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Metastable compound states of an antiproton and a hydrogen atom
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The stability of antiproton-hydrogen compound states (p̄H) is investigated theoretically. The p̄H compound
state has decay channels of atomic electron detachment (→e− + p̄p) and hadronic pair (p̄-p) annihilation,
and hence it cannot be permanently stable even if the dissociation channel (→p̄ + H) is energetically closed.
In this paper, information on the metastable p̄H states at energies below the dissociation limit is obtained by
analyzing low-energy resonances in e− + p̄p scattering. The scattering calculation is carried out by using an
R-matrix method, which also allows for the annihilation channel simultaneously. The metastable states are found
to be identified as vibrational levels supported by a Born-Oppenheimer (BO) potential. The energy-level widths
attributed to the electron detachment and the annihilation are also calculated using a model based on the BO
picture.
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I. INTRODUCTION

Recently, large progress has been made in experimental
studies to produce and trap antihydrogen atoms (H̄) at very
low (∼10 K) temperatures [1–6]. In such studies, of serious
concern to the experimentalists are processes leading to
unfavorable trap loss of H̄, and particular attention is paid
to H̄ + H collisions. At very low energies, besides merely
the elastic one, the H̄ + H system has reactive channels of
matter-antimatter annihilation due to hadronic interaction and
of atomic rearrangement producing a positronium (e+e−) and
a protonium (p̄p). Meanwhile, the H̄ + H system has deeper
scientific significance since it is one of the simplest and most
fundamental matter-antimatter combinations. So far, a lot of
theoretical studies have been done on this matter-antimatter
collision system in atomic physics [7–18]. In most of these
studies, the Born-Oppenheimer (BO) approximation is a
starting point for treating the atomic four-body dynamics in
H̄ + H, and first-order perturbation theory is applied to the
rearrangement reaction. Hereafter, let us call this type of
approach the BO model. As for more sophisticated studies,
Armour and Chamberlain [14] performed a nonperturbative
quantum-mechanical (QM) calculation by using a Kohn
variational method, and Zygelman et al. [17] introduced an
optical potential approach.

Taking note of the fact that the BO potential of H̄ + H
reveals an attractive nature at least at large separations [7,8],
one might expect that this system could have vibrationally
bound states as if it were a molecule. Zygelman et al. [9]
suggested the possibility of forming the H̄H molecule by
radiative association in H̄ + H collisions. However, there is
a basic difficulty with this idea because the heavy particles (p̄
and p) are unable to bind the light particles (e+ and e−) at
p̄-p distances R less than the critical value R0 = 0.744 a.u.,
even within the BO approximation [8,13,16]. For this reason,
any compound state of H̄H has a non-negligible decay channel
of a breakup into p̄p + e+e− and is eventually unstable (or
perhaps metastable). Considering that the vibrational wave
function can have high amplitudes at R > R0 for a high
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vibrational state, it is expected that the H̄H compound state
having an energy close to the dissociation limit (→H̄ + H)
can become metastable. The energy widths of such vibrational
levels attributed to the breakup and annihilation reactions were
calculated using the BO picture and a distorted-wave (DW)
method in several theoretical studies [19–21]. However, Stras-
burger [16] found that the correction to the BO approximation
would diverge when R → R0 in the H̄ + H system. It is not
certain that the BO model is satisfactory for understanding the
physical properties of the H̄H compound state.

The present study investigates the p̄ + H system at energies
E below the dissociation limit D. A noteworthy fact is that
the BO property of p̄ + H is very similar to that of H̄ + H.
Also in the p̄ + H system, there exists the so-called Fermi-
Teller critical value RFT = 0.639 a.u. [22]; at distances R �
RFT, the electronic bound state is absent. Therefore, the p̄H
molecule is unstable as well as H̄H and has a decay channel of
electron detachment (→p̄p + e−). In the case of p̄ + H, since
the long-range polarization force ∝−R−4 works at large R,
the vibrational wave function can have high amplitudes even
at R ∼ 100 a.u. � RFT if the vibrational energy is close to the
dissociation limit (see later). Thus, one may be able to expect
that high vibrational states of p̄H are more stable than those
of H̄H. It is hence very interesting to investigate the physical
properties of the p̄H compound state.

From the viewpoint of electron scattering, the p̄H com-
pound should be described as a metastable state in a resonance
phenomenon,

e− + p̄p(N,L) � p̄H, (1)

where (N,L) are the principal and angular-momentum quan-
tum numbers of the hydrogenic p̄p atom. Recently, accurate
QM calculations were carried out for the collision process p̄ +
H → p̄p + e− using time-dependent approaches [23,24] and
an R-matrix approach [25]. These approaches can also be used
for the study of the electron resonance scattering of Eq. (1).
It should be mentioned here that a QM calculation would
become extremely unrealistic if the resonance process were
described by a brute-force method of simple close-coupling
expansion with respect to the (N,L) states: p̄p states with
N ∼ 250 are required for describing the resonance wave
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function, which extends up to p̄-p distances of R ∼ 100 a.u.,
while open channels are N � 30 at energies E < D. Such
resonance channels can be effectively handled by using the
R-matrix method. The p̄H compound state also has another
decay channel attributed to pair annihilation of p̄ and p:

p̄H → e− + p̄-p annihilation. (2)

In the R-matrix calculation of p̄ + H collisions [25], both the
atomic rearrangement and the hadronic annihilation channels
were coherently taken into account, and the annihilation was
found to be important mostly for the total angular momentum
J = 0. Also, for investigating the annihilation effect on the
p̄H compound state, the R-matrix method is expected to be
useful.

