
PHYSICAL REVIEW A 90, 032706 (2014)

Dynamical adiabatic theory of atomic collisions: The structure of hidden, avoided, and L3 crossings
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Inelastic transitions in slow ion-atom collisions are described using an adiabatic representation of the collision
system, where the transition probabilities are determined by the branch points of the potential energy curves
in the complex plane of internuclear separation R. As an example, the HeH2+ system is treated, in which the
evolution of the branch points related to hidden, avoided, and L3 crossings in the dynamical adiabatic basis of
three-body Coulomb problem as functions of parameter ω = ρv (ρ is the impact parameter and v the impact
velocity) is studied. Rearrangement of hidden couplings due to the passage of L3 branch points with the increase
of ω is discussed.
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I. INTRODUCTION

The slow atomic collisions are considered to be those
which cover the range of impact energies of up to about
10 keV/nucleon. They are of great importance for description
and understanding of a variety of elementary processes
occurring in laboratory, fusion, and astrophysical plasmas. The
natural choice of theoretical approach in describing these kinds
of collisions is the adiabatic approximation, where the collision
dynamics is determined by the properties of the quasimolecule
formed during the collision.

However, when using an expansion of the wave function
in terms of adiabatic eigenstates of the quasimolecule, the
problem of obeying the proper boundary conditions occurs
because the electrons are asymptotically attached to moving
centers (for a review, see [1]). In the quantum description
of the motion of the nuclei, the problem is resolved within
the hyperspherical adiabatic approach, proposed by Macek
[2] for solving the three-body Coulomb problem. The method
has been widely applied to variety of collision problems, in
particular to the He2++ H system [3] which we shall treat as
an example in this work.

On the other hand, in the impact-parameter formulation
of the theory (that is, when the motion of the nuclei is
described classically), in order to obtain a Galilean invariant
theory, it is necessary to attach to each of the basis functions
the so-called electron translation factors [1]. An alternative
solution to this problem is the method of nonstationary scaling
of length (NSSL), proposed originally by one of the authors
[4]. [We note that the NSSL has also been successfully used
to treat the problems of electron-atom (molecule) collisions
[5] and the interaction of atoms and molecules with radiation
fields [6,7].] The NSSL transformation resolves the principal
problem of incompatibility of standard adiabatic basis with
the physical boundary conditions [8] [see also Eq. (8) in [9]].
When the standard adiabatic basis is used, it leads sometimes
to nonvanishing oscillations of the population of adiabatic
states in the limit of internuclear separations R → ∞, so
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that transition probability cannot be defined. With NSSL, the
ion-atom collision problem is reduced to the one in which
the nuclei are at rest, but their charges are time dependent
and additional dynamical interactions appear in the electronic
Hamiltonian [8]. In our recent work [9], we have studied
in detail the properties of the resulting dynamical adiabatic
potential energy curves (DAPEC) as functions of the (real)
internuclear separation R. However, for the determination of
the transition probabilities in the system, of crucial importance
are the crossings (branch points) of analytic continuations of
DAPEC into the complex R plane and these are the subject
of our present work. We first review below the role of the
so-called hidden and narrow avoided crossings in the standard
adiabatic approach.

The hidden crossings of electronic adiabatic eigenvalues
[potential energy curves (PEC)] play a key role in the standard
(separable) one-electron two-Coulomb-center problem (see
review papers [8,10]). They are present whenever one of
the PEC crosses the top of the barrier in the effective
electron potential along one of the separable coordinates. Here,
according to semiclassical considerations, adiabatic eigenstate
|i〉 dramatically concentrates on the top of barrier involving
neighboring state |f 〉 to save smooth behavior of the two-state
subspace when the quasimolecule passes this point. As a
result, intense transitions between corresponding adiabatic
states occur. Hidden crossings cannot be identified on the
plot of the PEC for real internuclear separations R. That is
why the denotation hidden crossing was introduced. But, they
are clearly manifested in the matrix element of nonadiabatic
coupling Wif = 〈i|d/dR|f 〉 which has a maximum at this
point. This maximum reflects the presence of a branch point
Rb connecting PEC εi(R) and εf (R) of the same symmetry:
�εif (R) ∼ √

R − Rb. The square-root singularity is due to
the fact that in the complex R plane the Hamiltonian is
no longer self-adjoint, and, at the point of degeneracy of
two eigenvalues [εi(Rb) = εf (Rb)], the Hamiltonian reduces
not to a diagonal form but rather to the Jordan form (having
nonzero elements on the diagonal and superdiagonal). As
a result, in the vicinity of Rb, instead of the usual linear
dependence of �εif (R) on R − Rb at real R, we have now a
square-root dependence. In fact, εi(R) and εf (R) are different
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branches of a single (multivalued) analytic function ε(R). If
we adopt the impact-parameter method for the description
of a collision problem, that is, assuming the nuclei to follow
classical trajectories defined by a given function R = R(t,ρ,v)
of time t , impact parameter ρ, and asymptotic relative
collision velocity v, then the “single-pass” electron transition
probability via the hidden crossing is obtained as an analytic
continuation of a time-dependent phase factor of wave function
[see, for example, Eq. (8)] along the contour L in the complex
R plane which starts at any real R1 where ε(R1) = εi(R1) goes
around a complex branch point Rb and ends up back on any
real R2 where ε(R2) = εf (R2):

pif (ρ,v) = exp

(
−2

�

∣∣∣∣Im
∫

L

ε(R)
dR

vR(R,ρ,v)

