −0.499999998752989 −0.125000000340924 −0.05555555555555559
15 −0.499999999758584 −0.125000000099687 −0.05555555555555550
16 −0.499999999953262 −0.125000000029042 −0.05555555555555559
17 −0.499999999990952 −0.125000000008444 −0.05555555555555552
18 −0.499999999998248 −0.125000000002452 −0.05555555555555557
19 −0.499999999999661 −0.125000000000712 −0.05555555555555549
20 −0.499999999999934 −0.125000000000207 −0.05555555555555556
21 −0.499999999999987 −0.125000000000060 −0.05555555555555559
22 −0.499999999999997 −0.125000000000017 −0.05555555555555559
23 −0.499999999999999 −0.125000000000005 −0.05555555555555555
24 −0.499999999999999 −0.125000000000002 −0.05555555555555554
25 −0.500000000000000 −0.125000000000000 −0.05555555555555555
−1/2n2 −0.5 −0.125 −0.0555555555555555(5)

The corresponding Hamiltonian is written as

H = −1

2

d2

dr2
+ l(l + 1)

2r2
− 1

r
. (8)

The time evolution at each step �t of the coefficients in
Eq. (7) in the C-N method can be written as

(S + H�t/2)C(�t) = (S − H�t/2)C(0), (9)

where S and H are the overlap and Hamiltonian matrix [5,16],
respectively, for Eq. (8) in the B-spline basis. Since B splines
are a localized basis [14], S and H are sparse band matrices,
which greatly reduces the memory and computation time. In
practical calculations, the right side of Eq. (9) is a matrix vector
multiplication. Then C(�t) can be obtained by solving sparse
linear equations.

In our calculation, the radial space dimension is truncated
at rmax = 100 a.u.; the wave function is expanded by N = 200
B splines with order k = 7. The convergence speed depends
on the guess of the initial state. To show the generality of the
ITP method, the initial coefficients are set as Ci(0) = 1/

√
N

for i = 1,2, . . . ,N . As illustrated in Table I, with a time step
�t = 2 a.u., which satisfies �t < 2/|E1|, convergence to the
ground state is obtained readily with energy E1 = −0.5 a.u.
with machine accuracy after 25 iterations. When we increase
the time step to �t = 10 a.u., which satisfies the condition
E2�t/2 + 1 < −1 − E1�t/2 as discussed above, the first
excited state n = 2 is obtained. Similarly, other higher excited
states can be easily obtained directly by controlling the time
step �t . The required iteration number j is not sensitive to the

matrix order N . We have tested the case with N = 100 000,
and j = 40 is large enough to converge the initial state to
the desired eigenstate with machine precision. This method is
not restricted to previous known systems, but it is a general
method, as shown next.

C. C-N ITP method for continuum states

For field-free continuum states with positive energy Ec,
except for the direct diagonalization [14], there is a least-
squares method [17,18] to obtain Ec and �c. This is based on
the idea of minimizing the residual vector (H − E)�. We
show next that we can directly extend the ITP method to
obtain any continuum state. As shown above, the ITP method
converges an arbitrary vector to the bound eigenstate ϕn at
the action value En�t/2 ≈ −1 or energy En ≈ −2/�t . If we
want the continuum states with Ec > 0, we only have to change
the sign of the time step �t → −�t in the above restriction;
equivalently, we transform the TDSE in Eq. (1) using a new ITP
method with t → it . Then the arbitrary initial state converges
to continuum state �c with positive energy Ec ≈ 2/�t . For
bound states, we do not know the energies and wave functions,
but the boundary condition ϕn(rmax) = 0 is known. However,
for a continuum state, its energy is known, we do not know
the boundary condition, and the above process will not exactly
converge to Ec. Since the wave functions of continuum states
oscillate to infinity, there must be a series of points rc with
�c(rc) = 0 [19,20]. In practice, we can safely set the initial
boundary condition �c(rmax) = 0 in our calculations. Then
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FIG. 2. (Color online) Comparison of hydrogen continuum ra-
dial state r�E(r) obtained using the ITP method (with iterations
j = 18; solid line) with the analytic Coulomb wave function (dotted
line) with l = 0, E = 2 a.u. Both are normalized on the energy scale.