The present study focuses on the energy region of E < D.
In the case of E > D, one may expect that a quasibound
state is formed in p̄ + H collisions at energies below the
centrifugal barrier height (i.e., a tunneling resonance). This
quasibound state would also be regarded as a p̄H compound.
However, only minor peaks due to overbarrier resonance were
actually observed in p̄ + H collisions [25]. Using the WKB
(Wentzel-Kramers-Brillouin) and uniform approximations, it
is shown that this system cannot satisfy the condition of
tunneling resonance because of its high reactivity [26]. It is
unlikely that an important quasibound state exists at energies
E > D in this system.

In this paper, first, Sec. II presents the BO model (i.e., a
molecular treatment) for the p̄H compound state. The electron
detachment and the annihilation are described using a local
optical potential model (having an imaginary part of the
interaction). In Sec. III, the R-matrix method is introduced
for describing the p̄H compound state as the resonance
e− + p̄p scattering. In Sec. IV, the results of the p̄H properties
calculated by the molecular and the R-matrix treatments are
compared, and the applicability of the BO model is examined.

II. MOLECULAR TREATMENT OF METASTABLE
COMPOUND STATES

Let R and r be the position vectors of p̄ and e−, respectively,
measured from p. In the BO approximation, the total wave
function of the p̄ + H system is given in the form

�JM
BO (R,r) = χ (R; r)YJM (R̂)FJ

v (R), (3)

where χ (R; r) is the ground-state (1σ ) electronic wave func-
tion providing the adiabatic electron energy εBO(R) [27,28],
and YJM (R̂) is the spherical harmonics, with (J,M) being the
total angular momentum quantum numbers. The BO potential
governing the relative motion in p̄ + H is given by

VBO(R) =
{

− 1
R

− εH for R < RFT,

εBO(R) − 1
R

− εH for R � RFT,
(4)

where εH is the ground-state energy of the H atom, and
VBO(R) → D = 0 as R → ∞ (D being the dissociation limit
of p̄H). The electronic bound state is absent at R < RFT, and
in the present study the BO potential is defined by assuming
εBO(R) = 0 at R < RFT. The values of εBO(R) in the vicinity
of R = RFT were calculated by Turner et al. [28]. Their result
shows that εBO(R) seems to take a stationary value at R = RFT.

FIG. 1. Effective potential Veff (R) of p̄ + H for J = 0, 1, and 2.

Therefore, the definition of Eq. (4) provides a smooth function
around R = RFT.

The radial function FJ
v (R) is given by solving[

− 1

2mR2

d

dR
R2 d

dR
+ Veff(R)

]
FJ

v (R) = EFJ
v (R), (5)

where the effective potential Veff(R) is

Veff(R) = J (J + 1)

2mR2
+ VBO(R), (6)

and m is the reduced mass of the system. Here and in
the following, a.u. is used unless otherwise stated. If the
energy is E < D, the p̄H molecule is in a vibrational bound
state identified by v = 0,1, . . ., and the vibrational energy is
discrete, i.e., E = EJv .

The behavior of the effective potential Veff(R) at large
distances R is shown in Fig. 1 for low angular momenta J = 0,
1, and 2. The effective potential supports a finite number of the
vibrational states. Table I summarizes the highest vibrational
quantum number vmax, the highest vibrational energy EJ,vmax ,
and the classical outer turning point RTP of the vibrational
motion with v = vmax. For low J , the v = vmax turning point

TABLE I. Energies EJv and classical outer turning points RTP

of the p̄H vibrational motion supported by the BO potential for the
highest state v = vmax of J = 0–10.

J vmax EJ,vmax (eV) RTP (a.u.)

0 39 −4.816 × 10−5 33.58
1 38 −3.112 × 10−6 41.79
2 36 −8.039 × 10−4 15.04
3 34 −6.050 × 10−3 9.36
4 33 −3.769 × 10−3 9.74
5 32 −1.202 × 10−3 10.38
6 30 −1.181 × 10−2 7.12
7 29 −5.479 × 10−3 7.40
8 27 −2.982 × 10−2 5.55
9 26 −1.752 × 10−2 5.68
10 25 −4.462 × 10−3 5.86
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FIG. 2. (Color online) J = 0 vibrational wave functions
F J

v (R) × R obtained using the BO potential for v = 39–36. The
vertical line indicates the Fermi-Teller critical distance R = RFT.

RTP is > 10 a.u., and this fact actually confirms that the
vibrational motion extends to very long distances of R � RFT.
In the case of J = 0, the vibrational wave functions in the form
of R × FJ

v (R) are drawn as a function of R in Fig. 2 for the
vibrational states v = 39–36. A notable feature in the figure
is that the wave function can have much higher amplitudes at
distances R � RFT than at R � RFT (and furthermore, that it
has finite amplitudes even up to R ∼ 100 a.u. for v = vmax).
Thus, one can certainly expect the possible existence of a
metastable compound state for low J and high v.

