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The He2-Ne system with the combination of the isotopes of helium (3He and 4He) is used in structure
calculations. Three-body channel functions and adiabatic potential functions have been calculated using the
B-spline method. We use these channel functions in the slow variable discretization method to calculate the
three-body bound states of the He2-Ne system. Using this method, two bound states for the 4He2-20Ne system
and one bound state for each of the 4He-3He-20Ne and 3He2-20Ne systems have been found. The geometry of the
trimer is also analyzed using the probability densities and expectation values.
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I. INTRODUCTION

There are many research works related to the weakly bound
states of few-body systems to study some unusual properties
of the systems, e.g., Efimov states and Halo states [1–3]. The
Efimov state is the case when the two-body systems support
only one bound state with a zero ground-state energy, but the
three-body system supports an infinite number of bound states
[4,5]. The other case is the halo or Borromean state, when the
two-body systems do not have any bound state but the three-
body system can have bound states. Since these three-body
bound states have a binding energy of the order of mK to K, the
system with weak interatomic forces becomes very important
and relevant in the experimental and theoretical study of
ultracold atomic collisions and Bose-Einstein condensates in
various aggregations.

The calculation of these weakly bound states has been
problematic due to their anharmonic potential surface and
large amplitude, implying floppy and delocalization motion
of these systems. To overcome these problems, the adiabatic
hyperspherical coordinate system is used, which simplifies the
problem of calculating the three-body bound states [1,2]. This
is simple in methodology but suffers from numerical instability
when the system has a large number of the sharp avoided
crossings in the adiabatic channel functions. Due to these
instabilities it was not easy to analyze most of the practical
systems and the study was limited to simple trimers such as He3

and its hydrides [1,3,6,7]. These avoided-crossing numerical
instabilities can be removed by changing the representation
method of the Hamiltonian from adiabatic to diabatic and
maintaining the smoothness in the adiabatic variable, which in
our case is the hyperradius R. There is an approach called the
diabatic by sector method, which was also applied to scattering
problems [8,9]. There is a method proposed by Tolstikhin et al.
called slow variable discretization (SVD) [10], which allows
the separation of the adiabatic variables in the Hamiltonian and
results in smoothness in the adiabatic variable R. Many authors
used this approach successfully to analyze various triatomic
systems [10–14]. We also use the SVD approach to study the
He2-Ne triatomic system.
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In the present work the hyperspherical coordinate system
is used, proposed by Macek [15] and later comprehensively
reviewed by Lin [2], along with the SVD approach. We
calculate the results for the above-mentioned trimers with the
3He and 4He isotopes. The empirical pair potentials for the
He-He and He-Ne dimers are used to calculate the three-body
potential surface [16,17]. First, the channel functions are
calculated by selecting a suitable grid for convergent results
at minimum possible grid points to optimize the calculation
time and then, using these channels and potential functions, the
three-body bound states are calculated. The various features
of the channel functions and the average distances between
the atoms of the trimers in different bound states are also
discussed.

II. THEORETICAL METHOD

We treat the He2-Ne molecule as a three-body system. Since
the purpose of the present work is to see if there are bound
states of the He-He-Ne triatomic system, we consider only the
most favorable condition for the lowest states of the He-He-Ne
molecules with the angular momentum J = 0. We solve the
Schrödinger equations for these three-body systems using
well-established hyperspherical coordinates in the adiabatic
approximation. The channel functions and adiabatic three-
body potential curves are obtained by this method. A detailed
description of the calculation method is given in Ref. [18].