∣∣∣∣
)

, (1)

where vR(R,ρ,v) = dR/dt is the radial collision velocity. As
analytic estimates show (see Ref. [10], p. 165), for hidden
crossings the distance from the real R axis to the branch point
Rb is given by an expression which is proportional to the square
of the Planck constant �

2.
For electronic adiabatic energies below the top of the barrier

separating two Coulomb wells, narrow avoided crossings can
exist which are due to the resonant underbarrier interaction
of two adiabatic states having similar energies and located on
the different nuclei. In this case, the analytic estimates (see
Ref. [10], p. 165) show that the distance from the real axis to
the branch point Rb is given by an expression exponentially
small with respect to the inverse of the Planck constant �, that
is, it is proportional to exp(−S/�), where S is the modulus
of the underbarrier action. The avoided crossings are well
pronounced at real R. Here, instead of the quasimolecular
(adiabatic) basis, we can use with good accuracy an atomic
(diabatic) basis. The transition probability (1) can then be
expressed in terms of diabatic potential curves [11]

pif (ρ,v) = exp

(
− 2πW 2

if (Rc)

�vR(Rc,ρ,v)[|Fi(Rc) − Ff (Rc)|]
)

, (2)

where Wif (R) is the interaction matrix element of two diabatic
states, while Fi(R) and Ff (R) are the slopes of the diabatic
PEC with all quantities taken at the (real) point R = Rc of the
exact crossing of the diabatic PEC.

Aside from inelastic transitions, which take place via hidden
and avoided crossings, there are transitions due to the rotation
of the internuclear axis. These transitions are, however, known
to be localized in the regions of degeneracies (exact crossings)
of the PEC corresponding to states with different symmetries
(projections of the electron angular momentum onto the
internuclear axis should differ by �). Typical regions (aside
from the isolated exact crossings) where rotational transitions
occur are the united-atom (R → 0) and separated-atom (R →
∞) limits, due to the degeneracies of the corresponding atomic
states. In the united-atom limit, rotational transitions take
place between states of the same angular quantum number l.
For these transitions, the adiabatic approximation has been
developed for l = 1,

pif (ρ,v) = 2 exp

(
−2

�

∣∣∣∣Im
∫ iρ/v

0
�εif (R(t))dt

∣∣∣∣
)

≈ 2 exp

(
− 4

3v
α1ρ

3

)
, (3)

and for l = 2,

pif (ρ,v) = 4 exp

(
−2

�

∣∣∣∣Im
∫ iρ/v

0
�εif (R(t))dt

∣∣∣∣
)

≈ 4 exp

(
− 4

3v
α2

∣∣m2
i − m2

f

∣∣ρ3

)
, (4)

where �εif (R) ≈ αl(m2
i − m2

f )R2 (R2 = ρ2 + v2t2), mi and
mf are projections of the electron angular momentum of
initial and final states onto the internuclear axis (for details,
see review paper [8]). However, for l = 2, the adiabatic
asymptote (4) is in agreement with the numerical result only
at extremely small angular velocity (see Fig. 1 in [12]),
and correct probabilities for l � 2 can be obtained only by
numerical close-coupling calculations. In the separated-atom
limit, the contribution of rotational transitions is reduced to a
modification of the correlation diagram [13] which coincides
with the correlation diagram in the dynamical adiabatic basis.
The rotational transitions due to isolated exact crossings at
finite distant R are described by Eq. (2) with the replacement
of diabatic PEC by adiabatic PEC.

In the dynamical adiabatic theory, which we started to
develop in Ref. [9], the eigenvalue problem for DAPEC is not
separable. The only symmetry which we have in this case is the
parity �3 = ±1 with respect to the reflection q3 → −q3 in the
modified electron coordinates q, where the q̂3 axis is directed
perpendicular to the scattering plane. In this representation,
the rotational transitions are transformed into radial transitions
through the component of the angular momentum operator L3

which now explicitly appears in the Hamiltonian, and a large
number of the exact crossings between the states of different
symmetry in the two-Coulomb-center basis transform into
a type of branch points which we call L3 crossings. The
transition probability related to any type of branch point is
determined by an expression similar to Eq. (1), but instead
of PEC ε(R) the DAPEC E(R,ω) appear, where in the case
of straight-line ionic trajectories, the DAPEC depend on a
single additional (dynamical) parameter ω = ρv. In this paper,
we shall study the evolution of the hidden, avoided, and L3

crossings of DAPEC with the change of the parameter ω.
The plan of the article is as follows. In Sec. II, we present the

formulation of the problem. Section III contains the description
of the numerical method used in the computation of the
complex DAPEC and search for the branch points. In Sec. IV,
we present the results of the calculation of the ω dependence of
a number of branch points of interest for low-energy collisions
in the HeH2+ system. Concluding remarks are given in Sec. V.
Hereafter, we use atomic units except unless explicitly stated.

