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Hélène Antaya, Yongxi Zhou, and Matthias Ernzerhof,*
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Various widely used approaches for the exchange-correlation energy of Kohn-Sham theory, such as the
generalized gradient approximation and hybrid methods, suffer from the one-electron self-interaction error. This
error manifests itself in one-electron or two-electron spin-unpolarized systems. We propose new approximations to
the exchange energy that are exact for the mentioned problems. Starting from the weighted density approximation
(WDA), we introduce several weighting factors (that we refer to as exchange factors) which are designed to
reproduce various properties of the exact exchange hole. Furthermore, a new exact condition for the exchange
factor is presented that concerns the asymptotic behavior of the exchange hole as one electron coordinate moves
out to infinity. Observance of this and other conditions results in exchange functionals that improve upon the
WDA.
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I. INTRODUCTION

In Kohn-Sham (KS) density functional theory [1–5], the
difficult-to-account-for components of the ground-state energy
are lumped into the exchange-correlation term EXC. Over the
years numerous approximations to EXC have been developed,
the earliest one being the local density approximation (LDA)
proposed by Kohn and Sham [1]. Another more sophisticated
type of representation of EXC is the generalized gradient
approximation (GGA) [3–8]. It gives useful results for proper-
ties such as geometries, vibrational frequencies, and binding
energies [3] that can be further improved if hybrids, i.e., GGAs
with fractional inclusion of exact exchange, are employed
[9–12]. These local or semilocal functionals, or approxima-
tions based on them, are plagued by the self-interaction error.
The self-interaction error leads to undesired consequences in
the calculation of response properties, excitations energies,
electron distributions, etc. More recent methods of increased
complexity that also suffer from the self-interaction error,
albeit to a lesser extent, are meta-GGAs (e.g., [13,14]) and
double-hybrids (for a recent review see [15]).

A promising avenue to address the self-interaction problem
is to turn to completely nonlocal density functionals and
to use exact exchange augmented by a suitable correlation
functional. This is a route that is presently pursued by
various groups [16,17] including our own [18,19]. Another
successful cure [20] for the self-interaction problem is the
range separation of the Coulomb repulsion combined with the
construction of separate hybrids for the resulting short- and
long-range contributions.

In the present work, we also address the one-electron
self-interaction problem. We focus on the exchange energy
of electrons, which is given by

EX =
∫

d3rρ(r)ε(r)

=
∫

d3rd3u
ρ(r)ρX(r,u)

2u
, (1)

*Matthias.Ernzerhof@UMontreal.ca

where r is the position of the reference electron and u = r′ − r
is the electron-electron separation, with r′ as the coordinate
of the second electron. ρX(r,u) is the exchange hole as, for
instance, discussed in detail in [21]. For later reference, the
exchange energy per particle

ε(r) =
∫

d3u
ρX(r,u)

2u
(2)

is introduced. Even though in the present work we focus
on exchange, the self-interaction error in an approximation
to the correlation functional can be eliminated using ideas
very similar to the ones described here for exchange. We
return to this point in the conclusions. To approximate EX,
we employ completely nonlocal schemes that extend on the
weighted density approximation (WDA) [22–27]. In the WDA,
the electron density at any position in space contributes to ε(r)
at the reference point r. This approximation starts from an
explicit ansatz for the exchange hole,

ρX(r,u) = fX(r,u)ρ(r + u). (3)

Deviating somewhat from the established notation in the
WDA, we use the exchange factor fX(r,u) in this expression.
Usually in the WDA this factor is closely related to the
pair correlation function g of the homogeneous electron gas
with one subtracted out (i.e., g − 1). Since we considerably
modify this choice, we introduce the notion exchange factor.
To emphasize the difference between Eq. (3) and local and
semilocal approximations to the exchange hole, we note
that in local and semilocal approximations the right-hand
side would depend not on ρ(r + u), but on ρ(r) and (ρ(r),
∇ρ(r)), respectively. An important property of the WDA is
that for a properly designed fX(r,u), one-electron problems
and closed-shell two-electron problems are dealt with exactly,
thus the corresponding self-interaction error is eliminated at
this level.

In very recent work on the WDA [28,29] it has been shown
that the imposition of suitable conditions, such as symmetry
with respect to the exchange of r and r′ in ρ(r)ρX(r,r′ −
r), can improve upon the original WDA. The complexity of
implementing this condition is considerable, however.

