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N-boson spectrum from a discrete scale invariance
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We present an analysis of the N -boson spectrum computed using a soft two-body potential, the strength of
which has been varied in order to cover an extended range of positive and negative values of the two-body
scattering length a close to the unitary limit. The spectrum shows a tree structure of two states, one shallow and
one deep, attached to the ground state of the system with one less particle. It is governed by a unique universal
function �(ξ ), already known in the case of three bosons. In the three-particle system the angle ξ , determined by
the ratio of the two- and three-body binding energies E3/E2 = tan2 ξ , characterizes the discrete scale invariance
of the system. Extending the definition of the angle to the N -body system as EN/E2 = tan2 ξ , we study the
N -boson spectrum in terms of this variable. The analysis of the results, obtained for up to N = 16 bosons, allows
us to extract a general formula for the energy levels of the system close to the unitary limit. Interestingly, a
linear dependence of the universal function as a function of N is observed at fixed values of a. We show that the
finite-range nature of the calculations results in the range corrections that generate a shift of the linear relation
between the scattering length a and a particular form of the universal function. We also comment on the limits
of applicability of the universal relations.

DOI: 10.1103/PhysRevA.90.032504 PACS number(s): 31.15.xj, 67.85.−d, 03.75.−b, 21.45.−v

I. INTRODUCTION

Physical systems present universal behavior when specific
details of the interaction between their constituents are
suppressed in favor of a few control parameters that determine
the dynamics. Well-known examples of this kind are critical
phenomena in which the systems, which are very different at
the microscopic level, show a set of equal critical exponents.
Around the critical point the dynamics is governed by long-
range correlations and not by the details of the interaction
between the constituents. When a universal class is identified
all systems belonging to this class can be described equally
well by a model in which this particular phenomenon is
implemented. An example is the use of the Ising model to
study phase transitions.

Here we analyze a particular universal behavior of few-
boson systems having a large two-body scattering length.
In two-body systems, the universality is governed by one
parameter, the scattering length a. When a is large and positive
the two-body system has a shallow bound state with an energy
of ED ≈ �

2/ma2 (shallow dimer) and, in addition, all the
low-energy observables are governed by a. The system has a
continuous scale invariance that strongly constrain the form of
the observables. This symmetry is broken in the s-wave three-
body sector. However, the three-body system still has a residual
symmetry, the discrete scale invariance (DSI), meaning that the
physics is invariant under the rescaling r → �nr , where the
constant � is usually written as � = eπ/s0 , with s0 ≈ 1.006 24
being a universal number that characterizes a system of three
identical bosons (for a recent review see Ref. [1]).

As has been shown by Efimov [2,3], in the limit of
large scattering length a → ∞ (unitary limit), the three-
boson spectrum consists of an infinite number of states that
accumulate to zero with the ratio between the energies of two
consecutive states being En+1

3 /En
3 = e−2π/s0 . This is known

as the Efimov effect and its characteristics have been the
subject of intense investigation both experimentally [4–7] and

theoretically [8–12]. In recent years the study of the Efimov
effect has been extended to what is now called Efimov physics
and refers to the physics of shallow states. In these states
the particles stay mostly far apart from each other, with the
consequence that the dynamics is largely insensitive to the
details of the interaction.

In the case of bound states, the three-boson spectrum in the
limit of a zero-range interaction in the two-body subsystem
(zero-range limit or scaling limit) can be expressed in the
parametric form

En
3 /(�2/ma2) = tan2 ξ, (1a)

κ∗a = e(n−n∗)π/s0
e−�(ξ )/2s0

cos ξ
, (1b)

where κ∗ is the wave number corresponding to the energy of
the n∗ level at the unitary limit and is called the three-body
parameter. The function �(ξ ) is a universal function and its
parametrization in the range [−π, −π/4] is given in Ref. [1].
Equation (1b) explicitly manifests DSI: The ratio En+1

3 /En
3

remains constant at each value of the angle ξ and is equal
to e−2π/s0 ≈ 1/515.03. Another characteristic of the above
equation is that the three-boson spectrum is controlled by the
two-body scattering length a and it is completely determined
by the knowledge of the three-body parameter κ∗, which
appears as a scale parameter. Many examples of how Eqs. (1)
are used can be found in the literature (see, for example,
Refs. [1,13]).

In the four-body case, it has been shown that two levels
E

n,0
4 and E

n,1
4 appear attached to each En

3 level [9–12,14,15].
Moreover, at the unitary limit the ratios E

n,0
4 /En

3 ≈ 4.611
and E

n,1
4 /En

3 ≈ 1.002 are universal and their numerical values
have been estimated using different approaches. In Ref. [16]
it was shown that universal ratios also exist at the universal
limit in systems with N � 13 bosons and these ratios were
estimated by solving the corresponding Schrödinger equation
with finite-range two-body potentials.
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In Ref. [17] the spectra and universality of small helium
clusters up to N = 6 were studied in the (1/a,κ) plane, where
κ = sgn(E)[|E|/(�2/m)]1/2 and E is the energy of a level. The
two lowest levels with the energies E

0,0
N and E

0,1
N , attached

to the ground state of the N − 1 system, with energy E
0,0
N−1,

were observed in the region of a studied. Furthermore, in
Refs. [16,17] the values of a at which the N -body cluster
disappears into the N -body continuum were estimated.

The examples of universal ratios (the correlations between
observables) discussed above can be complemented by the
Phillips and the Tjon lines [18,19] studied in nuclear physics to
analyze the correlations between the triton binding energy and
the doublet n-d scattering length and between the triton and
α particle binding energies, respectively. These correlations
indicate a limitation in the number of scales that governs the
dynamics of the system [12].