II. FORMULATION OF THE PROBLEM

We consider a collision system consisting of a single
electron and two bare nuclei of charges ZA and ZB traveling
along the straight-line trajectories in the (x,y)-scattering plane,
so that R(t) = RB(t) − RA(t) = vt x̂ + ρŷ. We next modify
the electronic time-dependent Schrödinger equation by a series
of transformations (for details, see Ref. [9]):

(i) The electronic coordinates (x,y,z) are divided by
the internuclear separation R(t) (this corresponds to NSSL)
and subsequently transformed to the rotating (molecular)
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coordinate system (q1,q2,q3) with the q1 axis directed along
the internuclear axis.

(ii) A suitable overall phase factor is factorized from the
total time-dependent wave function in order to obey the correct
scattering boundary conditions.

(iii) A “timelike” variable τ is introduced via the relation
dτ = dt/R(t)2. In our case of the straight-line trajectories,
one finds τ (t) = ω−1 arctan(vt/ρ) with ω = ρv, so that the
variation of t in the interval (−∞,+∞) corresponds to the
variation of τ in the interval (τi,τf ) ≡ (−π/(2ω),+π/(2ω)).
[We note that there is a misprint in Eq. (7) of Ref. [9] where
the prefactor ω should be replaced with ω−1.]

The modified Schrödinger equation for the electron wave
function f (q,τ ) is obtained in the form

H (τ )f (q,τ ) = i
∂f (q,τ )

∂τ
, (5)

with

H (τ ) = −1

2
�q − R(τ )

(
ZA

|q + αq̂1| + ZB

|q − βq̂1|
)

+ωL3 + 1

2
ω2q2, (6)

where R(τ ) = ρ/ cos ωτ , q̂1 is the unit vector along the q1

axis, α and β (α + β = 1) define the position of the coordinate
origin on the internuclear axes, and

L3 = −i

(
q1

∂

∂q2
− q2

∂

∂q1

)
(7)

is the operator of the projection of the electronic angular
momentum onto the direction perpendicular to the scattering
plane. L3 is invariant to the r → q transformation. In the (q,τ )
“representation,” the two Coulomb centers are at “rest” and
separated by the unit distance, but their strengths are R(τ )
dependent. The Hamiltonian H (τ ) is an even function of τ

and the parity �3(q3 → −q3) is the only conserved symmetry.
The position of the coordinate origin is defined by fixing
parameters α and β = 1 − α and can be taken at will because
the two solutions differing by the shift of the origin along the
internuclear axis are related to each other by an unessential
coordinate-dependent phase factor [14].

We note that, for simplicity, we call the operator defined
in Eq. (6) “Hamiltonian” although its eigenvalues have the
dimensionality of (length)2 × energy. The dimensionality of
ω = ρv is (length)2/time. It is tempting to say that the
parameter ω is “frequencylike” because of the form of the
last two terms in Eq. (6). In the SI system, these two
terms read as ωL3 + meω

2q2/2 and have the dimensionality
(length)2 × energy just like the eigenvalues of the transformed
Hamiltonian (6). Finally, the timelike variable τ with dimen-
sionality time/(length)2 (reciprocal to that of ω) has been
introduced in order to obtain the right-hand side of Eq.
(5) in the form of the standard time-dependent Schrödinger
equation.

For slow collisions, when an adiabatic approach is appro-
priate, we look for the solutions of Eq. (5) in the form of an

expansion

f (q,τ )

=
∑

j

gj (τ )�j (q,R(τ ),ω) exp

(
−i

∫ τ

0
Ej (R(τ ′),ω)dτ ′

)

(8)

in terms of the eigenfunctions �j (q,R(τ ),ω) of the instanta-
neous Hamiltonian H (τ ) ≡ H (R,ω) defined in Eq. (6):

H (R,ω)�j (q,R,ω) = Ej (R,ω)�j (q,R,ω), (9)

where for the purposes of this work, we have suppressed
the τ dependence of R but made explicit the parametric
dependence of all quantities on ω. We call the complete set of
eigenfunctions �j (q,R,ω) dynamical adiabatic states (DAS)
and the eigenvalues Ej (R,ω) DAPEC because in addition to
internuclear separation R, they also depend on dynamic param-
eter ω = ρv. For ω �= 0, due to the presence of the harmonic
oscillator potential in Eq. (6), the spectrum of the Hamiltonian
H (R,ω) is discrete. The general properties of the DAPEC for
the complete range of real internuclear separations R, from 0
to +∞, have been studied in our previous work [9].