In the present work we design various versions of fX(r,u),
ensuring that all of them are exact for one-electron systems
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and two-electron spin-unpolarized systems, while also trying
to approach the performance of GGAs for truly multielectron
problems. To move towards this goal, we impose varying
conditions on the approximate exchange hole that have been
identified previously as being important. In more detail, we
use an exchange hole model for the homogeneous electron gas
that was developed in [30] and [31] as a starting point for the
construction of fX(r,u) in Eq. (3). We design fX(r,u) such that
several constraints are satisfied that have not been considered
in the original WDA or subsequent modifications thereof. In
particular, we consider the curvature of the exchange hole at
its origin (u = 0) [32] and ensure that our model reproduces
its exact value. Furthermore, we also demonstrate that the
exchange factor does not vary in regions of zero density and
we enforce this condition in the design of fX(r,u).

The formal developments that are presented in Sec. II
are implemented in the Gaussian program system [33] as
described in Sec. III and put to the test through calculations of
total exchange energies and exchange-energy contributions to
atomization energies of molecules (Sec. IV).

II. THE EXCHANGE-FACTOR MODEL

The considerations in this section are based on the
assumption that the system is spin unpolarized. For spin-
polarized systems, the conventional spin-scaling relations (see,
e.g., [21]) are employed to convert the formulas derived here
to their spin-polarized counterparts. As described in Sec. I, we
start from the exchange-factor ansatz, Eq. (3), for the exchange
hole ρX(r,u). The choice for fX(r,u) that is equivalent to
the WDA is to equate it to the function J (y) as defined by
Ernzerhof and Perdew [30],

J (y) = − A

y2

1

1 + (4/9)Ay2

+
(

A

y2
+ B + Cy2 + Ey4

)
e−Dy2

, (4)

where y = kF u and kF = (3π2ρ)1/3. J (y) is a nonoscillatory
version of the scaled LDA exchange hole, i.e.,

ρLDAnosc
X (r,u) = J (kF u)ρ(r). (5)

J (y) is designed to reproduce the physically relevant features
of the exact LDA exchange hole. The numerical values of the
parameters in this model are derived in Ref. [21]. Employing
J (y) in the exchange-factor ansatz results in

ρX(r,u) = J (kF u)ρ(r + u). (6)

This expression for ρX(r,u) does not respect the important
normalization condition:

Condition I:
∫

d3uρX(r,u) = −1. (7)

In the WDA, this problem is remedied by replacing kF with
an effective Fermi vector keff

F that is determined such that
the normalization condition is restored. The most important
feature of the WDA is that it cures a serious deficiency of
local and semilocal approximations. In the LDA and GGA the
exchange hole is centered around the reference point at r. This
means that a reference electron which is very far from the

density of a finite system will have an exchange hole centered
around itself, away from the actual density where it should be.
The WDA remedies this shortcoming since, by construction,
the exchange hole is a hole in the density of the system, i.e.,
the hole cannot be deeper than −1/2ρ(r + u), or equivalently,

Condition II: − ρX(r,u)

ρ(r + u)
� 1

2
. (8)

This condition, violated by the LDA and GGA, ensures
that the WDA becomes exact for one-electron systems and
two-electron, closed-shell systems. For instance, in two-
electron spin-unpolarized systems the only way to satisfy the
normalization condition is to have fX(r,u) = −1/2, which
results in the exact expression ρX(r,u) = − 1

2ρ(r + u).
To further improve upon the original WDA, we first define

the angle average of the electron density ρ(r + u) over all
possible orientations of u:

ρ(r,u) =
∫

d�u

4π
ρ(r,r + u). (9)

For the evaluation of ε(r), only the spherically averaged
exchange hole ρX(r,u) [30], defined by

ρX(r,u) =
∫

d�u

4π
ρX(r,r + u), (10)

is needed. For simplicity, all the exchange factors that we
consider here are independent of the orientation of u; they
depend only on u = |u|. Our final exchange-factor ansatz for
the spherically averaged exchange hole is, thus,

ρX(r,u) = fX(r,u)ρ(r,u), (11)

where the design of fX(r,u) is, of course, the crucial step.
We base our strategy on exact conditions, avoiding fits to
experimental data. As in the case of the WDA, we impose
normalization (condition I). Another constraint that the WDA
satisfies and that we retain is the on-top value condition,

Condition III: ρX(r,u = 0) = − 1
2ρ(r). (12)