From the results of an accurate QM calculation, the present
author empirically derived an imaginary part of the potential,
which accounts for the decay by the electron detachment, in
the form [29]

iV I
det(R) = −i

2.2

87.5 + R
exp[−3.13(R − 0.394)4]. (7)

This potential has the range of R � Rdet � 1.5 a.u. Using
Eq. (7) and the BO potential as the real part, the probability
of electron detachment in p̄ + H collisions can be calculated
satisfactorily [29]. This optical potential is expected to be
useful also for the present purpose. With the use of Eq. (7), the
energy level width �det

Jv of the p̄H molecule due to the electron
detachment can be simply given by first-order perturbation
theory, i.e.,

− i

2
�det

Jv = 〈
FJ

v

∣∣V I
det

∣∣FJ
v

〉
. (8)

The p̄H molecule also has the decay channel of annihila-
tion, Eq. (2). The imaginary part of the interaction accounting
for the annihilation decay may be assumed to be a δ-function
form [10], i.e.,

iV I
ann(R) = −i

A

R2
δ(R), (9)

where A is constant. This potential can be used to calculate the
level width of the p̄p atom. For p̄p in the 1s state, first-order

perturbation theory provides

− i

2
�ann

1s (p̄p) = 〈
G

p̄p

1s

∣∣V I
ann

∣∣Gp̄p

1s

〉 = −iA
∣∣Gp̄p

1s (0)
∣∣2

, (10)

where G
p̄p

1s (R) is the radial Coulomb function of p̄p(1s). From
this result, one has

A = �ann
1s (p̄p)

8m3
. (11)

Then, using the recommended value �ann
1s (p̄p) = 1060 eV

given in Ref. [30], one can obtain A = 6.29 × 10−9 a.u. The
δ-function assumption of Eq. (9) was found to be reasonable
for the annihilation in H̄ + H [15]. In the same way, the
annihilation width of the p̄H molecule is given by

− i

2
�ann

Jv = 〈
FJ

v

∣∣V I
ann

∣∣FJ
v

〉 = −iA
∣∣FJ

v (0)
∣∣2

δJ0. (12)

As long as the δ-function form is assumed, Eq. (12) yields no
annihilation width except for J = 0.

III. SCATTERING CALCULATION USING THE
R-MATRIX METHOD

Let us consider e− scattering from p̄p(N,L) in the (N,L)
state. The time-independent Schrödinger equation is

H�JM (R,r) = Etot�
JM (R,r), (13)

with H being the Hamiltonian of the Coulomb three-body
(e−-p-p̄) system and Etot being the total energy given by

Etot = ε + EN = εH + E, (14)

where ε is the electron kinetic energy, and EN is the p̄p energy.
The last term in Eq. (14) is expressed in the p̄ + H channel
related to the resonance state (cf. Sec. II). In the present study,
Eq. (13) is solved using an R-matrix technique [31], in which
the configuration space can be conveniently partitioned into
several domains [25,32,33]. Let us introduce the boundary
lines R = B, r = b, and r = rdip. The values of B and b are
chosen such that the scattering wave function �JM (R,r) has
negligible amplitudes in the domain of R � B and r � b.
Specifically, B = 2.7 a.u. and b = 8 a.u. are appropriate in
Ref. [25] and also in the present study. The significance of
r = rdip is discussed later.

In the inner domain (R � B and r � b), the scattering
wave function �JM can be expanded in terms of the R-matrix
eigenfunctions, which are normalized to unity with respect to
the integration over the inner domain. For the details of the
calculation, see Ref. [25]. For low angular momenta J ∼ 0,
the annihilation is important, and its effect can be taken into
account by imposing a boundary condition of a complex-
valued R matrix at a very small distance (R ∼ 10−4 a.u.)
[25], in the same way as developed for the H̄ + H system
by Jonsell et al. [15]. The R-matrix calculation in the inner
domain is the most time-consuming part. The R-matrix data
obtained in Ref. [25] can also be used for the present case.

The outer R � B (and r < b) domain is associated with
the p̄ + H channel. Although this channel is closed at energies
E < D = 0, the scattering wave function can have finite
amplitudes at R � B as easily imagined from the discussion
in the previous section. The presence of this closed channel is
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closely related to the formation of a p̄H resonance state in the
e− + p̄p scattering. Therefore, the contribution of the p̄ + H
channel must be carefully handled in the R > B domain. At
sufficiently large R, the scattering wave function can be given
in the BO separation form of Eq. (3), i.e.,

�JM (R,r) = χ (R; r)YJM (R̂)FJ (R), (15)

where the radial solution FJ (R) satisfies the same equation
as Eq. (5). At R = B, the scattering wave function obtained
by the R-matrix calculation in the inner domain is matched to
Eq. (15). In the case of E < D, the radial solution has a tail,

FJ (R) ∼
R→∞

R−1 exp(−
√

2m|E|R). (16)

In the present calculation, FJ (R) was assumed to have a
starting value given by Eq. (16) at a sufficiently large distance
(e.g., R = 350 a.u. for J = 0), and was inward solved down
to R = B.

At r = b (and R < B), the scattering wave function can be
appropriately matched to the close-coupling expansion form
using the basis set associated with the e− + p̄p channel: i.e.,

�JM (R,r) =
∑
NLl

YJM
Ll (R̂,r̂)Gp̄p

NL(R)f J
NLl(r), (17)

with G
p̄p

NL(R) being the radial Coulomb function of p̄p(N,L),
and

YJM
Ll (r̂,R̂) =

∑
ml

(L,M−ml,lml|JM)YLM−ml
(R̂)Ylml

(r̂),

(18)

where (L,M−ml,lml|JM) is the Clebsch-Gordan coeffi-
cients, and l is the electronic angular momentum quantum
number. For the purpose of calculating the decay width of the
p̄H compound state, the annihilation effect can be disregarded
in the outer r > b domain. This domain corresponds to the
e− + p̄p channel, which is a breakup decay channel of the
p̄H compound state. Therefore, the annihilation occurring in
the r > b domain is the annihilation of p̄p after the breakup
of p̄H, but not the direct annihilation from p̄H. Thus, the
annihilation process at r > b is a matter of no importance in
the study of the p̄H compound state. In the present scattering
calculation including the annihilation effect, the resonance
width corresponds to the one due to the processes of both
electron detachment and direct annihilation from p̄H.