Here, we are interested in analytic continuations of DAPEC
into the complex R plane, that is, the solutions of the eigenvalue
problem (9) for complex values of R. This will enable us to
detect the various branch points Rb(i,f,ω) connecting the pairs
of the complex DAPEC Ei(R,ω) and Ef (R,ω) and eventually
use them in calculations of the single-pass electron transition
probabilities, given by an expression analogous to Eq. (1):

pif (ρ,v) = exp

(
−2

�
Im

∫
L

E(R,ω)
dR

ṽR(R,ρ,v)

)
, (10)

where the generalized radial velocity is related to the standard
radial velocity through the relation ṽR(R,ρ,v) = dR/dτ =
vR(R,ρ,v)R2. In our case, the straight-line ionic trajectories
vR(R,ρ,v) = v(1 − ρ2/R2)1/2. The definitions of the contour
L and the multivalued complex function E(R,ω) in Eq. (10)
are analogous to those given in connection with Eq. (1). We
note that, as can be seen from Eqs. (6) and (9), in the case
ω = 0 any DAPEC Ej (R,0) is related to the usual PEC εj (R)
of the two-Coulomb-center problem by the relation

Ej (R,0) = εj (R)R2, (11)

so that in this limit Eq. (10) reduces to Eq. (1).
We also note that the given classical trajectory is not

determined only by ω = ρv, but rather by ρ and v separately,
for example, R2 = ρ2 + v2t2. The two collisions characterized
by the same ω = ρv, but different ρ and v do not lead to
the same transition probabilities. This is explicitly seen in
Eq. (10) where E(R,ω) indeed depends only on ω, but the
radial velocity vR = v(1 − ρ2/R2)1/2 depends separately on
ρ and v. [Another way to conclude the same is to start
from the fact that quantum dynamics is determined by the
τ dependence of the Hamiltonian H (τ ). Although the last two
terms in Eq. (6) depend only on ω, the internuclear separation
R(τ ) = ρ/cos(ωτ ) depends separately on ρ and v.]

III. METHOD OF CALCULATION

In order to solve the (complex) eigenvalue problem (9)
when R is a complex number, we use the same method as
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in our previous work [9] related to the investigation of the
dynamical adiabatic eigenvalues for real values of R. A matrix
representation of the Hamiltonian is constructed by using the
prolate spheroidal coordinates (ξ,η,φ) of the electron, the
direct product of Lagrange-mesh bases [15,16], to represent
(ξ,η) degrees of freedom and a standard sine and cosine basis
for azimuthal angle φ. In this representation, the symmetry
blocks, corresponding to states with π3 = ±1, are decoupled
and explicit expressions for matrix elements of all operators are
given in Ref. [9]. Complex eigenvalues are obtained by diago-
nalization of the Hamiltonian matrix and convergence of the re-
sults is controlled by increasing the number of basis functions.

In all our calculations we start with the eigenvalues obtained
on the real R axis for particular initial Ri = (ReRi,0) and order
them according to E1 < E2 < E3 < . . . . Then, the eigenval-
ues are analytically continued into the complex R plane along
the straight line parallel to the ImR axis connecting Ri and
Rf = (ReRi,ImRf ). In order to keep track of the complex
eigenvalues E1,E2,E3, . . ., the steps of advancing into the
complex plane along this straight line have to be small. In that
case, at each step, it is possible to assign the index j to the
eigenvalue which is closest to the Ej calculated in the previous
step. Alternatively, one can use a three-step extrapolation
scheme to determine accurate predictions of eigenvalues in
the forthcoming step and in such a way increase the steps for
advancing into the complex plane. Repeating this procedure
for a range of initial Ri’s one can obtain the complex surfaces
Ej (R,ω), j = 1,2,3, . . ., in the certain domain of the complex
R plane. If there is a branch point Rb(j,j ′; ω) connecting the
eigenvalues Ej (R,ω) and Ej ′(R,ω), the graphs of surfaces
ReEj (R,ω), ImEj (R,ω), ReEj ′ (R,ω), and ImEj ′(R,ω) will
appear with the discontinuities along the “cuts” in the line
parallel to the ImR axis connecting the Rb(j,j ′; ω) and
(ReRb,+∞).

In order to precisely locate various branch points, we have
developed a searching algorithm which relies on the fact that
close enough to the branch point the two eigenvalues are
represented with

Ej,j ′ (R,ω) = a ± b
√

R − Rb(j,j ′; ω). (12)

Assuming that we have two initial guesses for the branch point,
R1 and R2, the branch point is obtained from Eq. (12) as

Rb(j,j ′; ω)

= R1[Ej (R2) − Ej ′ (R2)]2 − R2[Ej (R1) − Ej ′ (R1)]2

[Ej (R2) − Ej ′ (R2)]2 − [Ej (R1) − Ej ′(R1)]2
. (13)

The iteration process consists in taking as new guesses R1 =
R2 and R2 = Rb(j,j ′; ω) and repeating the procedure until the
required convergence is achieved.

IV. RESULTS AND DISCUSSION

We present here the results for a generic asymmetric system,
defined with ZA = 1 and ZB = 2, that is for the HeH2+

quasimolecular system. In order to investigate some of the
inelastic, that is, excitation or charge-exchange processes in
collisions of H++ He+(1s or 2s,2p) or H(1s)+ He2+, it is
necessary to study the distribution (and the ω dependence) of
the branch points connecting the low-lying DAPEC.

FIG. 1. (Color online) The 90 lowest eigenvalues (DAPEC) for
symmetric (π3 = 1) states of the (HeH)2+ collision system (ZA =
1,ZB = 2) as functions of the internuclear separation R at real R axis
[Im(R) = 0] for ω = 1 a.u. (solid curves) and the lowest 20 DAPEC
for ω = 0 [dashed (blue) curves].