Obviously, Eq. (12) is satisfied if fX(r,u = 0) = − 1
2 , which

is the case for all versions of fX(r,u) considered here.
A constraint that we state here for the first time and

include subsequently in our approximation is that for finite
systems fX(r,u) is constant in empty space. If we consider the
asymptotic behavior of the KS wave function, we find [34]

lim
|r1|→∞

�KS ∼
√

ρ(r1)

4N
α(1)�N−1

KS −
√

ρ(r1)

4N
β(1)�N−1

KS ,

(13)

where �N−1
KS is the Slater determinant for N − 1 electrons,

constructed with the KS orbitals of the N -electron system. α

and β are the spin functions. With Eq. (13) it is easy to verify
that the KS pair density PKS(r,r′) satisfies

lim
|r|→∞

PKS(r,r′) = 1/2ρ(r)ρN−1(r′). (14)

Using PKS(r,r′) = 1/2ρ(r)ρ(r′) + 1/2ρ(r)ρX(r,r′) it follows
that

Condition IV: lim
|r|→∞

fX(r,u) = −1/2. (15)
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This indicates that fX(r,u) does not vary but remains constant
at −1/2 for large values of |r| in comparison to u. To include
this condition, we replace kF u with a function μ(u):

fX(r,u) = J (μ(u)). (16)

Suitable versions of μ(u) are constructed which ensure that
we recover the LDA in the homogeneous electron gas limit,

Condition V: 4π

∫
u2du

fX(r,u)ρ(r,u)

2u

= εLDA[ρ] for ρ(r) = ρ. (17)

Since in the homogeneous limit, the proper variable of J (y)
is y = kF u = (3π2ρ)1/3u, a possible replacement of this vari-
able in inhomogeneous systems satisfies dμ1 = kρ1/3(r,u)du.
Integration leads to

μ1(u) = k

∫ u

0
dyρ

1
3 (r,y), (18)

where k, here as in the other expressions for μ, is determined
such that the normalization condition is satisfied. If the electron
density ρ(r,u) vanishes, the infinitesimal change of μ1(u) upon
variation of u is 0, i.e., dμ1 = 0 for ρ(r,u) = 0. This means

that fX(r,u) does not vary in empty space. Another appropriate
expression for μ(u) is

μ2(u) = k

(
4π

∫ u

0
dyy2ρ(r,y)

) 1
3

. (19)

Apparently, μ2(u) is proportional to the number of electrons
inside a sphere of radius u around the reference electron.
This also implies that a certain value of the electron-electron
distance, represented by μ2(u), cannot be exceeded in a finite
system [the same is true for μ1(u)]. Other than μ1(u) and
μ2(u), there are infinitely more substitution functions that
fulfill the same constraints as μ1(u) and μ2(u). In Sec. IV,
we present an additional one, μ3(u), which is designed to
improve the numerical results obtained with μ1(u) and μ2(u).

To further expand the exchange-factor model, conditions
that have been identified as important in the past can be taken
into account. In the construction of approximate exchange
holes often the curvature of the exchange hole at the origin
(u = 0) is the focus of attention. Either it is ensured that this
curvature is accurately approximated (e.g., in the Ernzerhof-
Perdew exchange hole of Ref. [30]) or the exact curvature
is explicitly imposed as an additional condition [13,32]. In a
spin-unpolarized system, the curvature of the exchange hole is
given by

Condition VI: ρ
(2)
X (r) = d2ρX(r,u)

du2

∣∣∣∣
u=0

= 1

6

(
−∇2ρ(r) + 4

[
τ (r) − |∇ρ(r)|2

8ρ(r)

])
. (20)

Here τ (r) = 1
2

∑N
i ∇ϕi(r)∇ϕi(r) is the positive, semidefinite

kinetic energy density. Through variation of the constant C

in the ansatz for J (y) in Eq. (4) the exact curvature can be
imposed, while at the same time the normalization condition
is enforced through variation of the parameter k. This leads
to coupled equations that are solved through an iterative
procedure. If the value of C required to satisfy the curvature
condition deviates too much from the LDA value of C, no
solution for k can be obtained. To avoid this problem, a smooth
cutoff function is used for the curvature that limits the range
of C values. In detail, the exact curvature ρ

(2)
X (r) is replaced

by its LDA value ρ
LDA(2)
X (r) plus a correction term,

ρ
(2)
X (r) ≈ ρ

LDA(2)
X (r) + γ (ρ(2)

X (r) − ρ
LDA(2)
X (r)), (21)

where the damping function γ is given by

γ (x) = x

1 + δ|x| . (22)

The value of δ = 12.95077
k2
F ρ

is the lowest value for which solutions
for the parameter k can still be found. Clearly for small
deviations of the exact curvature from the LDA value, the
exact curvature is reproduced by our model hole since in this
case γ (x) = x.