We use the Jacobi coordinate method in the center-of-mass
frame to solve the Schrödinger equation and we choose two
helium atoms as atoms 1 and 2 and neon as the third atom in
our three-body system. In the center-of-mass frame, ρ1 is used
as the first Jacobi coordinate from atom 1 to atom 2 with the
reduced mass μ1 and ρ2 as the second Jacobi coordinate from
the center of mass of atoms 1 and 2 to the third atom with the
reduced mass μ2. Here θ is the angle between ρ1 and ρ2. The
hyperradius R and hyperangle φ are defined as

μR2 = μ1ρ
2
1 + μ2ρ

2
2 , (1)

tan φ =
√

μ2

μ1

ρ2

ρ1
, (2)

cos θ =
⇀
ρ1 · ⇀

ρ2

ρ1ρ2
, (3)
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TABLE I. Two-body bound-state energies (in K) of the 4He-20Ne
and 3He-20Ne systems using the TT potential [17].

4He-20Ne 3He-20Ne
(v,J ) E (K) E (K)

(0,0) –3.43349 –2.34370
(0,1) –2.44319 –1.22916
(0,2) –0.58195

where μ is an arbitrary scaling factor. In our calculation
we select μ = √

μ1μ2. We use atomic units throughout our
calculations unless stated otherwise. As we consider the states
with J = 0 only, the Schrödinger equation involves only three
internal coordinates R, φ, and θ . The Schrödinger equation
written in terms of the rescaled wave function ψ(R,φ,θ ) =
�(R,φ,θ )R3/2 sin φ cos φ is [2,10](

−1

2

∂

∂R
R2 ∂

∂R
+ Had(R,φ,θ )

)
ψ(R,φ,θ )

= R2Eψ(R,φ,θ ), (4)

with

Had(R,φ,θ ) = 	2 − 1
4

2
+ R2V (R,φ,θ ) (5)

and

	 = − ∂2

∂φ2
− 1

sin2 φ cos2 φ sin θ

∂

∂φ

(
sin θ

∂

∂θ

)
. (6)

Then the adiabatic potentials Uv(R) and channel functions

v(R,φ,θ ) at a fixed R are obtained by solving

Had
ν(R,φ,θ ) = Uν(R)
ν(R,φ,θ ). (7)

To solve Eq. (7) we use the B-spline basis functions [19].
Using the B-spline basis functions, the channel functions can

FIG. 1. (Color online) Potential energy curves for the He-He
(dotted line) and He-Ne (dash-dotted line) pairs. The pair potential for
He-He is taken from Ref. [16] and He-Ne is the revised TT potential
from Ref. [17].

TABLE II. Test of the convergence for some of the lowest
hyperspherical potentials (in K) at the hyperradius R = 100 with
respect to the number of basis sets for φ and θ in the 4He2-20Ne and
3He2-20Ne system calculations.

4He2-20Ne 3He2-20Ne

(Nφ,Nθ ) v = 1 v = 2 v = 3 v = 1 v = 2

(90,40) –3.257 –2.010 –0.1738 –2.210 –0.943
(90,50) –3.257 –2.010 –0.1739 –2.210 –0.943
(130,50) –3.416 –2.362 –0.5044 –2.333 –1.188
(150,50) –3.437 –2.413 –0.5440 –2.351 –1.215
(165,50) –3.444 –2.437 –0.5621 –2.356 –1.228
(170,50) –3.447 –2.442 –0.5696 –2.358 –1.229
(175,50) –3.447 –2.444 –0.5695 –2.358 –1.231
(175,55) –3.447 –2.444 –0.5696 –2.358 –1.231

be expressed in the form


ν(R,ϕ,θ ) =
Nϕ∑
i

Nθ∑
j

cv
i,j (R)Bi(ϕ)Bj (θ ) (8)

and the boundary conditions are


ν(R,0,θ ) = 
ν

(
R,

π

2
,θ

)
= 0 (9)

and
∂
ν(R,φ,θ )

∂θ

∣∣∣∣
θ=0

= ∂
ν(R,φ,θ )

∂θ

∣∣∣∣
θ=π

= 0, (10)

where Nφ and Nθ are the sizes of the basis set in φ

and θ coordinates, respectively. The B-spline basis set is
used because of its high localization property, flexibility,
and high numerical stability. As a result, the Hamiltonian
and overlap matrix both are banded and can be solved easily
using the standard LAPACK routines for generalized eigenvalues
problems.