In the e− + p̄p scattering, the sum of the centrifugal
potential l2/(2r2) and the interaction becomes, as r → ∞,

l2

2r2
− 1

r
+ 1

|r − R| − 1

R
−→ l2 + 2R · r̂

2r2
− 1

R
. (19)

Since the p̄p(N,L) energies are degenerate with respect to
L, the presence of the dipole interaction R · r̂/r2 provides
strong coupling among L and l even at very large distances
r . This can cause a significant effect on elastic scattering and,
especially, on the resonance position. In such a case, it is more
convenient to introduce a new channel α, which is defined by
the diagonalization of the operator l2 + 2R · r̂ within the same
N [34,35]:

(l2 + 2R · r̂)φJMN
α (R,r̂) = 
JN

α φJMN
α (R,r̂), (20)

where 
JN
α is the eigenvalue with α = 1,2, . . ., and the

eigenfunction is expanded as

φJMN
α (R,r̂) =

∑
Ll

UJMN
α,Ll YJM

Ll (R̂,r̂)Gp̄p

NL(R). (21)

At sufficiently large r � rdip � b, where Eq. (19) is valid, the
scattering wave function can be expressed as

�JM (R,r) =
∑
Nα

φJMN
α (R,r̂)gJ

Nα(r), (22)

where the radial function gJ
Nα(r) satisfies[

− 1

2r2

d

dr
r2 d

dr
+ 
JN

α

2r2

]
gJ

Nα(r) = εgJ
Nα(r). (23)

Then, expressing gJ
Nα(r) in terms of the incoming and outgoing

solutions of Eq. (23), one can define the scattering S matrix S,
which has the elements SJ

Nα,N ′α′ .
The information on the dynamics in a domain can be fully

expressed in terms of an R matrix given on the boundary of
the domain [31], and one can propagate the R matrix from
a domain to an adjacent or broader domain by imposing
the continuity condition of the scattering wave function on
the boundary [32,33]. For example, by matching �JM (R,r)
obtained in the inner domain (R � B and r � b) to the form
of Eq. (17) at r = b, the R matrix can be propagated from
r = b outward to r = rdip [25]. At r = rdip, the propagated
R matrix in the (N,L,l) representation is transformed into
the eventual one in the (N,α) representation by the unitary
matrix having the elements UJMN

α,Ll . In the present calculation,
rdip = 20 a.u. was chosen. The suitability of this value was
confirmed by carrying out a calculation for rdip = 100 a.u.,
which yielded <0.5% differences in the resonance position
and width. The derivation of the S matrix from the eventual
R matrix, including the effect of the closed channel, is
summarized by Berrington et al. [36].

For the analysis of resonances, Smith [37] introduced the
time-delay matrix Q, which is defined in terms of S by

Q = iS
dS†

dE
= −i

dS

dE
S†. (24)

Igarashi and Shimamura [38] showed that the trace of Q
satisfies the relation to the eigenphase sum δ [39],

TrQ = 2
dδ

dE
, (25)

and is directly expressible, around a resonance energy (E ∼
E0), as

TrQ = �

(E − E0)2 + (�/2)2
+ 2

dδBG

dE
, (26)

where 2dδBG/dE is the background contribution. The expres-
sion of Eq. (26) is appropriate for determining the resonance
energy E0 and the width � by the scattering calculation. For
the calculation of E0 and �, the second term in (26) was further
fitted to

2
dδBG

dE
= C0 + C1E + C2E

2, (27)

where C0, C1, and C2 are constant. For J = 0 and 1, the
scattering calculation was carried out for the two cases
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FIG. 3. (Color online) Traces of the time-delay matrix TrQ in
the R-matrix calculation of e− + p̄p for J = 0 with and without
annihilation as a function of the energy E of p̄ + H. For each
resonance peak, the corresponding vibrational quantum number v

of p̄H is assigned. Vertical bars indicate the vibrational energies in
the molecular treatment.

including and neglecting the annihilation effect. For J = 2,
the annihilation effect was neglected in the calculation.

IV. RESULTS AND DISCUSSION

Figure 3 shows the trace of the time-delay matrix, TrQ,
for J = 0 obtained by the R-matrix calculations of e− + p̄p

with and without the inclusion of annihilation effects. The
results are plotted against the relative energy E of p̄ + H in
the range of −0.2 � E < 0.0 eV below the dissociation limit
D = 0. Several clear peaks recognized in the trace TrQ are
evidently due to resonances, which correspond to the formation
of metastable p̄H compound states. The resonance lying just
under the dissociation limit is the most prominent, and the
resonance profile becomes vaguer as the energy decreases.
The peak position differs only slightly between the two
calculations with and without the inclusion of annihilation
effects; However, the peak height is significantly lowered by
including the annihilation effect. The traces TrQ for J = 1
obtained by the calculations with and without the inclusion
of annihilation are shown in Fig. 4 at energies E = −0.04 ∼
0.0 eV. In contrast to the trace for J = 0, the annihilation
decay is found to always produce very little effect for
J = 1. As J increases, the probability of finding the p̄-p
distance within the range of hadronic interaction (i.e., R < 5 ×
10−5 a.u.) drops steeply. It can be concluded that the annihi-
lation channel is practically negligible for J � 1. The trace
(without annihilation) for J = 2 in the neighborhood of the
dissociation limit (E = −0.015 to 0.0 eV) is displayed in
Fig. 5. At energies just below the dissociation limit, the
appearance feature for J = 2 becomes somewhat different
from that for J = 0 and 1 (see later).