A further condition satisfied by the exact EX of a finite
system is that the corresponding asymptotic exchange potential
vX(r) exhibits a Coulomb behavior,

Condition VII: vX(r) = δEX[ρ]

δρ(r)
|r|→∞∼ −1

r
. (23)

As has been pointed out previously (see, e.g., [28]), in
the conventional WDA a Coulombic asymptotic behavior is
obtained, albeit with the wrong prefactor of 1/2. To examine
the asymptotic behavior of vX(r) for our approximations, we
start from

vX(r′) = δ

δρ(r′)
4π

∫
u2dud3r

ρ(r)fX(r,u)ρ(r,u)

2u

= δ

δρ(r′)

∫
d3ud3r

ρ(r)fX(r,u)ρ(r + u)

2u

r ′→∞∼
∫

d3ud3r

[
δ

δρ(r′)ρ(r)
]
fX(r,u)ρ(r + u)

2u

+
∫

d3ud3r
ρ(r)fX(r,u)

[
δ

δρ(r′)ρ(r + u)
]

2u
. (24)

The term involving the derivative of fX(r,u) with respect to the
density vanishes for r ′ → ∞. The first term on the right-hand
side of Eq. (24) simplifies to∫

d3ud3r

[
δ

δρ(r′)ρ(r)
]
fX(r,u)ρ(r + u)

2u

=
∫

d3u
ρ(r′ + u)fX(r′,u)

2u

r ′→∞∼ 1

2r ′

∫
d3uρ(r′ + u)fX(r′,u)

= − 1

2r ′ . (25)
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For the second term we find

∫
d3rd3u

ρ(r)fX(r,u)
[

δ
δρ(r′)ρ(r + u)

]
2u

=
∫

d3rd3u
ρ(r)fX(r,u)δ(r′ − (r + u))

2u

r ′→∞∼ 1

2r ′

∫
d3rρ(r)fX(r,r ′). (26)

While there is no simple answer to the question of what
the value of limr ′→∞

∫
d3rρ(r)fX(r,r ′) is, this quantity is

in general nonzero for a nontrivial choice of μ(u), such as
μ1(u) and μ2(u). If μ(u) = keff

F u, i.e., for the conventional
version of the WDA, this term vanishes since in this case
fX(r,u) = 0 for u → ∞. In total, we obtain a vX(r) that
behaves as −const./r with const. ∈ (0.5,1]. This means that
we improve upon the vX(r) of the conventional WDA, for
which vX(r)

r→∞∼ −1/(2r). This is an indication that the
use of a function μ(u) has a physical significance beyond
the enforcement of condition IV. In principle, by variation
of the coefficient E in Eq. (4) or by other more radical
modifications of J (y), we should be able to design fX(r,u)
such that lim|r′|→∞

∫
d3rρ(r)fX(r,r ′) = −1, resulting in the

correct asymptotic behavior of vX.

III. IMPLEMENTATION OF THE
EXCHANGE-FACTOR MODEL

To illustrate the proposed approximations, we implement
the exchange-factor model in the Gaussian03 [33] program
system. All our approximations are purposefully constructed in
terms of spherically averaged densities ρ(r,u). As we explain
now, in a program based on Gaussian basis functions, the
spherical average can be done analytically. This way, the
angular variables are eliminated and the integration remaining
in the computation of ε(r) is one-dimensional. In terms of
basis functions, the electron density of the molecular orbital i

at point r is expressed as

ρi(r) =
∑
αβ

CαiCβi

∑
pq

DpαDqβχp(r)χq(r). (27)

In this equation, Dpα denotes a contraction coefficient, while
Cαi is an expansion coefficient for a molecular orbital. The
total density is then obtained by summing over all occupied
molecular orbitals. A primitive Gaussian centered at an atom
at position A is given by