In the present work we address the constraints imposed by
the DSI in the spectrum of the N -boson system with a general
number of bosons N . In addition, we will answer the following
questions. (i) Is the tree structure of two states E

0,0
N and E

0,1
N

attached to the E
0,0
N−1 state and observed up to N = 6 valid for

general values of N? (ii) Are there any general relations for the
ratios E

n,0
N /E

n,0
N−1 and E

n,1
N /E

n,0
N−1? We answer these question

by analyzing the spectra of N � 16 particles obtained from
solution of the many-body Schrödinger equation with a soft
finite-range two-body force.

The paper is organized as follows. The working equations
determining the spectrum of the N -boson system in the zero-
range limit are given in Sec. II, while in Sec. III we introduce
their finite-range version. The analysis of the numerical results
is given in Sec. IV and the DSI for N bosons is analyzed in
Sec. V. In Sec. VI the equations proposed in the preceding
sections are used to analyze selected experimental as well as
theoretical results from the literature. In Sec. VII a summary
is given.

II. THE N-BOSON SYSTEM IN THE ZERO-RANGE LIMIT

Our aim is to discuss an extension of Eqs. (1), which
describes the energy spectrum of the three-boson system close
to the unitary limit in the zero-range limit, to N > 3. This
extension is based on the detailed analysis of a four-boson
system with a large two-body scattering length, reported first
in Ref. [9] and then in Refs. [10,11], and on an extended
analysis of DSI in Ref. [20]. It was found in Ref. [9] that
the four-body system has two bound states, one of which is
deeply bound and another that is shallow very close to the
threshold of disintegration into one boson and a trimer. Using
a DSI argument, it has been conjectured that the two-level
structure is tied to each three-body state. However, only the
lowest two states, attached to the trimer bound state E0

3 , are
true bound states; the other ones appear as resonances since
they are above the trimer-particle threshold. The study of this
particular tree structure was analyzed in Ref. [10], in which
the notation E

n,m
4 was proposed to identify the energy of each

four-body level. In this notation, n indicates a three-body level
and m = 0 identifies the deep state while m = 1 labels the
shallow state. The fact that this structure of levels results from
a DSI can be seen from the universal character of the ratio

E
n,m
4 /En

3 . A study of this ratio at the unitary limit was done
in Refs. [10,11] with the conclusion that E

n,0
4 /E0

3 ≈ 4.611
and E

n,1
4 /E0

3 ≈ 1.002. A more extended analysis of the DSI
can be done studying these ratios along the (1/a,κ) plane at
fixed values of the angle ξ (see Ref. [20]). Moreover, a recent
work [21] has shown that the universal function �(ξ ), which
governs the three-boson dynamics, is also responsible for the
N -boson dynamics. All these findings suggest the following
extension of Eqs. (1) to N � 4:

E
n,m
N /(�2/ma2) = tan2 ξ, (2a)

κm
N a = e(n−n∗)π/s0

e−�(ξ )/2s0

cos ξ
,x (2b)

with E
n,m
N the deep (m = 0) or shallow (m = 1) N -body state

attached to the nth Efimov trimer.
Equations (2) have the remarkable property that the

N -boson spectrum is controlled by the two-body scattering
length, by the universal function �(ξ ), and that it is completely
determined by the knowledge of κm

N . The κm
N are not true

independent parameters; they are fixed by the three-body scale
κ∗. For instance, in Ref. [21] it was shown that

κ0
N/κ∗ = 1 + 1.147(N − 3). (3)

This result was obtained by observing that κm
N is a linear

function of N and using the universal ratio given in Ref. [11]. In
the following we analyze the spectrum of N -boson systems up
to N = 16 in order to extend this relation to m = 1 and, from
a more general perspective, to verify the validity of Eqs. (2).

III. FINITE-RANGE CORRECTIONS

The spectrum of the three-boson system, obtained by
solving the Schrödinger equation with soft two-body potentials
close to the unitary limit, was analyzed in Refs. [22,23]. It
was shown that Eqs. (1) have to be modified in order to take
into account the finite-range character of those calculations.
Based on the analysis of the energies of the three-body system
obtained numerically, the following modified equations have
been deduced:

En
3 /E2 = tan2 ξ, (4a)

κn
3 aB + �n

3 = e−�(ξ )/2s0

cos ξ
. (4b)

Despite some similarities, there are several important differ-
ences from the zero-range theory of Eqs. (1).

(i) The parameters κn
3 carry explicitly the index n labeling

the different tree branches since the ratio κn
3 /κn+1

3 for two
successive branches is in general slightly different from the
scaling factor eπ/s0 . In fact, these ratios include finite-range
corrections and their specific values can be extracted from
the numerical solutions. The correspondence between Eqs. (1)
and (4) is made by identifying the scale parameter κ∗ with
one of the parameters κn

3 . For example, in Ref. [22] the three-
helium-atom case was studied as a reference system and κ∗
was identified with κ1

3 , the branch corresponding to the first
excited state.
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(ii) The quantity �
2/ma2 is replaced by E2 = �

2/ma2
B ,

which is the dimer binding energy in the case of positive
scattering length a or, for negative values of a, the two-body
virtual-state energy. Also in Eq. (4b) a is replaced by the
scattering length aB corresponding to finite-range two-body
potential. The replacement of a by aB introduces some range
corrections as the value of a moves away from the unitary limit.
It should be noted that the relation E2 = �

2/ma2 is exact in
the case of zero-range two-body interactions.