The resonance energies and widths are obtained by fitting
the trace TrQ to the form of Eq. (26) with Eq. (27). The
resonance energies in the R-matrix calculation neglecting
the annihilation effect are shown in Table II for J = 0, 1,

FIG. 4. (Color online) Traces of the time-delay matrix TrQ in
the R-matrix calculation for J = 1 with and without annihilation as a
function of the energy E. For each resonance peak, the corresponding
vibrational quantum number v is assigned. Vertical bars indicate the
vibrational energies in the molecular treatment.

and 2 and are compared with the vibrational energies of p̄H
obtained using the BO potential. Because the difference in
the resonance energy between the R-matrix calculations with
and without the inclusion of annihilation effects is <5%, the
resonance energies are not shown for the R-matrix calculation
with annihilation. As also shown in Figs. 3, 4, and 5, the peak
in TrQ corresponds nicely with a molecular vibrational level
supported by the BO potential, though there is the exception
that the R-matrix calculation shows no peak-like structure
corresponding to v = vmax for J = 0 and 1. The reason for
the latter fact would be that the vibrational energies of these
molecular states are too close to the dissociation limit. Apart
from these v = vmax states, it is expected that the BO picture
can be used for analyzing the resonance in e− + p̄p scattering.

FIG. 5. Traces of the time-delay matrix TrQ in the R-matrix
calculation for J = 2 without annihilation as a function of the energy
E. For each resonance peak, the corresponding vibrational quantum
number v is assigned. Vertical bars indicate the vibrational energies
in the molecular treatment.
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TABLE II. Vibrational energies EJv in the molecular treatment
of p̄H (BO) and resonance energies in the R-matrix calculation of
e− + p̄p without annihilation (RM) for J = 0, 1, and 2.

EJv (eV)

J = 0 J = 1 J = 2

v = 39
BO −4.816 × 10−5 – –
RM – – –
v = 38
BO −1.616 × 10−3 −3.112 × 10−6 –
RM −1.276 × 10−3 – –
v = 37
BO −9.778 × 10−3 −1.331 × 10−3 –
RM −8.558 × 10−3 −1.030 × 10−3 –
v = 36
BO −3.302 × 10−2 −9.133 × 10−3 −8.039 × 10−4

RM −3.023 × 10−2 −8.037 × 10−3 −5.493 × 10−4

v = 35
BO −8.232 × 10−2 −3.195 × 10−2 −7.871 × 10−3

RM −7.753 × 10−2 −2.937 × 10−2 −6.819 × 10−3

v = 34
BO −1.703 × 10−1 −8.081 × 10−2 −2.982 × 10−2

RM −1.652 × 10−1 −7.610 × 10−2 −2.719 × 10−2

The R-matrix results of the resonance width for e− + p̄p

are listed in Table III. The annihilation effect was neglected in
these R-matrix calculations, and hence the resonance width
can be directly compared with the detachment width �det

Jv

obtained by the BO model of Eq. (8). One can see that the
agreement between the two methods is surprisingly good. In
the present system, the imaginary part of the optical potential,
Eq. (7), produces actually a very strong interaction causing

TABLE III. Electron detachment widths �det
Jv in the BO model

(BO) and resonance widths in the R-matrix calculation without
annihilation (RM) for J = 0, 1, and 2.

�det
Jv (eV)

J = 0 J = 1 J = 2

v = 39
BO 8.86 × 10−5 – –
RM – – –
v = 38
BO 1.18 × 10−3 3.46 × 10−5 –
RM 1.05 × 10−3 – –
v = 37
BO 4.47 × 10−3 1.08 × 10−3 –
RM 4.20 × 10−3 1.03 × 10−3 –
v = 36
BO 1.09 × 10−2 4.35 × 10−3 8.84 × 10−4

RM 1.06 × 10−2 4.36 × 10−3 8.23 × 10−4

v = 35
BO 2.13 × 10−2 1.08 × 10−2 4.11 × 10−3

RM 2.11 × 10−2 1.12 × 10−2 4.11 × 10−3

v = 34
BO 3.59 × 10−2 2.12 × 10−2 1.06 × 10−2

RM 3.50 × 10−2 2.27 × 10−2 1.10 × 10−2

TABLE IV. Energy widths �ann
Jv and �tot

Jv = �det
Jv + �ann

Jv in the BO
model (BO) and resonance widths in the R-matrix calculation with
annihilation (RM) for J = 0.