χp(r − A) = Np(x − Ax)l(y − Ay)m(z − Az)
ne−γp |r−A|2 ,

(28)

where Np is a normalization constant. The parameters l, m,
and n also depend on p. If we define two new quantities,

rA = r − A = (x − Ax)x̂ + (y − Ay)ŷ + (z − Az)ẑ (29)

and

SA = SAx
Ŝx + SAy

Ŝy + SAz
Ŝz, (30)

we can rewrite the primitive Gaussians as

χp(rA) = Np

∂l

∂Sl
Ax

∂m

∂Sm
Ay

∂n

∂Sn
Az

e−γpr2
A+SA·rA

∣∣∣∣
SA=0

. (31)

The spherically averaged molecular orbital density is given by

ρi(r,u) =
∫

d�u

4π
ρi(r + u)

=
∑
αβpq

CαiCβiDpαDqβ

∫
d�u

4π
χp(r + u − A)

·χq(r + u − B), (32)

where B is another index for the atomic centers. Using the
expression in Eq. (31) and defining the vector

w = SA + SB − 2γprA − 2γqrB, (33)

we can formulate the main equation of our implementation of
the spherical average,∫

d�u

4π
χp(r + u − A) · χq(r + u − B)

=
(

∂l

∂Sl
Ax

∂m

∂Sm
Ay

∂n

∂Sn
Az

∂ l̄

∂Sl̄
Bx

∂m̄

∂Sm̄
By

∂n̄

∂Sn̄
Bz

G(SA,SB )

)
SA=SB=0

,

(34)

where

G(SA,SB) = NpNqe
−γp(r2

A+u2)+SA·rA · e−γq (r2
B+u2)+SB ·rB

· 1

2wu
(ewu − e−wu). (35)

With this expression, formulas are generated and implemented
for every combination of l, m, n, l̄, m̄, n̄. Once the spherically
averaged density is available, the integrations over |u|, required
to enforce the normalization condition and to calculate ε(r), are
performed numerically. The integrations over d3r , required to
obtain EX, are done using the already implemented numerical
integration schemes of the Gaussian program system [33].

To obtain ε(r) the exchange hole of the factorization ansatz
is normalized through variation of the constant k and, if
required, the coefficient C in Eq. (4) is adjusted such that
the hole reproduces the exact curvature. The latter step then
results in the violation of the normalization condition and the
next cycle of an iterative procedure is initiated. In this iterative
procedure, the value of the normalization constant k is obtained
through a combination of Newton-Raphson and bisection
algorithms. Even though the computational effort is higher
compared to conventional local and semilocal approximations,
efficient implementations of the exchange-factor approach can
be obtained, since the calculation of ε(r) on the spatial grid
points can be parallelized on modern computers containing
tens of computational cores.

IV. APPLICATIONS OF THE
EXCHANGE-FACTOR MODEL

In this section we present exchange energies of atoms
and molecules that are calculated with the Gaussian program
system [33]. The geometries of the molecules are determined
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TABLE I. Absolute values of exchange energies (in Hartree) of atoms and molecules. Results obtained with the various substitution functions
[μ0(u) = ku (equivalent to the WDA), μ1(u) = k

∫ u

0 dyρ
1
3 (r,y), μ2(u) = k[4π

∫ u

0 dyy2ρ(r,y)]
1
3 , and μ3(u) = k[4π

∫ u

0 dyy2ρ1/2(r,y)]
1
3 ] are

listed, as well as the corresponding approximations which also satisfy the curvature condition (indicated by C). MAE, mean absolute error.
MAEs of certain subsets of systems as well as total MAEs are reported.