(iii) The main modification in Eqs. (4) is the introduction of
the shift parameter �n

3 . The origin of the shift was discussed in
Ref. [21], where it was shown that it essentially appears from
the first-order expansion of the scaling-violating momentum
�0, in terms of powers of r0/a, where r0 is the interaction
range. The parameter �0 fixes the value of the logarithmic
derivative of the wave function close to the origin and encodes
the short-range physics [1]. In the zero-range model one can
identify �0 with the three-body parameter κ∗ leading directly
to Eqs. (1). However, for finite-range potentials the �0 = κ∗
relation does not hold anymore and we propose the finite-range
correction

�0 = κ∗
(

1 + A r0

a
+ · · ·

)
, (5)

leading directly to Eqs. (4), with �0
3 = Aκ0

3 r0 (here we assume
κ∗ = κ0

3 ). This can be proved by making use of Eqs. (187) and
(193) from Ref. [1].

As a function of the finite-range-corrected scattering length
aB , Eq. (4b) is a two-parameter equation: the scale parameter
κn

3 and the finite-range parameter �n
3 . As in the study of critical

phenomena, κn
3 can be interpreted as a material-dependent

parameter and �n
3 as the analog of the finite-scale correction

(here finite-range correction). Their introduction allows the
collapse of observables onto a single universal curve [24]. In
fact, in Ref. [21] it was shown that plotting En

3 /E2 in terms
of 1/(κn

3 aB + �n
3 ) makes the calculated points collapse onto a

universal curve.
The extension of Eqs. (4) to general N has been proposed in

Ref. [21] where the spectrum of the N -boson system, obtained
by solving the Schrödinger equation with soft potentials close
to the unitary limit, was analyzed up to N = 6. The results of
that work show that Eqs. (2) have to be modified in order to take
into account the finite-range character of those calculations.
The general form is suggested,

E
n,m
N /E2 = tan2 ξ, (6a)

κ
n,m
N aB + �

n,m
N = e−�(ξ )/2s0

cos ξ
, (6b)

and applied to the lowest tree of the two-level structure,
which corresponds to n = 0. The index n identifies the N = 3
branch and the index m takes the values m = 0,1. The
parameters κ

n,m
N are the energy wave numbers at the unitary

limit (κn,m
N )2

�
2/m = E

n,m
N and explicitly show the index n

labeling the different N = 3 branches due to the finite-range
corrections in κn

3 .
It should be stressed that, for N > 3, the n = 0 case is

of particular interest since it describes bound states. In the
next section we analyze the n = 0 branch, extracting the κ

0,m
N

values from the numerical solutions and showing that they have

a linear dependence on N with a slope slightly different from
the one suggested by the zero-range theory. We show that, as
a moves from the unitary limit toward lower positive values,
the validity of Eqs. (6) could be limited. The system becomes
more compact, losing its universal character. In the case of
n > 0 the validity of Eqs. (6) is limited by the appearance
of different thresholds as the positive values of a decrease.
For example, in Ref. [25] it was shown that, in the N = 4
case, a shallow tetramer decays at the atom-trimer threshold,
becoming an inelastic virtual state. In the present work we
limit the discussion of Eqs. (6), in the case of N > 3, to the
case of bound states (the n = 0 branch).

IV. ANALYSIS OF N-BODY SOLUTIONS

To study the validity of Eqs. (2) and (6) we follow Ref. [17]
and describe the N -boson system using a two-body Gaussian
(TBG) potential

V (r) = V0e
−r2/r2

0 . (7)

We solve the N -body Schrödinger equation with mass param-
eter �

2/m = 43.281 307(a0)2 K. Using r0 = 10a0 and V0 =
−1.234 356 6 K, the model reproduces the binding energy and
the scattering length of two helium atoms described by a widely
used He-He interaction, the LM2M2 potential [26], which has
a van der Waals length 	 = 10.2a0.

To solve the Schrödinger equation for N bosons we use
the hyperspherical harmonic method in the version proposed
in Ref. [27]. This method reproduces the values given in
Ref. [28] up to N = 6 and here we extend the calculations up to
N = 16. Increasing the grand angular quantum number G, we
obtain converged results for the ground state and first excited
state of the N -boson systems. As discussed in Refs. [27,29],
convergence of the ground-state energy is obtained with
relatively low values of G; with values of G � 12 an accuracy
greater than 1% is obtained. In the case of the first excited
state a similar accuracy would need a much higher value of
G, making the computation of this state very difficult. In the
present work we use the results with G � 12 to extrapolate
the first excited energy with an accuracy of a few percent.

Varying the strength V0 of the TBG potential (7) we explore
the (a−1,κ) plane. For each value of the potential strength V0

we determine E2 and a and then compute the energies of the
ground and first excited states of the N -body systems. For
N = 3 we compute E0

3 and E1
3 , the values that define the first

two energy branches with n = 0 and 1. For N > 3 we compute
the two-level structure of the n = 0 branch. We denote these
states by E0

N and E1
N , omitting the index n from now on, and

we analyze the two-level spectrum up to N = 16.
Using Eqs. (4a) and (6a), we determine the value of the

angle ξ from which we can compute the universal function
y(ξ ),

y(ξ ) = e−�(ξ )/2s0

cos ξ
, (8)

appearing on the right-hand side of Eqs. (4b) and (6b). The
function y(ξ ) has a linear dependence on aB for each value of
N and m. In fact, Eq. (6b) can be rewritten as

y = κm
N aB + �m

N. (9)

032504-3



A. KIEVSKY, N. K. TIMOFEYUK, AND M. GATTOBIGIO PHYSICAL REVIEW A 90, 032504 (2014)

-103 0 103 104

aB/r0

-103

-103

0

103

103
y(

ξ)

-100 -80 -60 -40 -20 0 20
aB/r0

-5

0

5

y(
ξ)

FIG. 1. Universal function y(ξ ) as a function of aB in units of r0.
Numerical results are given by circles (n = 0) and squares (n = 1)
with the dashed lines representing the best linear fits to the results
(upper panel). The bottom panel shows a zoom close to the thresholds
y(−π ) = −1.56 and y(−π/4) = 0.071 (given by the thick horizontal
lines).