�t is set to be 2/Ec, and the energy E is obtained by ITP.
Usually, E is linearly dependent on rmax. If the converged E is
not equal to Ec, we smoothly change the size of the box rmax in
the ITP method until the expected eigenvalue 〈�|H |�〉/〈�|�〉
matches the desired eigenvalue Ec with required accuracy [14],
then we can say rmax = rc. To calculate the continuum state
with energy Ec = 2 a.u., we propagate an arbitrary vector
with a time step �t = 1 a.u. The wave function obtained after
j = 18 iterations is illustrated in Fig. 2, which is normalized on
the energy scale. We also plot the exact regular Coulomb wave
function as a comparison in Fig. 2. The illustrated result clearly
shows that this new ITP method for obtaining continuum states
is very accurate.

III. APPLICATIONS OF THE ITP METHOD IN
PHOTOIONIZATION OF ONE-ELECTRON DIATOMIC

MOLECULES

Molecular systems are more complex than atoms. There
are no simple exact analytic solutions even for the simplest
one-electron molecular ion H2

+ [21,22]. Although a Green’s
function in spheroidal coordinates can be obtained with the
quantum defect method [23,24], accurate numerical solutions
are very useful, especially for the TDSE [18]. In this section
we will show that our ITP method can be directly extended to
diatomic molecular systems.

We use prolate spheroidal coordinates (ξ ,η,φ) to represent
the electron. φ is the azimuthal angle, and the internuclear
distance is R. If r1 and r2 are the distances of the electron from
the two nuclei, we have

ξ = (r1 + r2)/R, η = (r1 − r2)/R, (10)

with ξ ∈ [1,∞], η ∈ [−1,1]. The field-free Hamiltonian in the
fixed-nuclei approximation is [15]

H0 = −1

2
∇2 + V

= − 2

R2(ξ 2 − η2)

[
∂

∂ξ

(
(ξ 2 − 1)

∂

∂ξ

)

TABLE II. Comparison of the m = 0 eigenvalues of H2
+ obtained

with the ITP method and the values in Ref. [22]. The internuclear
distance is R = 2 a.u.; the iterations j = 8 in the ITP method.

State �t (a.u.) E in ITP (a.u.) E in Ref. [22] (a.u.)

1σg 2 −1.1026342144949 −1.1026342144949
1σu 3 −0.6675343922023 −0.6675343922024
2σg 6 −0.3608648753394 −0.3608648753383
2σu 8 −0.2554131650864 −0.2554131650857

+ ∂

∂η

(
(1 − η2)

∂

∂η

)
+

(
1

ξ 2 − 1
+ 1

1 − η2

)
∂2

∂φ2

]

−2
(Z1 + Z2)ξ − (Z1 − Z2)η

R(ξ 2 − η2)
, (11)

where Z1 and Z2 are the nuclear charges. We expand the
electronic wave function in a B-spline basis [15] as follows:

ψ(ξ,η,ϕ) =
∑
i,j,m

Cm
i,j (ξ 2 − 1)

|m|
2 Bi(ξ )(1 − η2)

|m|
2 Bj (η)

eimφ

√
2π

.

The volume element is dτ = (R/2)3(ξ 2 − η2)dξdηdφ. For
H2

+, Z1 = Z2 = 1. We have calculated the bound-state energy
with m = 0, R = 2 a.u. The η dimension is expanded into
20 B splines with order 7. The ξ direction is truncated at
ξmax = 80 a.u. and is expanded by 80 B splines with order 7.
The results with iterations j = 8 are presented in Table II as a
comparison with Ref. [22]. Our present method with a small
number of iterations j or total time t = j�t is very accurate
with a small basis and converges faster to the desired states
than usual methods.

The two-center wave function is also separable as

ψ(ξ,η,φ) = U (ξ )V (η)�(φ), (12)

where �(φ) = eimφ√
2π

and U (ξ ) and V (η) satisfy separate
differential equations,

d

dξ

[
(ξ 2 − 1)

dU

dξ

]

+
[
−Amq + c2(ξ 2 − 1) + aξ − m2

ξ 2 − 1

]
U = 0, (13)

d

dη

[
(1 − η2)

dV

dη

]

+
[
Amq + c2(1 − η2) + bη − m2

1 − η2

]
V = 0, (14)

where Amq is the separation constant, a = R(Z1 + Z2), b =
R(Z2 − Z1), c2 = R2E/2.