Atom WDA WDAC μ1 μ1C μ2 μ2C μ3 μ3C Exact LSD PBE

H 0.308 0.308 0.308 0.308 0.308 0.308 0.308 0.308 0.308 0.265 0.303
He 1.017 1.017 1.017 1.017 1.017 1.017 1.017 1.017 1.017 0.878 1.008
Li 1.782 1.789 1.711 1.726 1.640 1.655 1.727 1.740 1.773 1.533 1.752
Be 2.699 2.718 2.509 2.547 2.316 2.355 2.549 2.584 2.664 2.313 2.636
B 3.839 3.863 3.589 3.638 3.313 3.365 3.637 3.682 3.755 3.290 3.724
C 5.216 5.247 4.914 4.971 4.570 4.634 4.966 5.020 5.052 4.473 5.017
N 6.844 6.882 6.491 6.559 6.086 6.162 6.544 6.608 6.574 5.879 6.531
O 8.570 8.613 8.147 8.223 7.621 7.713 8.202 8.275 8.173 7.356 8.142
F 10.547 10.596 10.064 10.147 9.452 9.556 10.115 10.196 9.988 9.054 9.967
Ne 12.787 12.843 12.247 12.333 11.560 11.674 12.290 12.381 12.042 10.991 12.023
Na 14.859 14.920 14.245 14.344 13.445 13.573 14.282 14.381 13.979 12.764 13.928
P 24.142 24.229 23.188 23.318 21.920 22.091 23.180 23.312 22.612 20.783 22.491
Cl 29.387 29.488 28.221 28.378 26.683 26.871 28.182 28.328 27.484 25.341 27.333
MAE 0.506 0.546 0.192 0.219 0.422 0.342 0.182 0.219 0.000 0.808 0.043
BH 4.176 4.205 3.902 3.957 3.586 3.648 3.960 4.010 4.112 3.612 4.081
CH 5.555 5.589 5.228 5.291 4.832 4.905 5.289 5.347 5.394 4.789 5.366
NH 7.186 7.226 6.807 6.878 6.339 6.423 6.869 6.936 6.900 6.189 6.874
OH 8.962 9.007 8.529 8.606 7.975 8.070 8.587 8.662 8.517 7.704 8.510
FH 11.000 11.051 10.512 10.597 9.884 9.989 10.565 10.648 10.367 9.454 10.375
Na2 29.728 29.849 28.311 28.514 26.011 26.297 28.503 28.702 27.944 25.526 27.856
MAE 0.562 0.615 0.166 0.195 0.768 0.650 0.186 0.228 0.000 0.993 0.031
N2 13.718 13.789 12.889 13.023 11.880 12.043 13.052 13.176 13.084 11.859 13.118
NO 15.444 15.519 14.540 14.682 13.403 13.579 14.707 14.840 14.668 13.337 14.721
CO 13.920 13.992 13.090 13.226 12.079 12.243 13.250 13.377 13.278 12.033 13.303
F2 21.099 21.193 19.974 20.141 18.418 18.638 20.143 20.304 19.869 18.171 19.948
P2 48.297 48.468 46.140 46.405 42.652 43.026 46.270 46.533 45.145 41.598 44.973
Cl2 58.809 59.009 56.211 56.509 52.007 52.422 56.289 56.583 54.967 50.767 54.708
MAE 1.712 1.826 0.476 0.533 1.762 1.510 0.470 0.633 0.000 2.208 0.104

Total MAE 0.809 0.870 0.254 0.288 0.827 0.696 0.252 0.321 0.000 1.188 0.055

with the PBE [8] exchange-correlation functional using the
6–311 + G(2d,p) basis set [33]. The resulting converged
density matrices are employed to calculate the exchange
energies within the various approximations as well as the
exact exchange energy. The exchange-energy contribution
to the atomization energy, i.e., �EX = Emolecule

X − Eatoms
X ,

is also determined. The calculations reported are done spin
unrestricted using spin-density functionals.

In addition to the conditions satisfied by the LSD, the
WDA ensures that the exchange hole is a hole in the density
(condition II). This constraint leads to results for total exchange
energies of atoms that are considerably improved compared to
the LSD (see Table I). On the order of 37% of the error in the
LSD is removed. For �EX of singly bonded molecules (upper
part of Table II) a slight worsening is obtained, while for
congested molecules a significant improvement is observed.
By congested, we mean that several electron pairs are involved
in the chemical bond, either as binding or as antibinding
pairs. Overall, the WDA improves upon the LSD for �EX

as well as for EX; the performance of the PBE is not reached,
however. We should add that for one-electron and two-electron
spin-unpolarized systems the WDA is, of course, exact.

The curvature condition, which appears to be important
to improve upon local approximations [13,32], is considered

next. Somewhat unexpectedly, this condition worsens the mean
absolute errors for the total energies compared to the WDA;
�EX values are slightly improved, however. The curvature
condition is a crucial element in the construction of GGAs,
which reproduce the system average of the curvature of the
exchange hole to a good approximation [30]. GGAs are not
exact for one-electron systems but they dramatically improve
the total exchange energies. This can be seen in Table I, where
PBE results are listed. Unfortunately, the beneficial impact of
the curvature condition does not carry over from GGAs to the
realm of the WDA.