In the case of a zero-range interaction aB = a and �m
N = 0 and

the linear relation results in y = κm
N a, representing a straight

line passing through the origin with the slope determined by
the value of κm

N . In the case of a finite-range interaction the
linear dependence between y and aB remains, but the straight
line does not go through the origin.

To make a connection with previous analysis, we first
present our results for the N = 3 case. Their plot in the (a−1,κ)
plane have been reported many times in the literature. Here we
prefer to use the (aB,y) plane, stressing the linear relation
between aB and y that follows from Eq. (9). The results are
shown in Fig. 1 as circles (the n = 0 branch) and squares (the
n = 1 branch). The dashed lines represent the best linear fit to
the results, which can be parametrized with κ0

3 = 0.0488a0
−1,

�0
3 = 0.869 and κ1

3 = 0.00212a0
−1, �1

3 = 0.0840. The fit has
χ2 ≈ 0.1, proving that the behavior of the numerical results is
in very good agreement with a linear dependence. Moreover, at
the unitary limit the extracted values for κn

3 coincide up to four
figures (or better) to the calculated values. The DSI predicts
in the zero-range limit that κ0

3 /κ1
3 = eπ/s0 ≈ 22.7, while from

our results we obtain a slightly different value, κ0
3 /κ1

3 ≈ 23.0.
This change is due to the finite-range character of the two-body
interaction.

The top panel of Fig. 1 shows all calculated y(ξ ) values
plotted within a very extended range of aB . The bottom
panel displays a zoom around the thresholds y(−π ) ≈ −1.56,
at which the trimer levels disappear into the three-body
continuum (for a more precise value see Ref. [30]), and
y(−π/4) ≈ 0.071, at which the trimer disappears on the

particle-dimer continuum (the thresholds are shown by thick
horizontal lines). Close to the threshold at −1.56 we observe
a strong linear trend in the y(ξ ) behavior as a function of aB .
This allows us to extract with great confidence the (negative)
values of the scattering length a

0,−
3 and a

1,−
3 at which the trimer

ground state E0
3 and first excited state E1

3 disappear into the
three-atom continuum. Using the values of κn

3 and �n
3 from the

linear fit and transforming aB to a, we obtain a
0,−
3 ≈ −44a0

a.u. and a
1,−
3 ≈ −745a0, which are in close agreement with

the estimates given in Ref. [17].
The threshold at 0.071 indicates the point at which the

bound state disappears in the atom-dimer continuum. We
cannot reach it by lowering the scattering length because as
a → r0 the three-body states become more bound, leaving
the Efimov window. For the case of the excited state this is
less obvious, but in the proximity to the atom-dimer threshold
our results lie on a line parallel to (and slightly above) the
y(−π/4) line without crossing it. This has been clearly seen
also in Ref. [17], where the first excited state for three helium
atoms has been shown not to cross the atom-dimer threshold
but move almost parallel to it from below (see also Ref. [31]).

The analysis of the Efimov trimers in the (aB,y) plane has
shown that they can be described by straight lines defined by
the parameters κn

3 , �n
3 , and a

n,−
3 . Next we study the N � 4

results for y(ξ ) in the same (aB,y) plane. These results are
presented by circles in Fig. 2 , which, as in the N = 3 case, can
be fitted by straight lines shown as solid lines in this figure.
Figures 2(a) and 2(b) show the results for the ground state
(m = 0) and the first excited state (m = 1), respectively.
Figures 2(c) and 2(d) zoom the area around the threshold
y(−π ) = −1.56 (shown as a thick line). In the case of
N = 4,5,6, very detailed calculations have been done close
to this threshold.

A remarkable characteristic of Fig. 2 is that the straight
lines cross each other almost in one single point, the position
of which is slightly different for the ground and excited states.
To study further this fact we extract the values of κm

N from the
slopes of the straight lines. They coincide up to four significant
figures with the values calculated at the unitary limit given
by V0 ≈ −1.162 K. The results are given in Fig. 3, where
we show the values of κ0

N (circles) and κ1
N (squares) as a

function of N [Fig. 3(a)] and the values of �0
N (circles) and

�1
N (squares) [Fig. 3(b)]. The κ0

N and κ1
N form two almost

parallel lines, whereas �0
N and �1

N collapse in one line as N

increases. However, both m = 0 and 1 explicitly show a linear
dependence on N , which is illustrated in Fig. 4, where the
best linear fits to the data are shown by the solid lines and the
circles (squares) corresponds to m = 0 (m = 1). Using this
linear relation, we extract the coordinates of the point (am

B ,�m)
at which the straight lines corresponding to the ground state
m = 0 and excited state m = 1 cross each other. Defining
�m

N = �m − κm
N am

B , we obtain the relation between κm
N and y:

κm
N

(
aB − am

B

) + �m = y(ξ ). (10)

From the analysis of Fig. 4 we get a0
B = 7.077a0 and

�0 = 0.768 for the ground states and a1
B = 7.304a0 and �1 =

0.887 for the excited states. A consequence of the different
locations of these two points is that the line corresponding
to the shallow state E1

N can cross the line of the ground
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FIG. 2. Universal function y(ξ ) as a function of
aB , in units of r0 for N = 4–16 for (a) ground-state
energies and (b) excited-state energies. A zoom of
the plots close to the −1.56 threshold is given for
(c) n = 0 and (d) n = 1.

state E0
N−1, resulting in an unbound excited state. This is

shown in Fig. 5, where one can see that starting with N = 8
the E1

N excited state is no longer bound at the y(−π )
threshold.

