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Electron-helium scattering in a 1.17 eV laser field: The effect of polarization direction
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We report measurements of one-photon emission during the elastic scattering of electrons by He atoms through
90◦ in the presence of 1.17 eV photons from a Nd:YAG laser. The incident energy of the electrons was in the
range 30–200 eV and the linear polarization direction of the laser was varied over 180◦ in the plane, perpendicular
to the scattering plane, that contains the momentum transfer direction. Our results are perfectly consistent with
the Kroll-Watson approximation. In particular, we see no evidence of free-free transitions when the polarization
is perpendicular to the momentum transfer direction.
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I. INTRODUCTION

The elastic scattering of an electron by an atomic or
molecular target, in the presence of a laser field, is known
as laser-assisted free-free scattering, or simply free-free
scattering [1,2]. For electrons of energy E0 incident on a target
A, and a laser field of frequency ω, there is the possibility of
the absorption or emission of one or more photons

A + e(E0) + N�ω → A′ + e(E) + N ′
�ω, (1)

where N ′ = N ± n, corresponds to the emission (+) or
absorption (−) of n photons by the A + e system and the
final electron energy is E = E0 ∓ n�ω.

We recently reported free-free experiments in He over a
range of incident-electron energies from 50 to 350 eV in the
presence of 1.17 eV photons from a Nd:YAG laser [3]. Our
experimental results were in good agreement with a theoretical
prediction of the electron-energy dependence of the free-free
signal using the semiclassical Kroll-Watson approximation
(KWA) [4]. To our knowledge, these experiments were the
first to use 1.17 eV photons to investigate the free-free process
for elastic scattering, although Luan et al. [5] investigated the
inelastic scattering analog known as simultaneous electron-
photon excitation, or SEPE [1].

We have now extended our test of the KWA for 1.17 eV
photons by measuring the free-free signal as a function of the
linear polarization direction with respect to the momentum
transfer direction. This is of interest because the experiments
of Wallbank and Holmes [6–8], using 0.117 eV photons
from a CO2 transversely excited atmospheric (TEA) laser,
found free-free signals orders of magnitude larger than those
expected when the laser polarization is almost perpendicular
to the momentum transfer direction; the KWA predicts
vanishingly small free-free signals for this geometry. All
theoretical approaches have so far failed to explain these
results; these are summarized in a recent paper by Morrison
and Greene [9]. It has been suggested that double-scattering
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events contributed to the free-free signal in the perpendicular
direction [10]; this mechanism seems to have been ruled out
by later experiments [11].

The experiments of Wallbank and Holmes confined the
measurements to those cases where the polarization direc-
tion lay in the scattering plane (formed by the incident-
and scattered-electron directions), and was perpendicular, or
almost perpendicular, to the momentum transfer direction. Our
experiments differ from these experiments in that we measure
the full range of polarization directions in a plane, perpendicu-
lar to the scattering plane, that contains the momentum transfer
direction. Thus our measurements range from the case where
we expect a maximum free-free signal to that where we expect
zero signal.

Section II gives the KWA, and Sec. III describes the
apparatus and the geometry of our free-free measurements.
Section IV presents the results, and Sec. V our conclusions.

II. THEORY

The KWA relates the free-free cross section dσ
(n)
FF /d�, for

absorption (n < 0) or emission (n > 0) of n photons, to the
field-free elastic-scattering cross section dσel/d�, by [4]

dσ
(n)
FF

d�
= kf

ki

J 2
n (x)

dσel

d�
. (2)

Here ki and kf are the initial and final electron momenta,
and Jn is a Bessel function of the first kind of order n, with
argument

x = −0.022λ2I 1/2E
1/2
i

ε̂· Q
ki

, (3)

where λ is the wavelength of the radiation in μm, I is its
intensity in GW/cm2, ε̂ is the polarization direction, Ei is
the incident electron energy in eV, and Q = k f − ki is the
momentum transfer.

The quantity x is a measure of the maximum number of
photons expected to be absorbed or emitted in a free-free
transition. It may be expressed in the alternative formulation

x = eA0

m�ω
ε̂· Q ≈ |nmax|, (4)
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FIG. 1. (Color online) The form of the free-free signal for one-
photon emission (n = 1) as a function of the angle θ between the
laser polarization and the momentum transfer direction. The dashed
line is a KWA calculation given by Eq. (2) with x = cos θ . The solid
line is the cos2 θ approximation given by Eq. (6).

where e is the charge, and m is the mass, of an electron, and A0

is the vector potential in a semiclassical description of the laser
field. In the Appendix we give a simple classical derivation of
this result.