Next we investigate the impact of condition IV, which stip-
ulates that the exchange factor does not vary in empty space.
We devised several functions μ(u) that enforce this condition.
μ1(u) reduces the error in the total exchange energy consider-
ably; this is particularly pronounced for congested molecules.
�EX values of singly bonded, hydrogen-containing systems
are worse than the WDA, whereas the atomization energies
of congested systems are virtually unchanged compared to
the WDA. Another substitution function that we consider
is μ2(u), which satisfies the same constraints as μ1(u) but
performs worse. This indicates that a considerable spread in
the quality of the results is obtained even though the physical
conditions satisfied are the same. We consider this ambiguity in
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TABLE II. Exchange-energy contributions to the atomization energies (in Hartree) obtained with the various substitution functions [μ0(u) =
ku (equivalent to the WDA), μ1(u) = k

∫ u

0 dyρ
1
3 (r,y), μ2(u) = k[4π

∫ u

0 dyy2ρ(r,y)]
1
3 , and μ3(u) = k[4π

∫ u

0 dyy2ρ1/2(r,y)]
1
3 ] are listed, as

well as the corresponding approximations which also satisfy the curvature condition (indicated by C). MAE, mean absolute error. MAEs of
certain subsets of systems as well as total MAEs are reported.

Molecule WDA WDAC μ1 μ1C μ2 μ2C μ3 μ3C Exact LSD PBE

BH −0.029 −0.034 −0.004 −0.011 0.034 0.026 −0.014 −0.020 −0.049 −0.058 −0.054
CH −0.031 −0.034 −0.006 −0.011 0.045 0.037 −0.015 −0.019 −0.034 −0.051 −0.046
NH −0.033 −0.035 −0.007 −0.011 0.055 0.047 −0.016 −0.019 −0.018 −0.045 −0.040
OH −0.084 −0.086 −0.073 −0.075 −0.046 −0.049 −0.077 −0.078 −0.036 −0.083 −0.065
FH −0.145 −0.147 −0.140 −0.141 −0.124 −0.125 −0.142 −0.143 −0.071 −0.135 −0.105
Na2 −0.009 −0.009 0.180 0.174 0.880 0.849 0.060 0.059 0.014 0.002 0.001
MAE 0.031 0.030 0.059 0.056 0.194 0.186 0.035 0.034 0.000 0.030 0.019
N2 −0.030 −0.024 0.094 0.094 0.293 0.280 0.037 0.041 0.063 −0.100 −0.057
NO −0.029 −0.024 0.099 0.100 0.304 0.295 0.040 0.044 0.078 −0.102 −0.048
CO −0.134 −0.132 −0.029 −0.031 0.112 0.104 −0.083 −0.082 −0.054 −0.204 −0.143
F2 −0.006 −0.001 0.154 0.154 0.486 0.474 0.086 0.088 0.107 −0.063 −0.014
P2 −0.013 −0.010 0.236 0.231 1.189 1.157 0.090 0.091 0.078 −0.032 0.009
Cl2 −0.034 −0.034 0.232 0.247 1.358 1.321 0.075 0.074 0.000 −0.084 −0.042
MAE 0.086 0.083 0.085 0.087 0.578 0.559 0.034 0.032 0.000 0.143 0.095

Total MAE 0.059 0.057 0.072 0.071 0.386 0.373 0.035 0.033 0.000 0.086 0.057

an exploratory fashion by considering the substitution function

μ3(u) = k

(
4π

∫ u

0
dyy2ρ1/2(r,y)

) 1
3

. (36)

μ3(u) differs from μ2(u) [Eq. (19)] through the fact that the
square root of the density is taken under the integral sign. The
motivation for this adjustment is provided by the observation
that the WDA, which corresponds to μ(u) = ku, overestimates
the absolute values of the exchange energies, while μ2(u)
underestimates them. Correspondingly a substitution function
that is “more constant” than μ2(u) is expected to yield
improved results. An example of such a substitution function
is obtained by taking the square root of the density under the
integral sign [Eq. (36)]. In the homogeneous limit, the electron
density is a constant and therefore μ3(u) is proportional to
μ2(u) in this limit. Since the constant k in μ3(u) is determined
to ensure normalization, two substitution functions that are
proportional are in fact identical. Therefore, μ3(u) satisfies
the same conditions as μ1(u) and μ2(u), including condition
V, i.e., it reproduces the correct exchange-energy density in the
homogeneous limit. As can be seen in Tables I and II, very good
results are obtained that even improve upon the PBE for �EX.
Finally, we discuss the combined impact of condition IV and
condition VI. As in the case of the WDA, and opposed to the
experience gained in the construction of exchange functionals
hitherto, the inclusion of the curvature condition does not
result in an overall improvement compared to the functionals
building only on the substitution function μ(u).