Equation (10) can be further simplified by taking into
account the linear relation between κm

N and N . In fact, as has
been inferred in Ref. [21] and from the analysis of Fig. 3, the
relation can take the form

κm
N = κm

4 + (N − 4)
(
κm

5 − κm
4

)
, (11)

0 2 4 6 8 10 12 14 16 18 20
N

0

2

4
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8

10

 Γ
N

m

0
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10

15

20

25

 κ
N

m
 / 

κ 30

FIG. 3. Ratio κm
N /κ0

3 (top) and shift �m
N (bottom) as a function of

N . The circles correspond to m = 0 and the squares to m = 1. The
solid lines are the best linear fits.

where we have used two points, corresponding to N = 4 and
5, to construct the line. However, other choices to describe
the straight line produce similar results. With the above
relation, a global description of the mth level of the N -boson
spectrum can be achieved with just four parameters. It should
be stressed that the present results have been obtained using
short-range two-body forces (or eventually three-body forces,
as in Ref. [28]). The existence of high-order forces could
modify the linear relation given in Eq. (11).

The main result of this analysis is the following. In order
to describe the mth energy level of the N -boson system, using
short-range interactions, two parameters are needed, κm

N and
�m

N . This description is particularly accurate near the unitary
limit. It deteriorates at positive values of a as a → 	, where
the strength of the potential increases, making the N -body
ground states deeper. In addition, as N increases the finite
character of the interaction allows new excited states to appear
and the tree structure is lost. It was shown in Ref. [32] that,
starting with N � 12, a second excited state appears at the

0 5 10 15 20 25
κN

m / κ3
0

0
1
2
3
4
5
6
7
8
9

10

Γ Nm

FIG. 4. Shift �m
N as a function of the ratio κm

N /κ0
3 for m = 0

(circles) and m = 1 (squares).

032504-5



A. KIEVSKY, N. K. TIMOFEYUK, AND M. GATTOBIGIO PHYSICAL REVIEW A 90, 032504 (2014)

-6 2-4-
aB/l

-10

-5

0

y(
ξ)

N=4

N=4

N=8N=8

N=5

N=5
N=6 N=6 N=7

N=7

FIG. 5. Universal function y(ξ ) as a function of aB , in units of 	

for the ground state (solid lines) and excited state (dashed lines) close
to the y(−π ) = −1.56 threshold, for N = 4–8. Starting with N = 8,
the excited state becomes unbound at this threshold as it crosses the
ground-state line before arriving at the threshold.

unitary limit. However, the two-parameter description remains
acceptable (of the order of a few percent or better) as the
system approaches the N -body continuum (negative a values),
which corresponds to the best realization of shallow states, well
described by the present formalism. Approaching the threshold
on the −π axis, all the excited states disappear for N > 7, as
has been discussed before. It should be noted that in the case
of a zero-range interaction there is only one parameter κm

N

because �m
N = 0 and, as the crossing point is the origin for

the two m levels, the tree structure should remain valid with
increasing N .

In the case of finite-range interactions, using the relation
given by Eq. (11), a global fit of the mth level is possible
for general values of N with only four parameters: two κm

N

values and the coordinates of the crossing point. However, this
description is not as precise as the previous one and could
introduce some errors. In the case of a zero-range interaction
a global fit is possible with two parameters (two values of κm

N )
and in this case the description should be exact. This is further
analyzed in the next section.

V. THE DSI AS A FUNCTION OF N

The DSI in the N = 3 system can be seen from the constant
values of the ratio En

3 /En′
3 between two different branches at

fixed values of the angle ξ . This property, in the zero-range
theory, is encoded in Eqs. (1), from which it is easy to see
that, when ξ is constant, then En

3 /En′
3 = e2(n′−n)π/s0 . Particular

cases are the unitary limit corresponding to ξ = −π/2 and
the threshold at which the cluster disappear in the three-atom
continuum corresponding to ξ = −π . However, that property
holds in the range −π � ξ � −π/4.

The extension of the zero-range theory to general N is
given in Eqs. (2). These equations explicitly state the following
property for the ratio between two different branches with

general values of m at fixed values of ξ :

E
n,m
N

E
n′,m′
N ′

=
(

κm
N

κm′
N ′

)2

e2(n−n′)π/s0 . (12)

Unlike in the N = 3 case, no analytical expression for κm
N /κm′

N ′
exists. It can only be determined from numerical analysis such
as the one carried out in Ref. [11] for E0

4/E
0
3 . However, we can

show that κ0
N/κ0

3 depends linearly on κ0
4 /κ0

3 by using Eq. (11)
twice, for N = 3 and 4. This results in the formula (see also
Ref. [21])

κ0
N

κ0
3

= 1 + (N − 3)

(
κ0

4

κ0
3

− 1

)
, (13)

which in the zero-range limit reduces to κ0
N/κ0

3 = 1 +
1.147(N − 3) when κ0

4 /κ0
3 = 2.147 from Ref. [11] is used. Our

numerical results using the TBG potential give κ0
4 /κ0

3 = 2.42,
showing some range corrections but not far from the zero-range
limit. The square of Eq. (13) gives a quadratic dependence on
N of the N -boson ground-state energy E0

N expressed in terms
of the three-boson ground-state energy. A quadratic relation in
terms of N has been also obtained in Ref. [33].