J = 0

�ann
Jv (eV) �tot

Jv (eV)

v = 39
BO 1.18 × 10−5 1.00 × 10−4

RM –
v = 38
BO 1.57 × 10−4 1.34 × 10−3

RM 1.62 × 10−3

v = 37
BO 5.96 × 10−4 5.07 × 10−3

RM 6.37 × 10−3

v = 36
BO 1.46 × 10−3 1.24 × 10−2

RM 1.61 × 10−2

v = 35
BO 2.83 × 10−3 2.41 × 10−2

RM 3.20 × 10−2

v = 34
BO 4.77 × 10−3 4.07 × 10−2

RM 5.11 × 10−2

electron detachment [29]. As shown in Fig. 2, however, the
vibrational wave functions for very high v states have very
low amplitudes in the interaction region (R � Rdet). For this
reason, first-order treatment of Eq. (8) would be satisfactory.
In contrast to the present case, the BO model is not as good
for the calculations of the rearrangement cross section in
H̄ + H [14,17]. In the BO model for H̄ + H, the rearrangement
reaction was calculated using the DW method [10,15,17,21].
Unlike this approach, the present BO model employs
the empirically determined imaginary potential and might be
able to effectively include higher-order contribution in terms
of the DW method. Furthermore, it should be pointed out that
the range Rdet of the imaginary potential is much shorter than
that of the perturbation assumed in the DW method.

In the case of J = 0 and 1, Tables II and III show that the
width �det

Jv for v = vmax is evidently larger than the dissociation
energy |EJ,v=vmax | in the BO model. This is consistent with
the fact that the resonances identified as (J,vmax) = (0,39)
and (1,38) are missing in the e− + p̄p scattering (cf. Figs. 3
and 4). In the case of J = 2, the BO model provides �det

Jv ∼
|EJv| for v = vmax, and it is understandable that the resonance
peak corresponding to v = vmax is marginally observable as
shown in Fig. 5. Since the detachment width increases with
decreasing v, the p̄H compound state is more stable against
electron detachment for higher v, as expected.

If the angular momentum is J = 0, the p̄H
compound state can be significantly influenced
by the annihilation decay. Table IV shows the
annihilation width �ann

J=0,v and the total width �tot
J=0,v =

�det
J=0,v + �ann

J=0,v obtained using the present BO model.
The ratio �ann

J=0,v/�tot
J=0,v ∼ 0.1 suggests that the annihilation

effect is not as striking in the BO model. The resonance width
in the R-matrix calculation including the annihilation process
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is also listed in Table IV. This resonance width is reflected by
both the detachment decay and the annihilation decay, and it
can be compared with �tot

J=0,v in the BO model. Unlike in the
detachment width listed in Table III, there is a clear difference
of about 20% in the total width between the BO model and
the R-matrix calculation. It turns out that the annihilation
effect is more considerable in the R-matrix calculation. In
the calculation of the annihilation width, sufficient accuracy
is required for the wave function at R � 0, as understood
through Eq. (12). Probably, the accurate wave function at
R ∼ 0 could not be obtained by merely solving the simple
equation of Eq. (5). A previous study on p̄ + H collisions
[25] shows that the BO model is applicable to the calculation
of the annihilation probability only if the collision energy is
extremely low, E � 10−7 eV. In view of this fact, the BO
model may become good by some chance if |E| � 10−7 eV
also for the calculation of �ann

J=0,v .
The present study indicates that the resonances in the

scattering are nicely identified as the formation of molecular
vibration. However, since the condition �det

Jv 	 |EJv − EJv±1|
is not satisfied, one cannot conclude that the p̄H compound is
a long-lived molecule which can vibrate many times during its
lifetime. In the study of electron scattering from molecules,
such short-lived resonances were observed experimentally

(e.g., low-energy metastable H−
2 [40] and N−

2 [41] states) and
are described reasonably by the so-called boomerang model
[42–44]. The present p̄H compound state has a resonance
property very similar to that of H−

2 and N−
2 .

V. CONCLUSION

In the scattering calculation using the R-matrix method, the
lifetimes τJv (=1/�tot

Jv or 1/�det
Jv ) of the resonance compound

p̄H formed at energies not far below the dissociation limit
are τJv = 4.07 × 10−13 s for the (J,v) = (0,38) state, τJv =
6.40 × 10−13 s for the (1,37) state, and τJv = 7.99 × 10−13

s for the (2,36) state. The annihilation width is ∼50% of
the detachment width for the angular momentum state J = 0
and negligible for J � 1. The BO model, in which decay
processes are described by the optical potentials, is very
useful for estimating the electron detachment width but not
good for the annihilation width. Although the metastable p̄H
compound can be related to the vibrational bound motion (v)
supported by the BO potential, it cannot be regarded as a
long-lived molecule. With decreasing v, the compound state
becomes more unstable. Some metastable compound states to
be formed at an energy just below the dissociation limit are
missing because the dissociation energy is smaller than the
decay width.
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Phys. Rev. A 73, 022701 (2006).