Equation (4) is solved by using the SVD method proposed
by Tolstikhin et al. [10]. Its solution ψ(R,φ,θ ) can be
expanded as the pointwise discrete variable representation
(DVR) basis functions πj (R),

ψ(R,ϕ,θ ) =
NDVR∑
j=1

Nμ∑
μ=1

cjμπj (R)
μ(Rj ,ϕ,θ ), (11)

where NDVR and Nμ are the dimensions of the DVR basis
functions πj (R) and the number of coupled channels, re-
spectively. The DVR basis functions πj (R) are constructed
from the Gauss-Laguerre polynomials Lα

n(R/β) with α = 3
and the scaling factor β = Rmax/RN . Now the hyperradial
Schrödinger equation (4) can be written as

NDVR∑
j=1

Nμ∑
μ=1

(Kij − Eρij )Oiv,jμcjμ + Uv(Ri)civ = 0, (12)

where

Kij = − 1

2μ

∫ ∞

0
πi(R)

(
∂

∂R
R2 ∂

∂R

)
πj (R)dR, (13)

ρij =
∫ ∞

0
πi(R)R2πj (R)dR, (14)
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FIG. 2. (Color online) (a) Adiabatic hyperspherical potential
curves of the 4He2-20Ne system including several channels. (b)
Adiabatic hyperspherical potential curves of the 3He2-20Ne symmet-
ric system including several channels. (c) Adiabatic hyperspherical
potential curves of the 3He-4He-20Ne system including several
channels.

and

Oiv,jμ = 〈
v(Ri,φ,θ )|
μ(Rj ,φ,θ )〉. (15)

TABLE III. Test of the convergence for the bound states (in
K) of the 4He2-20Ne and 3He2-20Ne systems with respect to the
number of DVR basis sets and the number of channels included
in thecalculations.

(NDVR, Nμ) 4He2-20Ne

v = 0 v = 1 v = 0 3He2-20Ne

(50,10) –7.246 –4.407 –4.819
(60,10) –7.245 –4.406 –4.818
(60,16) –7.266 –4.431 –4.836
(60,20) –7.271 –4.437 –4.840
(60,24) –7.274 –4.439 –4.843
(70,24) –7.274 –4.439 –4.842
(70,26) –7.275 -4.440 –4.844

Here Oiv,jμ is the overlap matrix between two adiabatic
channels defined at different Gauss-Laguerre quadrature points
in R and integrated over φ and θ .

III. RESULTS AND DISCUSSION

A. Two-body potentials and bound states

In our calculation the three-body potential obtained by
adding the two-body pair potentials is used as

Vadd
∼= [VHe-He(r12) + VHe-Ne(r13) + VHe-Ne(r23)]. (16)

The three-body interaction potential is not considered in the
present calculations as it has been shown to have a less than 1%
effect on the He3 ground-state energy [20,21]. For the He-He
pair we use the two-body potential suggested by Aziz and
Slaman [16], which is well established and most commonly
used by many researchers [22–26]. Using this potential we
get the only one bound state for 4He-4He with an energy of
−1.31 mK and no bound state for 3He-4He. For the He-Ne pair
we select the interatomic van der Waals Tang-Toennies (TT)
potential [17], which is currently the most recent and revised
potential. This potential is based on the TT potential model
and uses the combining rule derived in their earlier work. This
potential is based on the updated input data and the difference
from the empirical data is now less than 1% [27]. Using this
potential for 4He-20Ne, we find the ground state (v = 0,j = 0)
of −3.4335 K (−2.3864 cm−1), which is in good agreement
with the reported bound state [12,25]. We find the three bound
states for the 4He-20Ne dimer using this potential. Additional
bound states with nonzero j are listed in Table I. Two-body
potentials for the He-He and He-Ne dimers are shown in Fig. 1.