Our results can be used to study different ratios that might
display universal character. In Fig. 6 we show the ratios
between ground states κ0

N+1/κ
0
N (circles), between the shallow

state of the N + 1 system and the ground state of the N -body
system κ1

N+1/κ
0
N (triangles), and the ratio between the shallow

states κ1
N+1/κ

1
N (squares). At large N the ratio κn

N+1/κ
n
N tends

to one, suggesting that

κ0
N+1/κ

0
N ≈ κ1

N+2/κ
1
N+1. (14)

This relation is a consequence of the almost constant behavior
of the ratio κ1

N+1/κ
0
N (see Fig. 6) that allows Eq. (13) to be

extended to shallow excited states of the tree structure for
N � 4,

κ1
N

κ1
4

= 1 + (N − 4)

(
κ1

5

κ1
4

− 1

)
, (15)

which in the zero-range theory reduces to κ1
N/κ1

4 = 1 +
1.147(N − 4). The third general ratio κ1

N+1/κ
0
N = κ1

4 /κ0
3 can

0 2 4 6 8 10 12 14 16 18 20
N

0

0.5

1

1.5

2

2.5

3

κ N
+1n    

/κ
Nn’

FIG. 6. Ratios κ0
N+1/κ

0
N (circles), κ1

N+1/κ
0
N (triangles), and

κ1
N+1/κ

1
N (squares) as a function of N .
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be obtained by observing that κ1
N+1/κ

0
N has a constant

behavior. For κ1
4 /κ0

3 the universal ratio of 1.002 can be
used, which was calculated in Ref. [11] in the zero-range
theory, making a detailed numerical analysis of the solution
of the Faddeev-Yakubovsky equations (for comparison, our
numerical results obtained with the TBG potential give a value
around 1.05). This analysis complete the determination of the
ratios given in Eq. (12).

Finally, Eqs. (2) can be used to determine the relation
between κm

N and a at different thresholds ξ = −π at which the
N -body cluster disappears in the N -body continuum. Using
the notation a

m,−
N for the corresponding value of a, in the

zero-range limit we have

κm
N a

m,−
N = −e−�(−π)/2s0 ≈ −1.56. (16)

This equation is an extension of the already known relation
obtained in the zero-range N = 3 case. In the case of finite-
range interactions we use the working equations (6) and verify
that the following modification of Eq. (16) is valid:

κm
N a

m,−
N ≈ −1.56 − �m. (17)

Here a
m,−
N = aB(−π ) − am

B , with aB(−π ) being the value
at the threshold determined either from direct calculations
or from a global linear fit. We evaluate κm

N a
m,−
N using the

calculated values for κm
N and a

m,−
N . The results are given

in Fig. 7 for both m = 0 and 1. One can see that in both
cases the quantity κm

N a
m,−
N is close to the expected values of

−2.33 (m = 0) and −2.45 (m = 1). For m = 0, κm
N a

m,−
N is

better represented by a constant supporting the global fit. For
m = 1 the quantity κm

N a
m,−
N deviates from a constant within

10% (given by the shadowed area) since the excited states’
binding energies have not completely converged. In particular,

-3.5

-3

-2.5

-2

-1.5

-1

κ N
0  a

N
0,

-

0 2 4 6 8 10 12 14 16 18 20
N

-4

-3.5

-3

-2.5

-2

-1.5

κ N
1  a

N
1,

-

FIG. 7. (Color online) Dimensionless quantity κn
Na

n,−
N as a func-

tion of N for n = 0 (top) and n = 1 (bottom).

the global fit for the excited states suffers from the fact that
close to the y(−π ) threshold they are no longer bound for
N > 7. We have to mention here that in Ref. [16] a different
parametrization of a

0,−
N exists that involves four parameters.

Such a parametrization does not show universality.
In the case of positive values of a, thresholds appear when

the N -body systems disappears into the continuum formed
by the different clusterization of the N -boson system. The first
threshold appears at the (N − 1)-boson energy and it is formed
by a cluster of N − 1 bosons and one boson staying far apart.
Other thresholds are formed by N/2 dimers (for even values
of N ) or by (N − 1)/2 dimers plus a particle (for odd values of
N ). In the case of N = 4 a detailed study of the behavior across
the dimer-dimer and trimer-atom thresholds has been done in
Ref. [25]. With an increasing number of bosons the structure
of the thresholds becomes more and more complicated. As
discussed in the N = 3 case, the validity of Eqs. (2) for each
N system is limited by values of ξ between ξ = −π and the
appearance of the first threshold.

VI. ANALYSIS OF THE RESULTS
IN DIFFERENT SYSTEMS

Most of the studies of N -boson systems with large two-
body scattering lengths have been done either experimentally
(real systems) or by solving the Schrödinger equation using
potential models for the two-boson interaction. For example,
here we have used a TBG potential, however, many other
calculations with different model or realistic potentials can
be found in the literature. In all these cases the deviations
from the prediction of zero-range theory due to the finite-
range nature of two-body interactions cannot be ignored. The
working equations (4) and (6) proposed here can be used to
analyze results obtained elsewhere. In particular, the Eqs. (4b)
and (6b) can be used to study the linear dependence between
y and aB [see Eq. (9)].