In the limit of small x, the Bessel function may be
approximated by the first term of a power series expansion
and Eq. (2) becomes

dσ
(n)
FF

d�
≈ kf

ki

(
1

|n|!
)2 (

x

2

)2|n|
dσel

d�
. (5)

This equation shows that for n = ±1, and for a given laser
intensity and incident electron energy, as the polarization
direction is varied the free-free signal takes the form(

dσ
(1)
FF /d�

)
/ (dσel/d�) ∝ (ε̂· Q̂)2 = cos2 θ, (6)

where θ is the angle between the polarization axis and the
momentum transfer. In fact this relationship is almost true
when x is not small, as can be seen in Fig. 1 where cos2 θ is

compared with [J1(cos θ )]2, so that x = 1 when θ = 0. The
experiments performed below were carried out in this regime,
and, because of the statistical uncertainties, our experimental
data do not discriminate between the two forms.

III. EXPERIMENTAL METHOD

The free-free experiments were carried out using the
electron spectrometer and Continuum Powerlite 9030 Nd:YAG
laser described in our earlier work [3]. A schematic of the
experimental setup for the present experiments is shown in
Fig. 2. The electron spectrometer is a modified version of
an apparatus previously used for (e,2e) studies [12,13]. It
consists of an unmonochromated electron gun (H ), a scattered
electron detector (G), both mounted on independent concentric
turntables in the xy plane, and a single-bore gas nozzle to create
the helium beam (F ). See [3] for details of the spectrometer,
data acquisition system, and data analysis.

The scattering geometry for the present experiments is as
shown in the figure. The angle between the electron beam and
the laser beam is 45◦, and the scattered electron detector is
positioned to receive electrons elastically scattered through
90◦ in the xy plane. The momentum transfer Q is in the ŷ

direction, perpendicular to the laser beam direction.
The laser (A) has photon energy 1.17 eV (λ = 1.06 μm),

repetition rate 30 Hz, pulse duration ≈8 ns, and, in the present
experiments, a pulse energy of between 0.15 and 0.2 J. The
laser beam first passes through a rotatable λ/2 plate (B1) set
to select maximum horizontal polarization (ŷ in the figure),
followed by a polarizing beam splitter cube (B2) to reject
any vertical (ẑ) component. The resultant pure horizontally
polarized beam then passes through a second λ/2 plate (C),
set in a computer-controlled rotatable mount, which is used to
create the desired direction of polarization within the vertical
yz plane that contains the momentum transfer Q̂ shown in
the figure. (Thus horizontal polarization is parallel to Q̂.) The
laser beam enters the vacuum system (J ) through an infrared
window, and a lens (E) then focuses the beam to a diameter

FIG. 2. (Color online) The experimental layout for the present experiments. A: Nd:YAG laser, B1 : λ/2 plate, B2: polarizing beam splitter
cube, C: λ/2 plate and computer controlled rotatable mount, D: polarizing beam splitter cube, E: lens, F: He nozzle, G: scattered-electron
detector, H: electron gun, J: vacuum chamber, K: beam dump, L: power meter (for setup). The direction of the momentum transfer Q̂ is
indicated.
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0.75 mm in the interaction region (F ). The power meter (L)
and polarizing beam splitter (D) were used to calibrate the fast
axes of the two λ/2 plates.

Measurements were taken for repeated sequences of 24 fast
axis directions covering 360◦ in 15◦ intervals. The computer-
controlled λ/2 plate (C) was held at each direction for one
hour while data were accumulated. Thus each 360◦ rotation
corresponded to four complete cycles of six polarization

FIG. 3. (Color online) The free-free signal as a function of the
angle θ between the laser polarization and the momentum transfer
direction for incident-electron energies 30, 60, 120, and 200 eV, and
the sum of all the results. The data have been scaled to give the best
fits to cos2 θ (solid lines).

directions at 30◦ intervals. Note that the accurate angular
calibration was done at the end of the experimental runs, which
were carried out using a previous approximate calibration.
Thus the final angles differ from our initial estimate by 7◦.