032514-7

http://dx.doi.org/10.1103/PhysRevLett.89.233401
http://dx.doi.org/10.1103/PhysRevLett.89.233401
http://dx.doi.org/10.1103/PhysRevLett.89.233401
http://dx.doi.org/10.1103/PhysRevLett.89.233401
http://dx.doi.org/10.1038/nature01096
http://dx.doi.org/10.1038/nature01096
http://dx.doi.org/10.1038/nature01096
http://dx.doi.org/10.1038/nature01096
http://dx.doi.org/10.1088/0953-4075/41/1/011001
http://dx.doi.org/10.1088/0953-4075/41/1/011001
http://dx.doi.org/10.1088/0953-4075/41/1/011001
http://dx.doi.org/10.1088/0953-4075/41/1/011001
http://dx.doi.org/10.1103/PhysRevLett.100.113001
http://dx.doi.org/10.1103/PhysRevLett.100.113001
http://dx.doi.org/10.1103/PhysRevLett.100.113001
http://dx.doi.org/10.1103/PhysRevLett.100.113001
http://dx.doi.org/10.1038/nature10942
http://dx.doi.org/10.1038/nature10942
http://dx.doi.org/10.1038/nature10942
http://dx.doi.org/10.1038/nature10942
http://dx.doi.org/10.1103/PhysRevLett.108.113002
http://dx.doi.org/10.1103/PhysRevLett.108.113002
http://dx.doi.org/10.1103/PhysRevLett.108.113002
http://dx.doi.org/10.1103/PhysRevLett.108.113002
http://dx.doi.org/10.1103/PhysRevLett.28.1227
http://dx.doi.org/10.1103/PhysRevLett.28.1227
http://dx.doi.org/10.1103/PhysRevLett.28.1227
http://dx.doi.org/10.1103/PhysRevLett.28.1227
http://dx.doi.org/10.1103/PhysRevA.11.1792
http://dx.doi.org/10.1103/PhysRevA.11.1792
http://dx.doi.org/10.1103/PhysRevA.11.1792
http://dx.doi.org/10.1103/PhysRevA.11.1792
http://dx.doi.org/10.1103/PhysRevA.63.052722
http://dx.doi.org/10.1103/PhysRevA.63.052722
http://dx.doi.org/10.1103/PhysRevA.63.052722
http://dx.doi.org/10.1103/PhysRevA.63.052722
http://dx.doi.org/10.1103/PhysRevA.64.052712
http://dx.doi.org/10.1103/PhysRevA.64.052712
http://dx.doi.org/10.1103/PhysRevA.64.052712
http://dx.doi.org/10.1103/PhysRevA.64.052712
http://dx.doi.org/10.1016/S0375-9474(01)00897-1
http://dx.doi.org/10.1016/S0375-9474(01)00897-1
http://dx.doi.org/10.1016/S0375-9474(01)00897-1
http://dx.doi.org/10.1016/S0375-9474(01)00897-1
http://dx.doi.org/10.1088/0953-4075/35/13/101
http://dx.doi.org/10.1088/0953-4075/35/13/101
http://dx.doi.org/10.1088/0953-4075/35/13/101
http://dx.doi.org/10.1088/0953-4075/35/13/101
http://dx.doi.org/10.1088/0953-4075/35/19/103
http://dx.doi.org/10.1088/0953-4075/35/19/103
http://dx.doi.org/10.1088/0953-4075/35/19/103
http://dx.doi.org/10.1088/0953-4075/35/19/103
http://dx.doi.org/10.1088/0953-4075/35/22/103
http://dx.doi.org/10.1088/0953-4075/35/22/103
http://dx.doi.org/10.1088/0953-4075/35/22/103
http://dx.doi.org/10.1088/0953-4075/35/22/103
http://dx.doi.org/10.1088/0953-4075/37/6/005
http://dx.doi.org/10.1088/0953-4075/37/6/005
http://dx.doi.org/10.1088/0953-4075/37/6/005
http://dx.doi.org/10.1088/0953-4075/37/6/005
http://dx.doi.org/10.1088/0953-4075/37/22/007
http://dx.doi.org/10.1088/0953-4075/37/22/007
http://dx.doi.org/10.1088/0953-4075/37/22/007
http://dx.doi.org/10.1088/0953-4075/37/22/007
http://dx.doi.org/10.1103/PhysRevA.69.042715
http://dx.doi.org/10.1103/PhysRevA.69.042715
http://dx.doi.org/10.1103/PhysRevA.69.042715
http://dx.doi.org/10.1103/PhysRevA.69.042715
http://dx.doi.org/10.1088/0953-4075/38/3/L01
http://dx.doi.org/10.1088/0953-4075/38/3/L01
http://dx.doi.org/10.1088/0953-4075/38/3/L01
http://dx.doi.org/10.1088/0953-4075/38/3/L01
http://dx.doi.org/10.1103/PhysRevA.72.022513
http://dx.doi.org/10.1103/PhysRevA.72.022513
http://dx.doi.org/10.1103/PhysRevA.72.022513
http://dx.doi.org/10.1103/PhysRevA.72.022513
http://dx.doi.org/10.1103/PhysRevA.73.052503
http://dx.doi.org/10.1103/PhysRevA.73.052503
http://dx.doi.org/10.1103/PhysRevA.73.052503
http://dx.doi.org/10.1103/PhysRevA.73.052503
http://dx.doi.org/10.1088/0953-4075/41/15/155202
http://dx.doi.org/10.1088/0953-4075/41/15/155202
http://dx.doi.org/10.1088/0953-4075/41/15/155202
http://dx.doi.org/10.1088/0953-4075/41/15/155202
http://dx.doi.org/10.1103/PhysRev.72.399
http://dx.doi.org/10.1103/PhysRev.72.399
http://dx.doi.org/10.1103/PhysRev.72.399
http://dx.doi.org/10.1103/PhysRev.72.399
http://dx.doi.org/10.1119/1.10767