As the first example we analyze the binding energies of the
system of three 7Li bosons measured in Ref. [34] for different
values of the 7Li-7Li scattering length. From the values of the
two- and three-body binding energies given in that reference
we compute aB , the angle ξ , and the universal function y(ξ ).
According to Eq. (9), the values of y should depend linearly on
aB . The results plotted in Fig. 8 do show the expected linear
behavior, thus providing further confirmation of the finite-
range theory given by Eqs. (6). From the analysis of the straight
line we extract the values κ1

3 = 1.61 × 10−4a−1
0 and �1

3 =
4.95 × 10−2 (see also Ref. [21]).

As the second example we analyze the results for boson
clusters obtained at the unitary limit by von Stecher in
Ref. [16] using Gaussian potential models and including
three-body forces. Empirically, the results for N = 6,7,8 in
the a < 0 region were parametrized in Ref. [16] as E0

N ≈
(�2/m)(κ0

N )2(x + cNxbN )/(1 + cN ), where x = (a − a−
N )/a.

In addition, the empirical relation 1/(κ0
3 a−

N ) ≈ 2.3(1) − N has
been deduced from the numerical result and the ratios (κ0

N/κ0
3 )2

have been calculated up to N = 13. The results from Ref. [16]
cannot be plotted in the (aB,y) plane because the explicit
values of E2 and κ0

3 were not given. Instead we can plot
them in the (κ0

3 a,y) plane. The essential characteristics of
this plot, given in the top panel of Fig. 9, remain the same
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FIG. 8. Universal function y(ξ ) as a function of aB calculated
from the data of Ref. [34]. The solid line represents the best linear fit
to the data.

with the slope given by the ratio κ0
N/κ0

3 and the shift �0

related by the linear equation (10). The results lie on straight
lines, as predicted by the finite-range theory proposed here.
Moreover, the straight lines seem to cross each other at one
single point and accordingly can be described using a global fit
with �0 ≈ −0.22. This shift is negative and, in absolute value,
it is slightly smaller than the value obtained here for �0 in the
global fit. In the bottom panel of the figure the ratio κ0

N/κ0
3 is

-10 -8 -6 -4 -2 0
κ3

0 a 
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0

y(
ξ)

0 2 4 6 8 10 12 14 16 18 20 22
N

0
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8

12
16
20
24
28

κ N0
 / 

κ 30

N=8

N=6
N=7

FIG. 9. Analysis of the results from Ref. [16] in the (a,y) plane
(top). In the bottom panel the ratios κ0

N/κ0
3 are given as a function of

N for the results of Ref. [16] (diamonds), the present results (circles),
and the results from Ref. [35] (squares). The universal prediction is
given by the dashed line. The solid and dash-dotted lines are fits to
the data. The dotted line is a fit to the results of Ref. [16] up to N = 8.

given as a function of N . The diamonds are the results from
Ref. [16]. At N � 8 they follow a linear behavior presented
by a dotted line fitted over this region. They lie below the
universal line 1 + 1.147(N − 3) shown by the dashed line. On
the other hand, our results, fitted by a solid line, are above the
line of universality. The difference between our calculations
and those from Ref. [16] is due to the absence of the repulsive
three-body force in our case. With a two-body finite-range
(Gaussian) force only, the N -boson clusters are more bound
than in the zero-range case. Including three-body repulsive
force reduces the strength of the linear dependence between
κ0

N/κ0
3 and N and eventually can reproduce the universal slope

of 1.147. The particular three-body force selected in Ref. [16]
produces a ratio slightly lower κ0

4 /κ0
3 than the universal one

and therefore the slope of the straight dotted line in the bottom
panel of Fig. 9 is smaller, which corresponds to less bound
clusters. The calculations of Ref. [16] deviate from the linear
behavior (dotted lines) for N > 8 and practically follow the
square root law. This is discussed below.

The bottom panel of Fig. 9 also presents the results for
N -boson clusters of polarized tritium obtained in Ref. [35]
from a theoretical study within the diffusion Monte Carlo
(DMC) method. In that work, the strength of the interaction
was varied to explore a wide range of the (a−1,K) plane. The
analysis of their results in the (aB,y) plane revealed that they
lie on straight lines, as predicted by the finite-range theory.
Here we show the linear dependence of the energy wave
numbers on N at the unitary limit. This is illustrated by the
squares, whereas the dash-dotted line represents a linear fit to
the data.

Finally we analyze two calculations from literature per-
formed for the ground-state helium clusters with different
numbers of N using hard-core He-He potentials. From the
published values of E0