The exchange factors considered in the numerical illus-
trations satisfy an increasing number of exact conditions.
Starting from the WDA, where fX(r,u) is provided by the
homogeneous electron gas, additional exact conditions are
introduced to improve the approximations. While the results
fall behind the expectations in the sense that the performance
of the PBE exchange functional for total exchange energies
of atoms and molecules is not met, we get close to this
performance for �EX then using the substitution function

μ1(u). With the substitution function μ3(u) the �EX values
obtained even improve upon the PBE. The curvature condition
(condition VI) does not yield conclusive improvements upon
introduction into the various exchange-factor models. This is
the more surprising since the curvature of the exchange hole
is a key ingredient in the construction of various exchange
functionals (see, e.g., [13,30,32]). We suspect that the WDA
and the subsequent exchange-factor models are unbalanced
approximations in the sense explained now. The ansatz,
Eq. (11), deviates from local and semilocal exchange holes
through the use of the spherically averaged density ρ(r,u).
While the use of ρX(r,u) results in the exact exchange
hole for systems with one electron of a given spin, this
cannot be said about the many-electron case, where the
exchange factor has a nontrivial form and is no longer known
exactly. This combination of exact [ρ(r,u)] and approximate
[f (r,u)] factors in Eq. (11) appears to be more demanding
than the simultaneous approximation of both factors. Local
and semilocal approximations can be viewed as schemes in
which the entire exchange hole is approximated instead of its
individual factors.

V. CONCLUSIONS AND OUTLOOK

The development of functionals for the exchange-
correlation energy of KS theory is an area that continuously
evolves and, by the very nature of approximations, will never
result in a functional satisfying all the criteria imposed by prac-
titioners and theoreticians. The former will find cases where
the functional fails, while the latter will identify important
conditions that are not satisfied by a given approximation.
Any approximation is a compromise reflecting its designers’
preferences and it has imperfections. In our work, we pursue
an approach to the construction of functionals that draws on
exact conditions. We provide a list of important properties
to be satisfied by approximations to the exchange hole and
expand this list through the addition of a new condition
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derived from the asymptotic behavior of the wave function.
By imposing an increasing number of conditions from this
list, holes of increasing complexity are obtained, which often
result in improved exchange energies compared to the original
WDA. The ultimate objective of our work is to obtain an
exchange-correlation functional that shows a performance
similar to that of established GGAs for multielectron systems,
while being exact for one-electron cases; the present work is
a step towards this goal. The relative importance of various
conditions is discussed and it appears that the curvature
condition (condition VI) has a largely insignificant impact
in the exchange-factor-based schemes, whereas the condition
of no variation of fX(r,u) in empty space (condition IV)
is quite useful. This is an unexpected deviation from the
behavior found in the construction of GGAs. This finding
should be of importance for the systematic construction of
exchange factors and WDA-type functionals. Interestingly, the
introduction of the function μ(u) to satisfy condition IV also
improves the asymptotic behavior of the resulting exchange
potential. The correct asymptotic behavior of the exchange
potential is sometimes thought to be related to the symmetry of
ρ(r)ρX(r,r′ − r) with respect to the exchange of r and r′ (this is
the consequence of a corresponding symmetry of the pair den-
sity). This symmetry is, however, not crucial to obtain the exact
asymptotic behavior of vX(r), as shown by our consideration.

For the inclusion of correlation effects in the exchange-
factor model, we envision the development of an appropriate
correlation factor fC(r,u) in an ansatz of the form

ρXC(r,u) = fC(r,u)ρX(r,u)

= fC(r,u)fX(r,u)ρ(r,u). (37)

fC(r,u) is again constructed to satisfy a number of conditions
known about the exchange-correlation hole. One of them is
the normalization condition. Another obvious condition (anal-
ogous to condition II) to impose on the exchange-correlation
hole is − ρXC(r,u)

ρ(r+u) � 1, which, in combination with the nor-
malization condition, ensures that the resulting exchange-
correlation hole is one-electron self-interaction-free. In the
past we developed correlation factors to represent the PBE
exchange-correlation hole [18] and to turn exchange holes that
yield the exact εX(r) into exchange-correlation holes [19]. In
future work, we will describe the construction of an appropriate
correlation factor for the exchange-factor model.
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