For a continuum state with energy Ec, Amq [where q

is equal to the number of zeros of the function V (η)] can
be calculated by expanding V (η) in a series of associated
Legendre polynomials [25]. It can also be obtained by a
diagonalization of Eq. (14) [26] or using the ITP method
introduced above. In the present work, we expand V (η) into
20 B splines with order 7 and use the diagonalization method
to have the separation constant Amq and the corresponding
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TABLE III. One-photon partial absorption cross sections [for
comparison, Eq. (16) is divided by 3] from the H2

+ ground state
1σg (q = 0). The internuclear distance is R = 2 a.u.; 1 Mb =
10−18 cm2.

Photoelectron energy pσu (q = 1) f σu (q = 3)
Ec (a.u.) (×10−2 Mb) (×10−2 Mb)

1 0.688a 0.907a

0.694b 0.904b

0.54c 0.94c

2 0.517a 0.618a

0.516b 0.618b

4 0.202a 0.220a

0.200b 0.222b

10 0.0140a 0.00192a

0.0138b 0.00190b

aPresent work.
bReference [30].
cReference [21].

V (η). To calculate the radial wave function U (ξ ) in Eq. (13),
we use the ITP method introduced above. Instead of fitting Ec,
we smoothly vary the box ξmax to fit the separation constant
Amq obtained from Eq. (14). The normalization of the radial
function is realized by fitting the asymptotic behavior of U (ξ )
at ξ � 1 [27–29]:

U (ξ ) → 1

Rξ

√
8

kπ
sin

(
kRξ

2
+ 2

k
ln(kRξ ) − lπ

2
+ �

)
,

(15)

where � is the phase of the radial function.
Once we have the continuum state, in examples discussed

in the Introduction, one can calculate the general one-photon
absorption partial cross sections given by [26]

σq = 4π2αω|〈i|D|f 〉|2, (16)

where |i〉 and |f 〉 are the initial and final states, respectively.
D is the transition operator z, which is Rξη/2 in the length
gauge. α is the fine-structure constant, and ω is the photon
energy.

Table III shows the one-photon partial absorption cross
sections from the H2

+ ground state at equilibrium internuclear
distance R = 2 a.u. to different continuum states |f 〉 = |Ec〉,
where Ec = hν − Ip. Again, using the ITP method, our results
agree well with those of Ref. [30] from low to very high
energy. The relative difference is less than 1%. For the laser
field polarization parallel to the molecular axis, we present the
total one-photon ionization cross section σtotal as a function
of photoelectron energy Ec in Fig. 3. It agrees well with
the results from the complex scaling method [1]. The total
cross sections have a maximum around Ec = 0.8 a.u. We also
present the relative contribution of each partial wave to the
total cross section in Fig. 4. Because of the symmetry, only
the transitions to states with different parities are allowed.
For lower photoelectron energy, the transition to q = 3 states
is dominant. The contributions from q = 1 and q = 3 states
are comparable in the high-energy region. The contribution of
q = 5 states is almost negligible.

FIG. 3. One-photon ionization cross sections for H2
+ as a

function of photoelectron energy. The initial state is the ground 1σg

state. The laser polarization is parallel to the molecular axis. The
internuclear distance R = 2 a.u. The time-dependent results (solid
line) are compared with those using the ITP method (circles).

The C-N method can also be used in real-time TDSE. For
a very short time step �t , Eq. (9) can be written as

C(t + �t) = S − iH(t + �t/2)�t/2

S + iH(t + �t/2)�t/2
C(t). (17)

A sine-squared laser pulse with a duration τ of ten optical
cycles with different photon frequencies is used in the
calculation of TDSE. The intensity is I = 1 × 1013 W/cm2.
At the end of the pulse tf , the one-photon ionization cross
section is given by [31]

σtotal =
(

ω

I

)
P

Teff
, (18)

FIG. 4. (Color online) Relative contribution of each partial cross
section σq to the total one-photon ionization cross section σtotal. The
initial state is the ground 1σg state.
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FIG. 5. Same as Fig. 3, but the initial state is the first excited state
1σu.

where Teff = 3
8τ and P = 1 − ∑

n |〈ϕn|�(tf )〉|2. The TDSE
results are also presented in Fig. 3. One can see that the total
one-photon ionization cross sections from the ITP method
agree well those from TDSE.