N , it is possible to determine the angle
ξ and from it the values of the universal function y(ξ ). From
the previous discussion we expect a linear relation between
N and y, which means a quadratic dependence between N

and the ground-state energy. To perform this analysis we use
the results from Lewerenz [36] and Pandharipande et al. [37].
In the former, the ground states up to ten atoms have been
obtained within the DMC method with the Tang-Toennies-Yiu
(TTY) potential [38] as the He-He interaction. In the latter, the
Green’s-function Monte Carlo (GFMC) method has been used
with the HFDHE2 interaction of Aziz et al. [39]. The y(ξ )
extracted from these results are shown in Fig. 10, where the
black circles and asterisks correspond to the DMC calculations
with the TTY potential and the GFMC calculations with the
HFDHE2 potential, respectively. We compare the hard-core
results with those obtained with the soft-core TBG potentials
in the present work, shown by squares. In addition, we show
by triangles the N � 6 results from Ref. [28] obtained with
the TBG potential plus a hyperradial three-body force (H3B)
the strength of which is fitted to reproduce the trimer energy
given by the LM2M2 potential. It should be noted that the TTY
and the LM2M2 interactions produce very close results [40]
for the helium dimer and trimer and therefore the results of
the TBG+H3B interaction are almost on top of the results of
the TTY potential. This supports the equivalence between the
soft- and hard-core potentials for this kind of state, discussed,
for example, in Ref. [41].
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FIG. 10. Universal function y(ξ ) as a function of N calculated
using the results of Ref. [36] for the TTY potential (circles), the
results of Ref. [37] for the HFDHE2 potential (asterisks), the present
results for the TBG interaction (squares), and the results of Ref. [17]
using a two-body plus a three-body force (triangles). The straight
lines are the best fit to the data.

The above analysis shows that the finite-range-corrected
universality relations proposed in the present work can be used
to analyze different types of measurements and theoretical
descriptions of shallow states in bosonic systems. However, we
notice that the results obtained with the HFDHE2 potential and
plotted in Fig. 10 no longer follow the linear behavior around
N = 20. They tend to follow a square root behavior since at
N → ∞ the ratio E0

N/N is almost constant, indicating the
well-known linear dependence of the energy ground state with
N . It is interesting to note that this analysis shows the transition
between the quadratic and linear behavior of the ground-state
energy with N . In the quadratic regime the bosons are far
apart, the details of the interaction are not important, and the
system shows the universal behavior described by Eqs. (6).
As the number of bosons increases the system becomes more
compact, losing the universal behavior. The strong short-range
repulsion prevents the collapse of the system and is responsible
for the linear regime. This explanation clarifies the behavior of
the results from Ref. [16] for N > 8. In this case a very-long-
range repulsive three-body force has been included, making
the transition to the linear regime already at low values of
N . The observed transition from the quadratic to E(N ) linear
behavior for the case of a realistic interaction with a (positive)
large two-body scattering length is very interesting and should
undergo deeper analysis in the future.

VII. CONCLUSION

In the present work we have discussed DSI in shallow states
of N -boson systems. We proposed an extension of the universal
relation, known from three-body zero-range theory, to N > 3
using the results of Refs. [9–11,17]. This was summarized
in Eqs. (2), which show explicitly DSI and the two-level
N -body structure attached to each level n of the three-boson
system. Then we extended Eqs. (2) to include corrections due
to the finite-range nature of the two-body interactions. These

corrections were encoded in the shift �m
N , which we introduced

into Eqs. (6) following Ref. [21]. At the origin of the extension
of the universal equations to general N is our finding that the
universal function on the right-hand sides of Eqs. (6) that
governs the three-boson dynamics is the same as the one
that governs the N -boson dynamics. Such a conclusion was
made by analyzing the solutions of the Schrödinger equations
obtained in Refs. [17,21–23] with various model potentials.

The second striking property of the universal relations given
in Eqs. (6) is the linear relation between y(ξ ), a particular
form of the universal function, and aB (or a in the zero-range
theory). Using two-body short-range forces, the theory has
two parameters: the slope and the distance along the y axis to
the origin given by the shift �m

N . Following the analysis given
for N = 3, we proposed the zero-range theory for N > 3 as
the limit case �

n,m
N → 0. The corresponding relations were

given in Eqs. (2) and it could be seen that the zero-range
limit can be represented by straight lines going through the
origin and, accordingly, the theory has only one parameter:
the slope.

We have checked if results available in the literature
exhibit universal behavior given by Eqs. (6). We have plotted
in the (aB,y) plane the experimental data on the energies
of the 7Li trimers, measured in Ref. [34], and proved that
they show linear behavior. From the linear plot we extracted
the values of κ0

3 and �0. At the unitary limit, we obtained
κ1

3 = 1.61 × 10−4a−1
0 , which can be checked either exper-

imentally or theoretically. Furthermore, we have analyzed
N -body energies calculated in Refs. [16,35], where a particular
parametrization was proposed. However, we have shown that
in both cases the linear behavior in the (aB,y) plane persists,
thus restricting the number of parameters, needed to describe
these systems, to two for each N . Moreover, those results show
the expected linear dependence of the energy wave number
on N at the unitary limit. All these findings support both
the zero-range and finite-range universal relations proposed
here.

Further analysis showed that universal relations persist only
for attractive two-body potentials. In real systems, a strong
repulsion between atoms at short distances exists, which for
fixed and (positive) finite values of aB leads to a transition
to the square root behavior of the energy wave number with
N . For the particular case of Ref. [37] this occurs around
N = 20. At larger N the wave numbers cannot be described
by the zero-range theory, which predicts a quadratic behavior
of the ground-state energy with N . In this respect it would
be interesting to study the boson clusters that have negative
values of the two-body scattering length. In this case the
shallow states are better realized and the transition between
the quadratic and linear regime should occur at larger values
on N . In fact, the results of Ref. [35] at the unitary limit
show the transition to the quadratic regime at larger values
of N than those obtained in Ref. [37] for positive values of
aB . From a different perspective we would like to analyze the
possibility of mimicking the different scale, arising due to the
short-range repulsion, by introducing a four-body force. In this
case a relation between the number of scales and high-order
forces could be established. We hope that these findings
will stimulate experimental and theoretical studies of N -body
shallow states.
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