The solid curves in Fig. 1 show the R dependence on the
real R axis [Im(R) = 0] of the 90 lowest symmetric (π3 = 1)
eigenvalues Ej (R,ω) for ω = 1. As a dominant structure,
one can notice the overlapping manifolds of the DAPEC
which start at R = 0 from the points of high degeneracy
corresponding to oscillatorlike energies

Ej (0,ω) = (N + 3/2)ω, N = 0,2,4, . . . (14)

and then spreading toward larger distances where they all
tend toward large negative values. The general properties of
the DAPEC on the real R axis, including the limiting cases
R → 0 and R → ∞, are discussed in detail in Ref. [9].
In Fig. 1, the lowest six DAPEC are labeled with j = 1–6
and in the following, we shall mainly concentrate on the
analytic properties of these eigenvalues as they are analytically
continued into the complex R plane. That is, we shall study
the distribution and ω dependence of branch points connected
the pairs of these eigenvalues.

The dashed (blue) curves in Fig. 1 are the 20 lowest
symmetric DAPEC for ω = 0. They are related to the usual
PEC εj (R) of the HeH2+ molecular ion by the relation (11).
One can notice that the dashed (blue) and solid curves merge
as R → ∞.

As is shown in Ref. [9], a similar dominant structure of the
DAPEC is also found for antisymmetric (π3 = −1) states. The
only difference is that degenerate manifolds at R = 0, which
are again given by Eq. (14), now correspond to N = 1,3,5, . . . .
In the rest of the article, we shall concentrate on π3 = 1 states
without specifically pointing this out.

Due to the relationship (11) and the fact that E(R,ω) and
E(R,0) merge as R → ∞, it is more convenient to consider
the case of intermediate and large real internuclear separa-
tions by studying the R dependence of the scaled DAPEC,
Ej (R,ω)/R2, because these quantities should asymptotically
approach the atomic levels of separated atoms. However, due
to the well-known increase of the density of excited states in
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FIG. 2. (Color online) Segment of low-lying scaled DAPEC
represented in terms of “effective united-atom principal quantum
number” [Eq. (15)] (solid curves). Also shown [dashed (blue) curves]
are the standard PEC of the (HeH)2+ molecular ion labeled by
united-atom quantum numbers.

Coulombic systems, it is even more convenient for graphical
representation to use the “effective united-atom principal
quantum number”

NUA
j (R,ω) = (ZA + ZB)[−2Ej (R,ω)/R2]−1/2. (15)

This quantity has a property that NUA
j (0,0) = (ZA +

ZB)[−2εj (0)]−1/2 = 1,2,3, . . . is the united-atom principal
quantum number of the HeH2+ system. In Fig. 2, the
R dependence of NUA

j (R,ω) is shown for the fragment of
the low-lying DAPEC (solid curves) and PEC [dashed (blue)
curves] which correspond to those shown in Fig. 1. Both sets
of curves, corresponding to DAPEC and PEC, asymptotically
(as R → ∞) approach the same values corresponding to the
unperturbed atomic levels, although there are some differences
in asymptotic behavior, which are not visible in these figures
and are discussed in Ref. [9]. In any case, this representation is
useful in predicting which DAPEC are important and should
be included when describing various inelastic processes.

In our investigations, we shall start from the known set
of branch points for ω = 0 corresponding to PEC of the
HeH2+ system [17] and then study the behavior of some
representative examples of these branch points when ω is
systematically increased. In addition, the exact crossings
of PEC corresponding to rotational couplings will generate
additional branch points of the DAPEC for ω �= 0 which we
call L3 branch points. Each following subsection is entitled by
two sets of united-atom quantum numbers of the PEC that are
connected by a branch point at ω = 0.

A. Hidden crossing between the 1sσ and 2 pσ surfaces

We start with the ω dependence of the branch-point position
connecting the ground and the first excited DAPEC, labeled
j = 1 and 2 in Figs. 1 and 2. The position of the branch
point at ω = 0, connecting the 1sσ and the 2pσ complex
PEC is known to be at Rb(1,2; ω = 0) = (1.213,1.364) [17].

With our search method we have easily confirmed this result.
Figure 3 shows how real and imaginary parts of the complex
DAPEC E1(R,0) and E2(R,0) look when they are analytically
continued from the real axis (ImR = 0) towards the increasing
values of ImR along the straight lines ReR =constant in
the complex R plane. The points on the surfaces that
correspond to the position of the branch point are labeled
by somewhat exaggerated spherical symbols. The pairs of
functions {ReE1,ReE2} and {ImE1,ImE2} can be “pasted”
along the cuts {ReR =ReRb, ImR ∈(ImRb,+∞)} to obtain
the multivalued analytic function of which E1 and E2 are
single-valued branches.

In the two-Coulomb-center problem, this branch point is
actually the first member (closest to the real R axis) of the
so-called Q

(2)
000 series which connects the 1sσ surface with

a series of other surfaces [17]. [Here, Q(i)
n1n2m

stands for the
separated-atom parabolic quantum numbers (n1n2m) = (000)
of the 1sσ state which is asymptotically localized on center
i = 2, i.e., He2+.] For brevity, we shall refer to branch points
originating from this one for ω � 0 as Q2 branch points.