We also calculated the one-photon ionization cross sections
from the first excited state 1σu (q = 1) of H2

+. The results
of the ITP and TDSE methods are shown in Fig. 5. They
also agree well with each other, showing the accuracy of our
numerical methods. The total cross sections are significantly
larger than those from the ground state due to its lower
ionization potential, but they decay faster as the photoelectron
energy increases. The contributions of each partial wave are
illustrated in Fig. 6. As the photoelectron energy increases,
the contribution from q = 0 states has a maximum around
Ec = 3 a.u.; the contribution from q = 2 states has a fast decay

FIG. 6. (Color online) Same as Fig. 4, but the initial state is the
first excited state 1σu.

TABLE IV. Comparison of the m = 0 eigenvalues of HeH2+

obtained with the ITP method and the values in Ref. [35]. The
internuclear distance is R = 4 a.u.; the iterations j = 8 in the ITP
method.

State �t (a.u.) E in ITP (a.u.) E in Ref. [35] (a.u.)

1sσ 1 −2.250605387820 −2.250605387827
2pσ 2 −1.031081311774 −1.031081311774
2sσ 3 −0.6809853203162 −0.680985320316
3pσ 4 −0.4493213894454 −0.449321389445

with Ec < 4.5 a.u., then increases, while the contribution from
q = 4 states gradually increases.

For the simplest asymmetric one-electron molecular ion
HeH2+, a number of features different from those of H2

+ have
been demonstrated in high-order-harmonic generation [15,32]
and enhanced ionization (EI) [33,34]. We show next the
application of the ITP method in the HeH2+ nonsymmetric
system.

We fix the internuclear distance R = 4 a.u. (the equilibrium
internuclear distance is around R = 3.89 a.u.). The eigenval-
ues of lower bound states obtained with the ITP method are
presented in Table IV. They agree well with recent work [35].
The one-photon ionization cross sections from the ground 1sσ

state of HeH2+ as a function of photoelectron energy with
the ITP and TDSE methods are illustrated in Fig. 7. They
agree very well and demonstrate a fast decay as a function
of photoelectron energy. Due to the loss of symmetry, the
final states may contain any partial wave. We expand the
final wave with qmax = 6 in the ITP method. The contribution
of each partial wave is presented in Fig. 8. For q = 0, the
contribution decays fast with the increase of photoelectron
energy. The contributions of the q = 1 and q = 4 states have
a maximum around Ec = 1.5 a.u., while the contributions of
q = 2 and q = 5 states have a maximum around Ec = 4 a.u.

FIG. 7. One-photon ionization cross sections for HeH2+ as a
function of photoelectron energy. The initial state is the ground 1sσ

state. The laser polarization is parallel to the molecular axis. The
internuclear distance R = 4 a.u. The time-dependent results (solid
line) are compared with those from the ITP method (circles).
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FIG. 8. (Color online) Relative contribution of each partial cross
section σq to the total one-photon ionization cross section σtotal. The
initial state is the ground 1sσ state.

The contribution of the q = 3 state has a minimum around
Ec = 2.5 a.u. The contribution of the q = 6 state gradually
increases as a function of photoelectron energy. Although the
relative contribution of each partial wave is complex, the ITP
method allows us to extract the information of each partial
wave directly, which is important to calculate the angular
distribution of photoelectrons [18,27].

The one-photon ionization cross sections from the first
excited state 2pσ of HeH2+ as a function of photoelectron
energy using the ITP and TDSE methods are illustrated in
Fig. 9. They are similar to those of the 1sσ state, presenting
a fast decay with the increase of photoelectron energy. The
relative contribution of each partial wave shown in Fig. 10 is
more complex than that in Fig. 8. The main contributions are
from the q = 2,3,4,6 states.

FIG. 9. Same as Fig. 7, but the initial state is the first excited state
2pσ .

FIG. 10. (Color online) Same as Fig. 8, but the initial state is the
first excited state 2pσ .