IV. RESULTS AND DISCUSSION

Free-free experiments, corresponding to one-photon emis-
sion, were carried out at incident-electron energies 30, 60, 120,
and 200 eV. At each energy, measurements were made of the
free-free signal as a function of θ = cos−1(ε̂ · Q̂) covering a
180◦ range in 30◦ intervals. For all experiments the energy
of a laser pulse was estimated to be between 0.15 and 0.2 J,
corresponding to an instantaneous power of approximately
20 MW and an intensity of approximately 5 GW/cm2.

The results are shown in Fig. 3. The vertical error bars are
the statistical uncertainties and the horizontal error bars are the
systematic uncertainty of ±2◦ in θ , derived from an uncertainty
of ±1◦ in the calibration of the fast axis of the λ/2 plate. The
solid lines are cos2 θ , and the measured free-free signals are
plotted with a scale that gives the best fit. Only the statistical
errors are used; the systematic errors are not incorporated in
the fits, which had reduced chi-square values ranging from 0.8
to 2.8.

Given that the fits at all the individual energies are
satisfactory, a slightly more rigorous test of the cosine-squared
law is provided by summing all the results to obtain better
statistics. This sum is shown at the bottom of the figure, with
an accompanying fit to cos2 θ , which has the somewhat low
reduced chi-square value of 0.2.

We also tried fitting the function A cos2 θ + B; a nonzero
value of B corresponds to free-free transitions occurring
when the laser polarization is perpendicular to the momentum
transfer. The fits were no better than those shown, indicating
that, to within our statistics, our results are compatible with
zero transitions for the perpendicular case.

V. CONCLUSIONS

We have tested the KWA over the complete range of angles
between the laser polarization and the momentum transfer
direction, in a plane perpendicular to the scattering plane.
Previous measurements by Wallbank and Holmes [6–8] had
only investigated the parallel and (nearly) perpendicular cases
within the scattering plane, and found severe disagreements
with the KWA predictions. We find the KWA, a first-order
theory, gives a good description over the full range covered
by our experiments. In particular we find no evidence for
nonzero signals when the laser polarization is perpendicular
to the momentum transfer, in contrast to the experiments of
Wallbank and Holmes. This agreement with the first-order
theory therefore rules out processes such as a double collision,
which are included in a second-order theory. Such a theory
allows the possibility of a collision with a He atom in which
the incident electron scatters elastically from each of the two
electrons in turn. For such an event the overall momentum
transfer is Q = Q1 + Q2, where Q1,2 are the momentum
transfers for each part of the double collision. If a photon
is absorbed or emitted during the first (or second) part of
the double collision, it is possible for the overall momentum

032709-3



DEHARAK, NOSARZEWSKI, SIAVASHPOURI, AND MARTIN PHYSICAL REVIEW A 90, 032709 (2014)

transfer to be perpendicular to the laser polarization (i.e.,
ε̂· Q = 0), but with ε̂· Q1 �= 0 (and ε̂· Q2 �= 0), and therefore
a nonzero free-free signal in the perpendicular direction.
(Such double collisions for inelastic processes are known
to be important in the electron-impact excitation of the
doubly excited He 2�2�′ autoionizing levels, via 1s → 2� and
1s → 2�′; a second-order theory is vital for agreement with
experiment [14].)

We note, however, that Wallbank and Holmes measured
the largest deviation from the KWA for two and three photon
transitions. In fact, the second-order double collision process,
described above, may be more important for those than for
single-photon absorption or emission since there are more
paths leading to a nonzero free-free signal in the perpendicular
direction. For example, a two-photon absorption can occur in
one part of the collision, or sequential single-photon absorption
can occur in each part of the collision; these amplitudes add
coherently and therefore significantly enhance the two-photon
absorption cross section. We therefore plan to repeat our
measurements to include two and three photon transitions and
also to mimic their experiments more closely by rotating the
laser polarization direction within the scattering plane.
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APPENDIX

What follows is similar, but not identical, to the classical
derivation given by Kroll and Watson in Sec. II of [4]. The
basic difference is that we average over a cycle at the end of the
calculation, rather than beforehand. We begin by examining
an electron-atom collision in the presence of an oscillating
spatially homogeneous electric field, and then extend the
treatment to cover a classical electromagnetic wave.