TABLE IV. Calculated three-body bound states (in K) of the
He2-Ne system with the different He isotopes.

v 4He2-20Ne 3He2-20Ne 3He-4He-20Ne

0 –7.275 –4.844 –6.032
1 –4.440
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FIG. 3. Contour plots of the two-dimensional probability density functions for all the bound states of the 4He2-20Ne trimer integrated over
θ (left) and over φ (right).

B. Hyperspherical potential curves and channel functions

Using the B-spline basis we solve Eq. (4) and calculate
the channel function 
(R,φ,θ ) and the adiabatic potential
functions Uv . We select Nφ and Nθ so that these potential
curves converge to a reasonable accuracy and perform the
convergence test for the hyperspherical channel for a different
kind of grid and number of grid points, suggested in Ref. [28],
along with a small modification according to our problem.

For the 4He2-20Ne and 3He2-20Ne symmetric systems, the
exponential grid for the φ coordinate and the sinusoidal
grid for the θ coordinate are used. For the 3He-4He- 20Ne
system, the symmetric exponential grid starts from the middle
for the φ coordinate. We perform the convergence test at
the different values of R. The convergence of the adiabatic

channel potentials is very fast for small values of R and
slower for higher values of R. We choose R = 20 and
100 a.u. for the convergence test. The convergence results
at R = 100 a.u. are shown in Table II. The limiting value of
R in the final calculation is 100 a.u. We select Nφ = 170
and Nθ = 70 for the symmetric systems (4He-4He-20Ne
and 3He-3He-20Ne) and Nφ = 170 and Nθ = 130 for the
asymmetric system (3He-4He- 20Ne) for the final calculations.
The three-body adiabatic hyperspherical potential curves are
shown in Fig. 2, which includes the avoided crossings. We
can see the convergence of the potential curves at the higher
value of R to the dissociation energy of the trimers, which is
the binding energy of the dimers. For the 4He2-20Ne system
these are the lowest three channels and for the 3He2-20Ne

FIG. 4. Contour plots of the two-dimensional probability density function for the bound state of the 3He-4He-20Ne trimer integrated over
θ (left) and over φ (right).
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system there are only two, depending on the number of bound
states of the respective dimers. However, for the asymmetric
4He-3He-20Ne system, it has five channels, which include the
three bound states of the 4He-20Ne dimer and the two bound
states of the 3He-20Ne dimer. Here the channel corresponding
to the 4He2 dimer bound state is not visible in Fig. 2 as its
binding energy is very small compared to other channels.

C. Three-body bound states

The three-body bound states are calculated from Eq. (12)
using the Gauss-Laguerre DVR basis. The bound states
converge with increasing number of DVR basis sets and the
number of coupled channels included in the calculations.
Table III shows the convergence of the test results of the
bound states of the 4He2-20Ne and 3He2-20Ne systems. The
convergence is fast with an increasing number of basis sets and
coupled channels. We use NDVR = 70 and Nμ = 26 in our final
calculation to get at least four significant digit convergence.

For the 4He2-20Ne system one ground state of −7.275 K and
one excited state of −4.440 K are found. For the 3He2-20Ne and
3He-4He-20Ne systems, the three-body potential is shallower
than that of the 4He2-20Ne system because, due to the lower
mass of the 3He, there exist only ground bound states of −4.844
and −6.032 K for these two trimers respectively and no excited
state. All the bound states are listed in Table IV.

D. Probability densities and structure of the three-body system

To illustrate the structure of the three-body system we
calculate the total wave function for each bound state. In
Fig. 3 the two-dimensional results are presented for the density
function of the 4He2-20Ne system in the first and second
columns, integrated over θ and φ, respectively. The first row
includes the probability densities for the ground state and the
second row includes the probability densities of the excited
state.