Starting from Rb(1,2; ω = 0) one can, by adding small
increments to ω, construct the trajectory of Rb(1,2; ω) in the
complex R plane, as shown in Fig. 4. It can be seen, however,
that for some ω ∈ (0.75,0.8), the Rb(1,2; ω) turns over into
Rb(1,5; ω), that is, it connects the surfaces labeled 1 and 5
(not 2). In order to understand the cause of this phenomenon,
we investigate in the next subsection the trajectory of another
branch point related to eigenvalue 2, namely, the one which at
small values of ω connect surfaces 2 and 3.

B. 2 pσ − 2 pπ and 2sσ − 2 pπ rotational couplings in the
united-atom limit

At ω = 0, the eigenvalues labeled 2 and 3 correspond to
2pσ and 2pπ PEC shown as dashed lines in Fig. 2 which are
degenerate at R = 0. As is shown in Fig. 5 when ω increases
from zero, the L3 branch point Rb(2,3; ω) arises and at first
retains its character, but then is transformed into Rb(2,4; ω)
somewhere in the interval ω ∈ (0.3,0.5) and subsequently
into Rb(2,5; ω) somewhere in the interval ω ∈ (0.75,0.8). The
last interval is exactly the same as the one mentioned in
the preceding subsection where the transformation of the Q2

branch point from Rb(1,2; ω) to Rb(1,5; ω) occurs, so it is
the interval where the redistribution of branch points between
surfaces 1, 2, and 5 occurs. This is confirmed in Fig. 6 where
the structure of surfaces 1, 2, and 5 in the vicinity of branch
points Rb(1,5; ω = 0.8) and Rb(2,5; ω = 0.8) is shown. It can
be seen that indeed there is no direct connection (branch point)
between surfaces 1 and 2, but rather surface 5 is connected with
both of them.

Another example of the same kind of redistribution
of the branch points is the above-mentioned transformation of
the L3 branch point Rb(2,3; ω) into Rb(2,4; ω) somewhere in
the interval ω ∈ (0.3,0.5). It can be explained by the trajectory
of another L3 branch point Rb(3,4; ω), part of which is also
shown in Fig. 5. At ω → 0, it corresponds to 2sσ − 2pπ

rotational coupling at small R. It can be seen from Fig. 5
that ReRb(3,4; 0.3) < ReRb(2,3; 0.3) while ReRb(3,4; 0.5) >

ReRb(2,4; 0.5). It means that there exists some critical
ωc ∈ (0.3,0.5) such that ReRb(3,4; ωc) = ReRb(2,3; ωc − ε)
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FIG. 3. (Color online) Analytic continuations of E1(R,ω = 0) and E2(R,ω = 0) from the real R axis into the complex R plane along
the paths: ReR = const. The (exaggerated) spherical symbols are points on the surfaces corresponding to branch point Rb(1,2; ω = 0). All
quantities are in atomic units.

= ReRb(2,4; ωc + ε), ImRb(3,4; ωc) < ImRb(2,3; ωc − ε) =
ImRb(2,4; ωc + ε), (ε → 0+), so that Rb(2,3; ω) →
Rb(2,4; ω) at ω = ωc.

FIG. 4. Trajectory of the branch point Q2 which starts as
Rb(1,2; ω) for ω ∈ (0,0.75) but transforms into Rb(1,5; ω) in the
interval ω ∈ (0.75,0.8). In all figures, branch points Rb(j,j ′; ω) are
labeled as ω(j − j ′).

Based on the last example, we can formulate the general
conditions for occurrence of the transformation of a branch
point Rb(j,j ′; ωc) → Rb(j,j ′′; ωc) at ωc ∈ (ω1,ω2) due to the

FIG. 5. (Color online) Full circles represent the trajectory of the
L3 branch point which starts as Rb(2,3; ω) for ω ∈ (0,0.3), transforms
into Rb(2,4; ω) in the interval ω ∈ (0.3,0.5), and into Rb(2,5; ω) in
the interval ω ∈ (0.75,0.8). Full triangles are part of the trajectory of
another L3 branch point Rb(3,4; ω). Full squares labeled (1-2,5) are
the replica of the Q2 branch points from Fig. 4.
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FIG. 6. (Color online) Analytic continuations of E1(R,ω = 0.8), E2(R,ω = 0.8), and E5(R,ω = 0.8) from the real R axis into the complex
R plane along the paths: ReR = const. The spherical symbols are points on the surfaces corresponding to branch points: in the first column
Rb(1,5; ω = 0.8), in the second column Rb(2,5; ω = 0.8), and in the third column Rb(1,5; ω = 0.8) and Rb(2,5; ω = 0.8). All quantities are in
atomic units.

existence of the branch point Rb(j ′,j ′′; ω):

ReRb(j ′,j ′′; ω1) < ReRb(j,j ′; ω1),

ReRb(j ′,j ′′; ω2) > ReRb(j,j ′′; ω2),
(16)

ImRb(j ′,j ′′; ω1) < ImRb(j,j ′; ω1),

ImRb(j ′,j ′′; ω2) < ImRb(j,j ′′; ω2).