http://dx.doi.org/10.1119/1.10767
http://dx.doi.org/10.1119/1.10767
http://dx.doi.org/10.1119/1.10767
http://dx.doi.org/10.1103/PhysRevA.65.012706
http://dx.doi.org/10.1103/PhysRevA.65.012706
http://dx.doi.org/10.1103/PhysRevA.65.012706
http://dx.doi.org/10.1103/PhysRevA.65.012706
http://dx.doi.org/10.1103/PhysRevLett.97.243202
http://dx.doi.org/10.1103/PhysRevLett.97.243202
http://dx.doi.org/10.1103/PhysRevLett.97.243202
http://dx.doi.org/10.1103/PhysRevLett.97.243202
http://dx.doi.org/10.1103/PhysRevA.88.012507
http://dx.doi.org/10.1103/PhysRevA.88.012507
http://dx.doi.org/10.1103/PhysRevA.88.012507
http://dx.doi.org/10.1103/PhysRevA.88.012507
http://dx.doi.org/10.1088/0953-4075/47/2/025201
http://dx.doi.org/10.1088/0953-4075/47/2/025201
http://dx.doi.org/10.1088/0953-4075/47/2/025201
http://dx.doi.org/10.1088/0953-4075/47/2/025201
http://dx.doi.org/10.1016/0022-2852(60)90065-5
http://dx.doi.org/10.1016/0022-2852(60)90065-5
http://dx.doi.org/10.1016/0022-2852(60)90065-5
http://dx.doi.org/10.1016/0022-2852(60)90065-5
http://dx.doi.org/10.1103/PhysRev.174.81
http://dx.doi.org/10.1103/PhysRev.174.81
http://dx.doi.org/10.1103/PhysRev.174.81
http://dx.doi.org/10.1103/PhysRev.174.81
http://dx.doi.org/10.1103/PhysRevA.66.032506
http://dx.doi.org/10.1103/PhysRevA.66.032506
http://dx.doi.org/10.1103/PhysRevA.66.032506
http://dx.doi.org/10.1103/PhysRevA.66.032506
http://dx.doi.org/10.1016/S0370-1573(02)00144-8
http://dx.doi.org/10.1016/S0370-1573(02)00144-8
http://dx.doi.org/10.1016/S0370-1573(02)00144-8
http://dx.doi.org/10.1016/S0370-1573(02)00144-8
http://dx.doi.org/10.1016/S0065-2199(08)60030-5
http://dx.doi.org/10.1016/S0065-2199(08)60030-5
http://dx.doi.org/10.1016/S0065-2199(08)60030-5
http://dx.doi.org/10.1016/S0065-2199(08)60030-5
http://dx.doi.org/10.1063/1.432836
http://dx.doi.org/10.1063/1.432836
http://dx.doi.org/10.1063/1.432836
http://dx.doi.org/10.1063/1.432836
http://dx.doi.org/10.1088/0953-4075/23/18/008
http://dx.doi.org/10.1088/0953-4075/23/18/008
http://dx.doi.org/10.1088/0953-4075/23/18/008
http://dx.doi.org/10.1088/0953-4075/23/18/008
http://dx.doi.org/10.1088/0370-1328/77/1/322
http://dx.doi.org/10.1088/0370-1328/77/1/322
http://dx.doi.org/10.1088/0370-1328/77/1/322
http://dx.doi.org/10.1088/0370-1328/77/1/322
http://dx.doi.org/10.1103/PhysRevA.40.4863
http://dx.doi.org/10.1103/PhysRevA.40.4863
http://dx.doi.org/10.1103/PhysRevA.40.4863
http://dx.doi.org/10.1103/PhysRevA.40.4863
http://dx.doi.org/10.1088/0022-3700/20/23/027
http://dx.doi.org/10.1088/0022-3700/20/23/027
http://dx.doi.org/10.1088/0022-3700/20/23/027
http://dx.doi.org/10.1088/0022-3700/20/23/027
http://dx.doi.org/10.1103/PhysRev.118.349
http://dx.doi.org/10.1103/PhysRev.118.349
http://dx.doi.org/10.1103/PhysRev.118.349
http://dx.doi.org/10.1103/PhysRev.118.349
http://dx.doi.org/10.1103/PhysRevA.70.012706
http://dx.doi.org/10.1103/PhysRevA.70.012706
http://dx.doi.org/10.1103/PhysRevA.70.012706
http://dx.doi.org/10.1103/PhysRevA.70.012706
http://dx.doi.org/10.1103/PhysRevA.19.920
http://dx.doi.org/10.1103/PhysRevA.19.920
http://dx.doi.org/10.1103/PhysRevA.19.920
http://dx.doi.org/10.1103/PhysRevA.19.920
http://dx.doi.org/10.1088/0022-3700/18/13/009
http://dx.doi.org/10.1088/0022-3700/18/13/009
http://dx.doi.org/10.1088/0022-3700/18/13/009
http://dx.doi.org/10.1088/0022-3700/18/13/009
http://dx.doi.org/10.1103/PhysRev.125.229
http://dx.doi.org/10.1103/PhysRev.125.229
http://dx.doi.org/10.1103/PhysRev.125.229
http://dx.doi.org/10.1103/PhysRev.125.229
http://dx.doi.org/10.1088/0022-3700/1/4/304
http://dx.doi.org/10.1088/0022-3700/1/4/304
http://dx.doi.org/10.1088/0022-3700/1/4/304
http://dx.doi.org/10.1088/0022-3700/1/4/304
http://dx.doi.org/10.1103/PhysRevA.20.194
http://dx.doi.org/10.1103/PhysRevA.20.194
http://dx.doi.org/10.1103/PhysRevA.20.194
http://dx.doi.org/10.1103/PhysRevA.20.194
http://dx.doi.org/10.1103/PhysRevA.73.022701
http://dx.doi.org/10.1103/PhysRevA.73.022701
http://dx.doi.org/10.1103/PhysRevA.73.022701
http://dx.doi.org/10.1103/PhysRevA.73.022701