IV. APPLICATIONS OF THE ITP METHOD IN
TWO-ELECTRON SYSTEMS

It is very important to accurately solve the many-electron
systems to study the electronic correlation effects. In this
section, we extend our method to two-electron atomic sys-
tems [36,37]. The nonrelative Hamiltonian in Eq. (1) can be
written as

H =
2∑

i=1

(
p̂2

i

2
− Z

ri

)
+ 1

|r1 − r2| , (19)

where Z is the nuclear charge. The total electronic wave
function is expanded in coupled spherical harmonics:

|�(r1,r2,t)〉

=
∑
L,M

∑
l1,l2

ψLM
l1l2

(r1,r2,t)

r1r2

∑
m1,m2

C
l1l2L
m1m2M

Y l1
m1

(�1)Y l2
m2

(�2),

(20)

where C
l1l2L
m1m2M

is a Clebsch-Gordan coefficient and
ψLM

l1l2
(r1,r2,t) is expanded by B splines as

ψLM
l1l2

(r1,r2,t) =
∑
i,j

C
l1,l2,LM
i,j (t)Bi(r1)Bj (r2). (21)

The Hamiltonian matrix can be obtained easily except
for the two-electron integrals. We expand the interelectron
repulsion term by a multipole expansion:

1

|r1 − r2| =
∑

l

(r1,r2)l<
(r1,r2)l+1

>

Pl(cos θ12), (22)

where Pl(cos θ12) is a Legendre function. The angular integral
can be done analytically, which is shown in Ref. [38]. The
radial integral is based on Poisson’s equation, which is
introduced in Ref. [39]. Using the ITP method presented
above, we calculated the S states of He. The radial space
is truncated at rmax = 40 a.u., and the radial wave function
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TABLE V. Comparison of the eigenvalues of He S states obtained
with the ITP method (the first entry) and the values in Ref. [37] (the
second entry).

State Singlet (a.u.) Triplet (a.u.)

1S −2.90370
−2.90372

2S −2.145972 −2.17522935
−2.145974 −2.17522937

3S −2.0612712 −2.06868904
−2.0612719 −2.06868906

4S −2.03356 −2.03650
−2.03358 −2.03651

in Eq. (21) is expanded by 60 B splines with order 8. The
angular part in Eq. (20) is expanded by l1,max = l2,max = 10.
The two-electron integral in Eq. (22) is truncated with
lmax = 35. The obtained singlet and triplet eigenenergies are
presented in Table V with a comparison of the values in
Ref. [37]. In spite of small size of the basis, the accuracy of
the obtained eigenvalues is up to five digits. The eigenvalue
of the negative ion H− is calculated in a very similar way
by setting the nuclear charge Z = 1 in Eq. (19). It is known
that there is only one bound state in H− [40]. Our calculated
energy E = −0.52774 a.u. agrees well with the accurate
energy E = −0.52775 a.u. The results demonstrate that
our method can be directly used in calculating bound states
of three-body systems. However, the calculations of the
correlated two-electron continuum states are still challenging.

V. CONCLUSION

In summary, the usual ITP methods can only converge an
arbitrary initial state directly to the ground state. To obtain an

excited state, they require filtering out all lower bound states
from the initial state, which is inefficient and impractical in
some cases. Based on the Crank-Nicolson numerical method,
we present in this work an extension of the ITP method
t → −it for directly converging an arbitrary initial vector to
desired bound excited states by controlling the time step size.
It greatly improves the efficiency of ITP for high-lying excited
states, especially for Rydberg states. The usual ITP methods
cannot converge to the continuum states with positive energies.
In this work, we generalize the ITP method by t → it and show
convergence of any arbitrary state to desired continuum states.
This method is proven to be simple and accurate for a small
number of iterations j or total time t = j�t . The application of
this ITP method to the photoionization of diatomic molecules
is illustrated. This method can also be used in two-electron
systems. We emphasize that this C-N method is a systematic
method to study ultrafast dynamics. After obtaining the initial
bound state by C-N ITP, the C-N method can be used to solve
TDSE in real-time space. During the interactions between
intense ultrashort laser pulses and atoms and molecules, the
energy and momentum information of the photoelectrons can
be extracted from the time-dependent wave functions [18]
by projecting on the continuum states obtained by ITP. This
method does not depend on the expression of the Hamiltonian
explicitly, which can be directly extended to complex
system [3], confined systems [41], Dirac equations [42],
multiparticle states [36], and also time-dependent density-
functional-theory methods [43,44] for complex molecular
systems.
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