As we shall see in the following subsections, such transforma-
tions are frequent, especially at small values of ReR.

C. Rotational coupling between the 3dσ and 2 pπ states

First, we complete the trajectory of the L3 branch point
Rb(3,4; ω) of the preceding subsection for the range ω ∈
(0.1,2). These results are shown in Fig. 7 and labeled (3-4).
However, there is another family of L3 branch points con-
necting DAPEC 3 and 4. Namely, the exact crossing in
Fig. 2 between the 3dσ and 2pπ PEC, which in standard
adiabatic representation indicates a region of strong rota-
tional coupling, appears as an avoided crossing between two
DAPEC labeled 3 and 4. Starting from the exact crossing
R′

b(3,4; ω = 0) = (4.507,0) we have calculated the trajectory
of R′

b(3,4; ω), which is shown in Fig. 7 and labeled (3-
4)′. Unlike the Q2 branch points connecting (1-2,5) and
L3 branch points connecting (2-3,4,5) (which are replicated in
Fig. 7 from Figs. 4 and 5), neither (3-4) nor (3-4)′ L3-branch
points undergo the transformations of the kind described by
Eqs. (16).

D. 2 pσ − 3 pσ member of the Spσ series of branch points

In the two-Coulomb-center problem, one finds the Slm

series of branch points [8,10]. Each series consists of an

FIG. 7. (Color online) Full triangles labeled (3-4) correspond to
L3 branch points originating from 2sσ − 2pπ rotational coupling
in the united-atom limit at ω = 0. Full triangles labeled (3-4)′

correspond to L3 branch points originating from 3dσ − 2pπ exact
crossing at ω = 0. Full squares labeled Q2(1-2,5) are the replica of
Fig. 4 and full circles labeled (2-3,4,5) are the replica of Fig. 5. Also
shown are the positions of Spσ series and Q1 branch points.
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FIG. 8. (Color online) Trajectory of the branch point which starts
as the first member of Spσ series Rb(2,5; 0) but after a series of
transformations ends up as Rb(3,14; 0.0275).

infinite set of branch points Rb(Nlm) connecting pairwise
PEC εNlm(R) − εN+1lm(R) consecutively for all N � l + 1.
All branch points of a series are localized within the small
domain of the complex R plane and as N → ∞ approach a
limiting point Rb(∞lm). Transitions caused by these series of
branch points are responsible for the promotion of the electron
into the continuum in slow collisions, that is, they explain the
mechanism of the ionization process [8,10,17].

As an example, we consider the Spσ series of the HeH2+ sys-
tem, whose approximate location is shown in Fig. 7. We shall
explore how the first member of this series connecting 2pσ −
3pσ PEC, namely, Rb(210) or in our notation Rb(j = 2,j ′ =
5; ω = 0) = (0.500 239,0.752 285), transforms for ω �= 0. We
note that the second member of the Spσ series, connecting
3pσ − 4pσ PEC, is located at Rb(310) ≡ Rb(5,11; 0) =
(0.490 825,0.720 151), very close to the first member.

Figure 8 shows the trajectory of branch points for ω ∈
(0,0.0275) which originate from Rb(2,5; ω = 0). It can be seen
that even for this small interval of ω the branch points undergo
a series of transformations. All of the indicated changes in the
labels of surfaces that are connected by a particular branch
point can be explained by the fulfillment of conditions (16) as
is documented in Fig. 9.

Note first that on the scale of Fig. 9, all branch points from
Fig. 8 are localized within the uppermost square symbol, so
that their real parts ReRb(j,j ′; ω) are approximately defined by
the dashed vertical line. Then, in order for the transformation
Rb(j,j ′; ω1) → Rb(j,j ′′; ω2) to occur, the first two conditions
from Eq. (16) simply mean that the line connecting branch
points Rb(j ′,j ′′; ω1) and Rb(j ′,j ′′; ω2) in Fig. 9 should cross
the vertical dashed line. The second two conditions from
Eq. (16) simply mean that all branch points Rb(j ′,j ′′; ω) should
lie below the uppermost square in Fig. 9, as they do.

The first transformation in Fig. 8, Rb(2,5; 0) →
Rb(2,6; 0.005), occurs because Rb(5,6; 0) = (0,0) (not shown)
in Fig. 9 is on the left of the vertical dashed line and
Rb(5,6; 0.005) [shown in Fig. 9 as 0.005(5-6)] is on
the right. The next two transformations Rb(2,6; 0.005) →
Rb(2,8; 0.01) → Rb(2,9; 0.015) occur because, as seen from

FIG. 9. (Color online) Positions of the various pairs of branch
points responsible for the transformations along the trajectory shown
in Fig. 8. This trajectory is here contained within the uppermost
square symbol.