The maximum for the probability density is at (R,φ,θ ) =
(9.8 a.u., 0.83 rad, 1.57 rad) for the ground state of the
4He2-20Ne system, which is the isosceles triangle structure
when translated to the interatomic distances and also an ex-
pected result due to the symmetric system. For the excited state
there are two maxima for the probability density. The princi-
ple maximum is at (R,φ,θ ) = (11.1 a.u., 0.26 rad, 1.57 rad),
which is almost a linear structure. The second maximum is
at (R,φ,θ ) = (9.8 a.u., 0.99 rad, 1.57 rad), which is an equi-
lateral triangle. We do not include the 3He2-20Ne density plots
in the paper as they are qualitatively similar to the 4He2-20Ne
system.

For the asymmetric system 3He-4He-20Ne, there is just one
bound state. Figure 4 shows the two-dimensional plots of
the probability density for the ground state. The first column
shows the probability density integrated over θ and in the
second column it is integrated over φ. The maximum for
the probability density is at (R,φ,θ ) = (10.28 a.u., 0.78 rad,
1.70 rad) for the ground state, which is a scalene triangle. The
probability density plots also show the asymmetric behavior
of the trimer.

TABLE V. Calculated average values of the different param-
eters for all the bound states of the 4He2-20Ne, 3He2-20Ne, and
3He-4He-20Ne trimers.

4He2-20Ne 3He2-20Ne 3He-4He-20Ne

(NDVR, Nμ) v = 0 v = 1 v = 0 v = 0

〈r12〉 10.65 12.08 11.88 11.29

〈r2
12〉1/2 11.06 12.76 12.39 11.75

〈r23〉 7.61 8.10 8.24 7.62

〈r2
23〉1/2 7.74 8.28 8.43 7.81

〈r31〉 8.22

〈r2
31〉1/2 8.50

βNe 91.5° 102.9° 94.9° 93.5°

〈cos βNe〉 –0.03 –0.22 –0.08 –0.06

〈R〉 10.96 11.88 11.93 11.44

〈R2〉1/2 11.10 12.08 12.15 11.62

Calculations are also preformed for the average magnitude
of the distance between the atoms and the bond angle between
them. For the nth bound state, the average distance rij between
atoms i and j can be calculated as

〈rij 〉n =
∫

dR

∫
d�ψ∗

n (R,�)rijψn(R,�), (17)

with � = (φ,θ ).
The average value of the cosine of the bond angle of atom

j using the cosine law is

〈cos βj 〉n =
∫

dR

∫
d�ψ∗

n (R,�)
r2
ij + r2

jk − r2
ki

2r2
ij r

2
jk

ψn(R,�).

(18)

Here ijk are the cyclic permutations of (1,2,3). The calculated
results for the interatomic distance and bound angle are
presented in Table V. When atoms 1 and 2 are the same,
the symmetry of the system leads r23 and r31 to be the same,
so only one of them is calculated. The interatomic distance
is dependent on the bond strength between the atoms. So
the stronger the bond, the shorter the distance is between the
atoms, which is evident from the results. The average distance
between the He-Ne atoms is much shorter than that between
the He-He atoms because of the stronger bonding between the
He-Ne atoms.

IV. SUMMARY

In the present work we performed calculations for the
three-body bound states of the He2-Ne system using the slow
variable discretization method. Along with the discrete vari-
able representation, this method was selected to avoid the
numerical difficulties arising from the use of the hyperspher-
ical representations. This method is very effective for three-
body bound-state calculations especially when the three-body
channel functions have avoided crossings. In these calculations
we found two bound states for the 4He2-20Ne system and one
bound state for each of the 3He2-20Ne and 3He-4He-20Ne
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systems. Furthermore, to understand the geometry of the
trimer, the wave functions along with probability densities
were studied qualitatively and quantitatively. The average
interatomic distances and bond angles were also reported.
Since the He2-Ne system has binding energies on the order
of 1 K, these weakly bound molecules can exist only in a cold
environment. Using laser cooling and other cooling methods
for atoms and molecules, it may be possible to perform direct
observations of these molecules. Our results can be used to

provide some guidance for experimentalists in their search for
such weakly bound molecules.
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