It is well known that a free electron (charge e and mass
m) cannot absorb energy from an oscillating electric field
of frequency ω: For a classical field E = E0 sin(ωt) the
momentum change, integrated over a complete cycle, for an
electron is

� p = e

∫ 2π/ω

0
Edt = 0, (A1)

and hence there is no change in kinetic energy. On the other
hand, if the electron undergoes a collision with an atom in
such a field then the electron can absorb (or emit) a quantum
of energy. (The equivalent statement in quantum mechanics is
that energy and momentum cannot both be conserved for the
absorption by a free electron of a photon of energy �ω and
momentum �ω/c, whereas they can both be conserved in an
electron + photon + atom system.)

A simple classical model can be used to find the energy
absorbed (or emitted) by an electron undergoing elastic

FIG. 4. Schematic of an electron-atom collision in an oscillating
electric field. k1 is the electron momentum at the beginning of an
oscillatory cycle. k2 and k3 are the momenta just before and after the
collision at time tc. k4 is the momentum at the end of the cycle. See
text for details.

scattering through an angle θsc during one cycle of the field
E = ±E0 sin(ωt). We take t = 0 to correspond to the start
of the cycle and the ± takes into account the two possible
behaviors of E as t increases from 0. Figure 4 shows a
schematic of the process. At t = 0 the free electron has
momentum k1. The collision occurs at t = tc, where 0 < tc <

2π/ω. Just before the collision the electron has momentum

k2 = k1 + � p, (A2)

where the change in momentum is

� p = e

∫ tc

0
Edt = ±eE0

ω
[1 − cos(ωtc)]ε̂, (A3)

and ε̂ is the polarization direction of the field. Immediately
after the collision the momentum is k3, with |k3| = |k2| for
elastic scattering. Finally, at t = 2π/ω, the momentum is

k4 = k3 + � p′, (A4)

with

� p′ = e

∫ 2π/ω

tc

Edt = ∓eE0

ω
[1 − cos(ωtc)]ε̂ = −� p,

(A5)

which also follows from � p + � p′ = � p = 0. The assump-
tion here is that the collision time is negligible compared to
the period of the field so that the same value of tc appears in
Eqs. (A3) and (A5).

The momentum transferred in the collision is

Q = k4 − k1, (A6)

which, using the above relationships, may also be written

Q = k3 − k2. (A7)

The kinetic energy change of the electron is given by

�E = 1

2m

(
k2

4 − k2
1

)
. (A8)

Using the above equations, and the fact that k2
2 = k2

3, gives

�E = ± eE0

mω
[1 − cos(ωtc)]ε̂· Q. (A9)

Averaging over all values of tc yields the average energy
absorbed or emitted by the electron

�E = ± eE0

mω
ε̂· Q. (A10)
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FIG. 5. (Color online) Scattering kinematics showing the scatter-
ing plane (xy plane) and the plane perpendicular to the momentum
transfer Q (xz plane) that bisects the scattering angle formed
by k1 and k4. For any polarization vector that lies in this plane
ε̂ · k̂1 = ε̂ · k̂4.

Thus there is maximum energy transfer when the polar-
ization is parallel to the momentum transfer, whereas there is
zero energy transfer when it is perpendicular. The latter can
be readily understood from Fig. 5, which shows the plane
perpendicular to Q that bisects θsc. Any polarization vector
that lies in this plane makes equal angles with k1 and k4, and

the energy transfer averaged over a cycle vanishes. It is only
when the polarization vector makes unequal angles with the
electron momenta before and after the collision that energy
transfer occurs.

Equation (A10) may be used to estimate the maximum
number of photons of energy �ω expected to be absorbed or
emitted [15]

nmax ∼ ± eA0

m�ω
ε̂· Q, (A11)

where the vector potential A0 = E0/ω.
The use of a homogeneous electric field is equivalent to the

dipole approximation if the oscillating electric field is replaced
by an electromagnetic wave. If the approximation is not valid
we can still obtain the same result as follows. The electric field
is now given by a plane wave E = E0 sin(κ · r + ωt) with a
corresponding vector potential A(r,t) = A0 cos(κ · r + ωt),
where κ is the wave vector and r is the position vector. The
electron momentum is k1 at (r = 0,t = 0), and the collision
occurs at (r = rc,t = tc) with corresponding momentum
changes

� p = −e�A = eA0[1 − cos(κ · rc + ωtc)]. (A12)

The relationship � p = −� p′ is satisfied if the final momen-
tum k4 is taken when the electron coordinates (r4,t4) next obey
the relationship (κ · r4 + ωt4) = 2π , so that �A + �A′ = 0.
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