Fig. 9, the lines connecting branch points Rb(6,8; 0.005) −
Rb(6,8; 0.01) and Rb(8,9; 0.01) − Rb(8,9; 0.015) both cross
the vertical dashed line. In further transformation
Rb(2,9; 0.015) → Rb(3,10; 0.02) both indices are changed,
and this is explained by the fact that in Fig. 9 the lines con-
necting Rb(2,3; 0.015) − Rb(2,3; 0.02) and Rb(9,10; 0.015) −
Rb(9,10; 0.02) both cross the vertical dashed line. The next
two transformations Rb(3,10; 0.02) → Rb(3,13; 0.023) →
Rb(3,14; 0.025) occur because, as seen from Fig. 9, the lines
connecting branch points Rb(10,13; 0.02) − Rb(10,13; 0.023)
and Rb(13,14; 0.023) − Rb(13,14; 0.015) both cross the ver-
tical dashed line. The last branch point shown in Fig. 8,
Rb(3,10; 0.0275), is reached without any transformation.

We have found difficulties in extending the calculations to
values of ω > 0.0275. The reason is probably the fact that
still higher states are involved in transformations. In any case,
the conclusion is that this member of the Sp,σ series, and
presumably the other members, with the increase of ω still
stay within the limited domain of the complex R plane and are
related to complicated connections with highly excited states.
Basically, in this way it seems that the essential role of the
S series in promoting electron into highly excited (and eventu-
ally ionized) states is retained in dynamical adiabatic theory.

E. Hidden crossing between the 2 pσ and 3dσ surfaces

The last example considers the hidden crossings located
at relatively large ReR which originate at ω = 0 from the
first member of the Q

(1)
000 series [17], namely, Rb(2,3; 0) =

(6.067,3.145) which connects PEC 2pσ and 3dσ . Accord-
ingly, we shall refer to these branch points Rb(2,3; ω) as to
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FIG. 10. Trajectory of the Q1 branch points Rb(2,3; ω) for ω ∈
(0,2) which starts at ω = 0 connecting the 2pσ and 3dσ PEC.

Q1 branch points. As can be seen from Fig. 10, for ω ∈ (0,2)
the Q1 branch points stay within the small region of the com-
plex R plane and there are no changes of indices of surfaces
that are connected. The relative position of the location of the
Q1 branch points with respect to other branch points studied
is shown in Fig. 7.

V. CONCLUDING REMARKS

In general, we can conclude that the hidden crossings (such
as Q1 and Q2) involving a change of parameter ω occupy
relatively small regions in the complex R plane. On the
other hand, the L3 crossings extend over the regions with
considerable changes of both ReR and ImR, as is seen from
Fig. 7. This “motion” of the L3 crossings leads to appearance
of a phenomenon in the dynamical adiabatic basis, namely,
the possibility of change of the indices of eigenvalues that
are connected by the branch points which lie further away in
the complex plane and that are “overtaken” by some moving
L3 branch points. This has consequences on the way how
the probabilities of various inelastic transitions are to be
calculated.

For example, as is already discussed with connection to
Fig. 5, with the increase of ω, the L3 branch point between the
third and fourth states moves from R = 0 to the right and at
some ωc ∈ (0.3,0.5) overtakes the upper L3 branch point be-
tween the second and third states. For ω > ωc, the upper branch
point connects the second and fourth states. With further
increase of ω, a branch point between the fourth and fifth states

(not shown in Fig. 5) overtakes the upper L3 branch point
and changes again its connection from the second and fourth
to second and fifth states. At particular ωQ2 ∈ (0.75,0.8), the
upper L3 branch point passes under the Q2 branch point and
changes its connection from the first and second to the first and
fifth states. Therefore, when calculating the charge-exchange
cross section from the ground state of He+ to the ground state
of the hydrogen atom, the expression for transition probability
(1 → 2) as a function of the impact parameter ρ alters from

Pch-ex = 2pQ2(1 − pQ2)
(
1 − pL + p2

L

)
(1 − pQ1) (17)

at ρ < ωQ2/v to

Pch-ex = 2pQ2(1 − pQ2)pL(1 − pQ1) (18)

at ρ > ωQ2/v, where pQ2, pL, and pQ1 are elementary
single-pass transition probabilities due to Q2, upper L3, and
Q1 branch points, respectively.

This rearrangement of couplings cannot be explained so
easily as the hidden and avoided crossings in the separable
two-Coulomb-center problem. All L3 crossings originate from
exact crossings of the PEC of different symmetry in this
problem which have accidental distribution on the R axis.
The additional operator �(q) = ωL3 + 1

2ω2q2 in dynamical
representation (6) is not the standard potential. On the one
hand, it is covariant with respect to translation along the
R axis like a constant. On the other hand, each term in �(q) has
a very pronounced position. Both terms, being of completely
different nature (first is a differential operator and second is
a standard function), compensate each other in the leading
order, and a separate analysis of their role is meaningless. At
the same time, �(q) destroys separability and existence of the
one-dimensional effective potentials.

As a final remark, we note that the narrow avoided
crossings, mentioned in the Introduction, are absent in the
HeH2+ system (they appear for higher values of ZB/ZA). As
they originate from underbarrier electronic exchange and are
not directly related to the rotation of the internuclear axes, we
expect that they will show a weak ω dependance similarly to
that of the hidden crossings.
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